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Notations

The book makes use of large number of notations; we have striven to stick to accepted
notation and to be consistent throughout the book. The coordinates of a vector are always
denoted by a subscript index, x = (xi)ni=1, while the indices of the elements of sequences
are always denoted by a superscript index, x1, x2, . . . The index of a player in a set of
players is always denoted by a subscript index, while a time index (in repeated games) is
always denoted by a superscript index. The end of the proof of a theorem is indicated by

, the end of an example is indicated by �, and the end of a remark is indicated by �.
For convenience we provide a list of the mathematical notation used throughout the

book, accompanied by a short explanation and the pages on which they are formally
defined. The notations that appear below are those that are used more than once.

0 chance move in an extensive-form game 50
�0 origin of a Euclidean space 570
∅ strategy used by a player who has no decision vertices in an

extensive-form game 5
1A function that is equal to 1 on event A and to 0 otherwise 595
2Y collection of all subsets of Y 325

|X| number of elements in finite set X 603
‖x‖∞ L∞ norm, ‖x‖∞ := maxi=1,2,...,n |xi | 531

‖x‖ norm of a vector, ‖x‖ :=
√∑d

l=1(xl)2 570

A ∨ B maximum matching (for men) in a matching problem 895
A ∧ B maximum matching (for women) in a matching problem 896
A ⊆ B set A contains set B or is equal to it
A ⊂ B set A strictly contains set B

〈x, y〉 inner product 570
〈〈x0, . . . , xk〉〉 k-dimensional simplex 920
�i preference relation of player i 14
i strict preference relation of player i 10
≈i indifference relation of player i 10, 897
�P preference relation of an individual 857
Q strict preference relation of society 857
≈Q indifference relation of society 857

x ≥ y xk ≥ yk for each coordinate k, where x, y are vectors in
a Euclidean space 625

x > y x ≥ y and x �= y 625

xv



xvi Notations

x � y xk > yk for each coordinate k, where x, y are vectors in
a Euclidean space 625

x + y sum of vectors in a Euclidean space, (x + y)k := xk + yk 625
xy coordinatewise product of vectors in a Euclidean space,

(xy)k := xkyk 625
x + S x + S := {x + s : s ∈ S}, where x ∈ Rd and S ⊆ Rd 625
xS xS := {xs : s ∈ S}, where x ∈ Rd and S ⊆ Rd 625
cx product of real number c and vector x 625
cS cS := {cs : s ∈ S}, where c is a real number and S ⊆ Rd 625
S + T sum of sets; S + T := {x + y : x ∈ S, y ∈ T } 625

�c� smallest integer greater than or equal to c 534
�c� largest integer less than or equal to c 534
x� transpose of a vector, column vector that corresponds to

row vector x 571

argmaxx∈Xf (x) set of all x where function f attains its maximum
in the set X 125, 625

a(i) producer i’s initial endowment in a market 703
A set of actions in a decision problem with experts 601
A set of alternatives 856
Ai player i’s action set in an extensive-form game,

Ai := ∪ki

j=1A(Uj
i ) 221

Ak possible outcome of a game 13
A(x) set of available actions at vertex x in an extensive-form game 44
A(Ui) set of available actions at information set Ui of player i in

an extensive-form game 54

bi buyer i’s bid in an auction 91, 466
b(S) b(S) = ∑

i∈S bi where b ∈ RN 669
brI(y) Player I’s set of best replies to strategy y 125
brII(x) Player II’s set of best replies to strategy x 125
Bi player i’s belief operator 392
B

p
i set of states of the world in which the probability that

player i ascribes to event E is at least p, B
p
i (E) :=

{ω ∈ Y : πi(E | ω) ≥ p} 426
BZi(N ; v) Banzhaf value of a coalitional game 780
B coalitional structure 673
BT

i set of behavior strategies of player i in a T -repeated game 525
B∞

i set of behavior strategies of player i in an infinitely
repeated game 538

c coalitional function of a cost game 661
c+ maximum of c and 0 840
ci ci(vi) := vi − 1−Fi (vi )

fi (vi )
501

C function that dictates the amount that each buyer pays given
the vector of bids in an auction 466



xvii Notations

C(x) set of children of vertex x in an extensive-form game 5
C(N, v) core of a coalitional game 687
C(N, v;B) core for a coalitional structure 732
conv{x1, . . . , xK} smallest convex set that contains the vectors {x1, . . . , xK}

