Pricing & Advertising Off-brand Hand Sanitizer

Luca Alessandrelli Jacopo Pio Gargano Riccardo Poiani Tang-Tang Zhou

Data Intelligence Applications

Politecnico di Milano July 1st, 2020

// Pricing and Advertising issues

// Pricing and Advertising issues

// Off-brand Hand Sanitizer

Product: 80ml 6-pack hand sanitizer

Leading brand retail price: 24 €

Production cost: 12 €

Reasonable retail price range: 15-25 €

// Off-brand Hand Sanitizer

Product: 80ml 6-pack hand sanitizer

Leading brand retail price: 24 €

Production cost: 12 €

Reasonable retail price range: 15-25 €

Facebook as advertising platform
CPC upper-bound of 0.30€
CRP upper-bound of 20%
1000 € daily total advertising budget

// Scenario linear price and linear clicks

Linear CRP function Linear number of clicks functions Single phase Bernoulli modeled CRPs Gaussian modeled number of clicks

// Scenario tanh price and linear clicks

Tanh CRP function

Linear number of clicks functions Single phase Bernoulli modeled CRPs Gaussian modeled number of clicks

// Scenario non-stationary clicks

Linear CRP function Linear number of clicks functions Three abrupt phases Bernoulli modeled CRPs Gaussian modeled number of clicks

Before

During Covid-19

After

// Stationary Advertising Problem

- Design a combinatorial bandit algorithm;
- Optimize the budget allocation over the three subcampaigns;
- Maximize the total number of clicks;
- Only one phase;
- Plot the cumulative regret.

// Stationary Advertising Algorithm Design

- Correlated constrained arms \rightarrow combinatorial bandit
- Gaussian Process (GP) regressor VS Gaussian regressor
- Campaign budget optimization ightarrow knapsack-like dynamic programming algorithm

Algorithm

- 1. Find the best allocation of budgets
- 2. Observe the reward (# users clicking on ad)
- 3. Update the combinatorial bandit with pulled arms (budget allocation) and observed rewards
- 4. Train each sub-campaign regressor

// Stationary Advertising Results

Scenario linear price and linear clicks scenario

 $C_1 = 500 \in C_2 = 200 \in C_3 = 300 \in$

// Stationary Advertising Results extra

Scenario linear price and linear clicks scenario

Different number of arms

// Stationary Advertising Results extra

Scenario linear price and linear clicks scenario 2

Proposed budget allocation $C_1 = 600 \notin C_2 = 400 \notin C_3 = 0 \notin$

// Non-stationary Advertising Problem

- Design a sliding-window combinatorial bandit algorithm;
- Optimize the budget allocation over the three sub-campaigns;
- Maximize the total number of clicks;
- Three phases;
- Plot and compare the cumulative regret with stationary.

// Non-stationary Advertising Algorithm Design

- Passive approach to react to changes
- Sliding window

Algorithm

-

- 1. Find the best allocation of budgets
- 2. Observe the reward (# users clicking on ad)
- 3. Update the combinatorial bandit with pulled arms (budget allocation) and observed rewards
- 4. Train each sub-campaign regressor using just the most recent samples

// Non-stationary Advertising Algorithm Design

- Active approach to react to changes
- Change-point detection \rightarrow if $|\sum_{i=w/2+1}^{w} Y_i \sum_{i=1}^{w/2} Y_i| > b$
- Detect distribution changes of infrequently pulled arms \rightarrow randomly pull arms with prob. γ

Algorithm

- 1. Find the best allocation of budgets
- 2. Observe the reward (# users clicking on ad)
- 3. Update the combinatorial bandit with pulled arms (budget allocation) and observed reward
- 4. Detect whether a change in an arm's distribution has happened
- 5. If so, reset the collected samples so far of all the arms
- 6. Use collected samples since the last detection to train each sub-campaign regressor

[1] Cao, Y., Wen, Z., Kveton, B., and Xie, Y. Nearly optimal adaptive procedure for piecewise-stationary bandit: a change-point detection approach. ArXiv abs/1802.03692 (2018).

// Non-stationary Advertising Results

Scenario non-stationary clicks

Optimal daily clicks p₁ = 3650 p₂ = 4600 p₃ = 4550

// Non-stationary Advertising Results extra

Scenario non-stationary clicks

Decreased phases duration

// Non-stationary Advertising Results extra

Scenario non-stationary clicks

Increased std

// Pricing under Fixed Advertising Budget Problem

- Design a learning algorithm for pricing;
- Fixed advertising budget;
- Only one phase;
- Plot the cumulative regret.

// Pricing under Fixed Advertising Budget Algorithm Design

- Upper Confidence Bound 1 (UCB1) and variants
- Thompson Sampling (<mark>TS</mark>)
 - EXP3
- Rewards are scaled Bernoulli distribution \rightarrow Bound/Sample/Reward profit scaling

Algorithm

Every day:

- 1. Assign the fixed budget to each sub-campaign
- 2. For each user that visits, use the unique bandit to choose the price and then update the bandit using the observed reward

// Pricing under Fixed Advertising Budget Algorithm Design

Variants of UCB^[2]

- 1. UCB1-M: exploits monotonicity property of the arms
- 2. UCB-L: exploits the low conversion rate property
- 3. UCB-LM: a combination of the previous two techniques

^[2] Trovò, F., Paladino, S., Restelli, M., and Gatti, N. | Improving multi-armed bandit algorithms in online pricing settings. International Journal of Approximate Reasoning 98 (2018), 196 – 235.