Also called the convex hull of {x1, . . . , xK} 530, 625, 917

d disagreement point of a bargaining game 625
di debt to creditor i in a bankruptcy problem 833
dt distance between average payoff and target set 581
d(x, y) Euclidean distance between two vectors in Euclidean space 571
d(x, S) Euclidean distance between point and set 571
D(α, x) collection of coalitions whose excess is at least α,

D(α, x) := {S ⊆ N, S �= ∅ : e(S, x) ≥ α} 818

e(S, x) excess of coalition S, e(S, x) := v(S) − x(S) 802
E set of vertices of a graph 41, 43
E estate of bankrupt entity in a bankruptcy problem 833
E set of experts in a decision problem with experts 601

F set of feasible payoffs in a repeated game 530, 578
F social welfare function 857
Fi cumulative distribution function of buyer i’s private values

in an auction 466
Fi(ω) atom of the partition Fi that contains ω 324
FN cumulative distribution function of joint distribution of

vector of private values in an auction 466
F collection of all subgames in the game of chess 5
F family of bargaining games 625
FN family of bargaining games with set of players N 650
Fd family of bargaining games in F where the set of

alternatives is comprehensive and all alternatives are at
least as good as the disagreement point, which is (0, 0) 644

Fi player i’s information in an Aumann model of incomplete
information 323

gT average payoff up to stage T (including) in a repeated game 572
G graph 41
G social choice function 865

h history of a repeated game 525
ht history at stage t of a repeated game 602
H (t) set of t-stage histories of a repeated game 525, 601
H (∞) set of plays in an infinitely repeated game 538
H (α, β) hyperplane, H (α, β) := {x ∈ Rd : 〈α, x〉 = β} 577, 943
H+(α, β) half-space, H+(α, β) := {x ∈ Rd : 〈α, x〉 ≥ β} 577, 943
H−(α, β) half-space, H−(α, β) := {x ∈ Rd : 〈α, x〉 ≤ β} 577, 943

i player
−i set of all players except of player i
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I function that dictates the winner of an auction given the
vector of bids 466

J number of lotteries that compose a compound lottery 14
J (x) player who chooses a move at vertex x of an extensive-form

game 44

−k player who is not k in a two-player game 571
ki number of information sets of player i in an extensive-form

game 54
K number of outcomes of a game 16
Ki player i’s knowledge operator 325
KS, KS(S) Kalai–Smorodinsky solution to bargaining games 648

L lottery: L = [p1(A1), p2(A2), . . . , pK (AK )] 13
L number of commodities in a market 703
L̂ compound lottery: L̂ = [q1(L1), . . . , qJ (LJ )] 14
L set of lotteries 13
L̂ set of compound lotteries 15

m(ε) minimal coordinate of vector ε 264, 268
mi number of pure strategies of player i 147
mi(S) highest possible payoff to player i in a bargaining game 643
M maximal absolute value of a payoff in a game 521
Mm,l space of matrices of dimension m × l 204
M(ε) maximal coordinate of vector ε 264, 268
M(N ; v;B) bargaining set for coalitional structure B 786

n number of players 77
n number of buyers in an auction 466
nx number of vertices in subgame �(x) 4
N set of players 43, 833, 660
N set of buyers in an auction 466
N set of individuals 856
N set of producers in a market 703
N set of natural numbers, N := {1, 2, 3, . . .}
N N (S, d), Nash’s solution to bargaining games 630
N (N ; v) nucleolus of a coalitional game 805
N (N ; v;B) nucleolus of a coalitional game for coalitional structure B 805
N (N ; v; K) nucleolus relative to set K 804

O set of outcomes 13, 43

p common prior in a Harsanyi game with incomplete
information 347

pk probability that the outcome of lottery L is Ak 13
px probability distribution over actions at chance move x 50
P binary relation 857
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P set of all weakly balancing weights for collection D∗ of all
coalitions 701

P common prior in an Aumann model of incomplete
information 334

Pσ (x) probability that the play reaches vertex x when the players
implement strategy vector σ in an extensive-form game 254

Pσ (U ) probability that the play reaches a vertex in information
set U when the players implement strategy vector σ in an
extensive-form game 273

P N vector of preference relations 857
PO(S) set of efficient (Pareto optimal) points in S 627
POW (S) set of weakly efficient points in S 627
P(A) set of all strict preference relations over a set of

alternatives A 857
P(N) collection of nonempty subsets of N , P(N) :=

{S ⊆ N, S �= ∅} 670, 701
P∗(A) set of all preference relations over a set of alternatives A 857
PN (N ; v) prenucleolus of a coalitional game 805
PN (N ; v;B) prenucleolus of a coalitional game for coalitional

structure B 805

q quota in a weighted majority game 664
q(w) minimal weight of a winning coalition in a weighted

majority game, q(w) := min
S∈Wm

w(S) 828

Q++ set of positive rational numbers

rk total probability that the result of a compound lottery is Ak 18
R1(p) set of possible payoffs when Player 1 plays mixed action

p, R1(p) := {puq� : q ∈ 
(J )} 576
R2(p) set of possible payoffs when Player 2 plays mixed action

q, R2(p) := {puq� : q ∈ 
(I)} 576
R real line
R+ set of nonnegative numbers
R++ set of positive numbers
Rn n-dimensional Euclidean space
Rn

+ nonnegative orthant in an n-dimensional Euclidean space,
Rn

+ := {x ∈ Rn : xi ≥ 0, ∀i = 1, 2, . . . , n}
RS |S|-dimensional Euclidean space, where each coordinate

corresponds to a player in S 669
range(G) range of a social choice function 870

s strategy vector 45
s function that assigns a state of nature to each state of

the world 323
st action vector played at stage t of a repeated game 525
si strategy of player i 45, 56



xx Notations

st state of nature that corresponds to type vector t in a
Harsanyi game with incomplete information 347

s−1(C) set of states of the world that correspond to a state of
nature in C, s−1(C) := {ω ∈ Y : s(ω) ∈ C} 330

S set of all vectors of pure strategies 77
S set of states of nature in models of incomplete information 323
S set of states of nature in a decision problem with experts 601
S set of alternatives in a bargaining game 625
Si set of player i’s pure strategies 77
Sh Shapley value 754
supp support of a probability distribution 206
supp support of a vector in Rn 925

ti player i’s type in models of incomplete information 452
T set of vectors of types in a Harsanyi model of incomplete

information 347
T number of stages in a finitely repeated game 528
Ti player i’s type set in a Harsanyi model of incomplete

information 347

u payoff function in a strategic-form game 43, 601
ui player i’s utility function 14
ui player i’s payoff function 77
ui producer i’s production function in a market 703
ui

t payoff of player i at stage t in a repeated game 527
ut vector of payoffs at stage t in a repeated game 527
u(s) outcome of a game under strategy vector s 45
U

j
i information set of player i in an extensive-form game 54

Ui mixed extension of player i’s payoff function 147
U (C) uniform distribution over set C