// Pricing under Fixed Advertising Budget Results

2,00015,000TSUCB1 1,800Daily cumulative regret UCB1M UCBL 1,600 10,000 Daily profit UCBLM EXP3 1,400TS UCB1 5,000 1,200 UCB1M UCBL 1,000UCBLM EXP3 0 800 202530 10150 5 5152025100 Days Days

Scenario linear price and linear clicks scenario

Optimal daily profit

30

~1797€

// Pricing under Fixed Advertising Budget Results

Scenario tanh price and linear clicks scenario

Optimal daily profit

~1630€

// Pricing under Fixed Advertising Budget Results

Scenario linear price and linear clicks scenario **3**

Optimal daily profit ~4547€

// Contextual Pricing under Fixed Advertising Budget Problem

- Design a context generation algorithm for pricing;
- Fixed advertising budget;
- Context generation at the end of every week;
- Only one phase;
- Plot the cumulative regret.

// Contextual Pricing under Fixed Advertising Budget Algorithm Design

- Greedy context generation algorithm VS Bruteforce context generation algorithm
- Variant of Hoeffding lower bound
- Problem of re-aggregation in Greedy algorithm \rightarrow solution: block it

Algorithm

Every week:

- 1. Build context structure via context generation algorithm
- 2. Construct a bandit for each context and update its parameters by using old data
- 3. For each user that visits, use the bandit related to them in order to choose the price and then update the bandit using the observed reward

// Contextual Pricing under Fixed Advertising Budget Results

Scenario linear price and linear clicks scenario

~1979€

// Contextual Pricing under Fixed Advertising Budget Results

Scenario tanh price and linear clicks scenario

~1982€

// Contextual Pricing under Fixed Advertising Budget Results extra

Scenario linear ("unique") price and linear clicks scenario

Unique price

// Contextual Pricing under Fixed Advertising Budget Results extra

Scenario tanh price and linear clicks scenario

UCB1 vs EXP3 vs TS

// Pricing & Advertising Joint Optimization Problem

- Design an optimization algorithm for pricing and advertising;
- Context-specific subcampaign and price;
- Only one phase;
- Plot the cumulative regret

// Pricing & Advertising Joint Optimization Algorithm Design

- Estimation value per click: Expectation-based VS Quantile-based method ^[3]
- Learn number of clicks VS Learn number of clicks imes value per click
- Improved version: estimation value per click using rewards from optimal arm

Algorithm

Every day:

- 1. Solve optimization problem to select the best budget that maximize expected daily rewards
- 2. For each user that visits, select the price from the bandit related to that class of user, and then update the bandit using the observed reward
- 3. Update value per clicks using an estimation method (if necessary)

^[3] Nuara, A., Trovò, F., Gatti, N., and Restelli, M. | A combinatorial-bandit algorithm for the online joint bid/budget optimization of pay-per-click advertising campaigns.

Scenario linear price and linear clicks scenario

~2327€

Scenario tanh price and linear clicks scenario

~2365€

Scenario linear price and linear clicks scenario

Different budget

Scenario tanh price and linear clicks scenario

TS vs UCB1

Scenario tanh price and linear clicks scenario

Different std

Scenario linear price and linear clicks scenario

Scenario linear price and linear clicks scenario

// Unique Pricing & Advertising Joint Optimization Problem

- Design a joint optimization algorithm for pricing and advertising;
- Context-specific sub-campaign;
- Unique price
 - Fixed during a whole day & context-unaware
- Only one phase;
- Plot the cumulative regret

// Unique Pricing & Advertising Joint Optimization Algorithm Design

- Estimators
 - GP regressor to estimate the number of clicks in each sub-campaign
 - Beta distributions for CRP updated in a TS-like manner
- Joint optimization \rightarrow repeat dynamic programming algorithm for each price

Algorithm

- 1. Initialize price and and budget at random
- 2. Observe the rewards and update beta distributions and GPs
- 3. Sample GPs for each sub-campaign and sample beta for each price and sub-campaign
- 4. Solve DP problem for each price and get the best pair (price, budget)

// Unique Pricing & Advertising Joint Optimization Algorithm Design

- Joint optimization \rightarrow repeat dynamic programming algorithm for each price
- Distributions of users depend on advertising → balance distributions

Algorithm

- 1. Initialize price and and budget at random
- 2. Observe the rewards
- 3. Sample GPs for each sub-campaign and updates expected value per click
- 4. Solve DP problem for each price and get the best pair budget
- 5. Re-train a bandit in an offline fashion keeping the data balanced with the expected distribution

// Unique Pricing & Advertising Joint Optimization Results

Scenario linear price and linear clicks scenario

~2161€

// Unique Pricing & Advertising Joint Optimization Results

Scenario tanh price and linear clicks scenario

~1949€

Scenario linear price and linear clicks scenario

Different std

Scenario linear price and linear clicks scenario

Different budget

Pricing & Advertising Off-brand Hand Sanitizer

Luca Alessandrelli Jacopo Pio Gargano Riccardo Poiani Tang-Tang Zhou

Data Intelligence Applications

Politecnico di Milano July 1st, 2020