U [α] scalar payoff function generated by projecting the payoffs
in direction α in a game with payoff vectors 588

v value of a two-player zero-sum game 114
v coalitional function of a coalitional game 660
v maxmin value of a two-player non-zero-sum game 113
v minmax value of a two-player non-zero-sum game 113
v maximal private value of buyers in an auction 471
v0 root of a game tree 42, 43
vi buyer i’s private value in an auction 91
v∗ superadditive closure of a coalitional game 732
vi player i’s maxmin value in a strategic-form game 103, 104, 176
vi player i’s minmax value in a strategic-form game 177, 529
val(A) value of a two-player zero-sum game whose payoff

function is given by matrix A 588
V set of edges in a graph 41, 43
V set of individually rational payoffs in a repeated game 530



xxi Notations

V0 set of vertices in an extensive-form game where a chance
move takes place 43

Vi set of player i’s decision points in an extensive-form game 43
Vi random variable representing buyer i’s private value in

an auction 467
V buyer’s set of possible private values in a symmetric auction 471
Vi buyer i’s set of possible private values 466
VN set of vectors of possible private values: VN := V1 × V2

× · · · × Vn 466

wi player i’s weight in a weighted majority game 664
Wm collection of minimal winning coalitions in a simple

monotonic game 826

x−i x−i := (xj )j �=i 85
x(S) x(S) := ∑

i∈S xi , where x ∈ RN 669
X X := ×i∈N Xi 2
Xk space of belief hierarchies of order k 442
X−i X−i := ×j �=i Xj 85
X(n) standard (n − 1)-dimensional simplex,

X(n) := {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0 ∀i} 935
X(N ; v) set of imputations in a coalitional game,

X(N ; v) := {x ∈ Rn : x(N) = v(N), xi ≥ v(i) ∀i ∈ N} 674, 802
X0(N ; v) set of preimputations, X0(N ; v) :=

{x ∈ RN : x(N) = v(N)} 805
X(B; v) set of imputations for coalitional structure B,

X(B; v) := {x ∈ RN : x(S) = v(S) ∀S ∈ B, xi ≥ vi ∀i} 674
X0(B; v) set of preimputations for coalitional structure B,

X0(B; v) := {x ∈ RN : x(S) = v(S) ∀S ∈ B} 805

Y set of states of the world 323, 334
Ỹ (ω) minimal belief subspace in state of the world ω 401
Ỹi(ω) minimal belief subspace of player i in state of the world ω 403

Zk space of coherent belief hierarchies of order k 445
Z(P, Q; R) preference relation in which alternatives in R are preferred

to alternatives not in R, the preference over alternatives in
R is determined by P , and the preference over alternatives
not in R is determined by Q 866

Z(P N, QN ; R) preference profile in which the preference of
individual i is Z(Pi, Qi ; R) 867

βi buyer i’s strategy in an auction 467
βi buyer i’s strategy in a selling mechanism 495
β∗

i buyer i’s strategy in a direct selling mechanism in which
he reports his private value 495

� extensive-form game 43, 50, 54
� extension of a strategic-form game to mixed strategies 147



xxii Notations

�T T -stage repeated game 528
�λ discounted game with discount factor λ 544
�∞ infinitely repeated game 539
�(x) subgame of an extensive-form game that starts at vertex x 4, 45, 55
�∗(p) extended game that includes a chance move that selects

a vector of recommendations according to the probability
distribution p in the definition of a correlated equilibrium 305
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Introduction

What is game theory?
Game theory is the name given to the methodology of using mathematical tools to model
and analyze situations of interactive decision making. These are situations involving
several decision makers (called players) with different goals, in which the decision of
each affects the outcome for all the decision makers. This interactivity distinguishes game
theory from standard decision theory, which involves a single decision maker, and it is
its main focus. Game theory tries to predict the behavior of the players and sometimes
also provides decision makers with suggestions regarding ways in which they can achieve
their goals.

The foundations of game theory were laid down in the book The Theory of Games and
Economic Behavior, published in 1944 by the mathematician John von Neumann and the
economist Oskar Morgenstern. The theory has been developed extensively since then and
today it has applications in a wide range of fields. The applicability of game theory is due
to the fact that it is a context-free mathematical toolbox that can be used in any situation
of interactive decision making. A partial list of fields where the theory is applied, along
with examples of some questions that are studied within each field using game theory,
includes:

� Theoretical economics. A market in which vendors sell items to buyers is an example
of a game. Each vendor sets the price of the items that he or she wishes to sell, and
each buyer decides from which vendor he or she will buy items and in what quantities.
In models of markets, game theory attempts to predict the prices that will be set for
the items along with the demand for each item, and to study the relationships between
prices and demand. Another example of a game is an auction. Each participant in an
auction determines the price that he or she will bid, with the item being sold to the
highest bidder. In models of auctions, game theory is used to predict the bids submitted
by the participants, the expected revenue of the seller, and how the expected revenue
will change if a different auction method is used.

� Networks. The contemporary world is full of networks; the Internet and mobile tele-
phone networks are two prominent examples. Each network user wishes to obtain the
best possible service (for example, to send and receive the maximal amount of infor-
mation in the shortest span of time over the Internet, or to conduct the highest-quality
calls using a mobile telephone) at the lowest possible cost. A user has to choose an
Internet service provider or a mobile telephone provider, where those providers are also
players in the game, since they set the prices of the service they provide. Game theory
tries to predict the behavior of all the participants in these markets. This game is more
complicated from the perspective of the service providers than from the perspective
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of the buyers, because the service providers can cooperate with each other (for exam-
ple, mobile telephone providers can use each other’s network infrastructure to carry
communications in order to reduce costs), and game theory is used to predict which
cooperative coalitions will be formed and suggests ways to determine a “fair” division
of the profit of such cooperation among the participants.

� Political science. Political parties forming a governing coalition after parliamentary
elections are playing a game whose outcome is the formation of a coalition that includes
some of the parties. This coalition then divides government ministries and other elected
offices, such as parliamentary speaker and committee chairmanships, among the mem-
bers of the coalition. Game theory has developed indices measuring the power of each
political party. These indices can predict or explain the division of government min-
istries and other elected offices given the results of the elections. Another branch of
game theory suggests various voting methods and studies their properties.

� Military applications. A classical military application of game theory models a missile
pursuing a fighter plane. What is the best missile pursuit strategy? What is the best
strategy that the pilot of the plane can use to avoid being struck by the missile? Game
theory has contributed to the field of defense the insight that the study of such situations
requires strategic thinking: when coming to decide what you should do, put yourself
in the place of your rival and think about what he/she would do and why, while taking
into account that he/she is doing the same and knows that you are thinking strategically
and that you are putting yourself in his/her place.

� Inspection. A broad family of problems from different fields can be described as two-
player games in which one player is an entity that can profit by breaking the law and
the other player is an “inspector” who monitors the behavior of the first player. One
example of such a game is the activities of the International Atomic Energy Agency,
in its role of enforcing the Treaty on the Non-Proliferation of Nuclear Weapons by
inspecting the nuclear facilities of signatory countries. Additional examples include the
enforcement of laws prohibiting drug smuggling, auditing of tax declarations by the
tax authorities, and ticket inspections on public trains and buses.

� Biology. Plants and animals also play games. Evolution “determines” strategies that
flowers use to attract insects for pollination and it “determines” strategies that the
insects use to choose which flowers they will visit. Darwin’s principle of the “survival
of the fittest” states that only those organisms with the inherited properties that are best
adapted to the environmental conditions in which they are located will survive. This
principle can be explained by the notion of Evolutionarily Stable Strategy, which is a
variant of the notion of Nash equilibrium, the most prominent game-theoretic concept.
The introduction of game theory to biology in general and to evolutionary biology in
particular explains, sometimes surprisingly well, various biological phenomena.

Game theory has applications to other fields as well. For example, to philosophy
it contributes some insights into concepts related to morality and social justice, and
it raises questions regarding human behavior in various situations that are of interest to
psychology. Methodologically, game theory is intimately tied to mathematics: the study of
game-theoretic models makes use of a variety of mathematical tools, from probability and
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combinatorics to differential equations and algebraic topology. Analyzing game-theoretic
models sometimes requires developing new mathematical tools.

Traditionally, game theory is divided into two major subfields: strategic games, also
called noncooperative games, and coalitional games, also called cooperative games.
Broadly speaking, in strategic games the players act independently of each other, with
each player trying to obtain the most desirable outcome given his or her preferences,
while in coalitional games the same holds true with the stipulation that the players can
agree on and sign binding contracts that enforce coordinated actions. Mechanisms enforc-
ing such contracts include law courts and behavioral norms. Game theory does not deal
with the quality or justification of these enforcement mechanisms; the cooperative game
model simply assumes that such mechanisms exist and studies their consequences for the
outcomes of the game.

The categories of strategic games and coalitional games are not well defined. In many
cases interactive decision problems include aspects of both coalitional games and strategic
games, and a complete theory of games should contain an amalgam of the elements of
both types of models. Nevertheless, in a clear and focused introductory presentation of
the main ideas of game theory it is convenient to stick to the traditional categorization.
We will therefore present each of the two models, strategic games and coalitional games,
separately. Chapters 1–14 are devoted to strategic games, and Chapters 15–20 are devoted
to coalitional games. Chapters 21 and 22 are devoted to social choice and stable matching,
which include aspects of both noncooperative and cooperative games.

How to use this book
The main objective of this book is to serve as an introductory textbook for the study of
game theory at both the undergraduate and the graduate levels. A secondary goal is to
serve as a reference book for students and scholars who are interested in an acquaintance
with some basic or advanced topics of game theory. The number of introductory topics is
large and different teachers may choose to teach different topics in introductory courses.
We have therefore composed the book as a collection of chapters that are, to a large extent,
independent of each other, enabling teachers to use any combination of the chapters as
the basis for a course tailored to their individual taste. To help teachers plan a course, we
have included an abstract at the beginning of each chapter that presents its content in a
short and concise manner.

Each chapter begins with the basic concepts and eventually goes farther than what may
be termed the “necessary minimum” in the subject that it covers. Most chapters include,
in addition to introductory concepts, material that is appropriate for advanced courses.
This gives teachers the option of teaching only the necessary minimum, presenting deeper
material, or asking students to complement classroom lectures with independent readings
or guided seminar presentations. We could not, of course, include all known results of
game theory in one textbook, and therefore the end of each chapter contains references
to other books and journal articles in which the interested reader can find more material
for a deeper understanding of the subject. Each chapter also contains exercises, many of
which are relatively easy, while some are more advanced and challenging.
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This book was composed by mathematicians; the writing is therefore mathematically
oriented, and every theorem in the book is presented with a proof. Nevertheless, an effort
has been made to make the material clear and transparent, and every concept is illustrated
with examples intended to impart as much intuition and motivation as possible. The book
is appropriate for teaching undergraduate and graduate students in mathematics, computer
science and exact sciences, economics and social sciences, engineering, and life sciences.
It can be used as a textbook for teaching different courses in game theory, depending on
the level of the students, the time available to the teacher, and the specific subject of the
course. For example, it could be used in introductory level or advanced level semester
courses on coalitional games, strategic games, a general course in game theory, or a course
on applications of game theory. It could also be used for advanced mini-courses on, e.g.,
incomplete information (Chapters 9, 10, and 11), auctions (Chapter 12), or repeated games
(Chapters 13 and 14). As mentioned previously, the material in the chapters of the book
will in many cases encompass more than a teacher would choose to teach in a single
course. This requires teachers to choose carefully which chapters to teach and which
parts to cover in each chapter. For example, the material on strategic games (Chapters 4
and 5) can be taught without covering extensive-form games (Chapter 3) or utility theory
(Chapter 2). Similarly, the material on games with incomplete information (Chapter 9) can
be taught without teaching the other two chapters on models of incomplete information
(Chapters 10 and 11).

For the sake of completeness, we have included an appendix containing the proofs
of some theorems used throughout the book, including Brouwer’s Fixed Point Theorem,
Kakutani’s Fixed Point Theorem, the Knaster–Kuratowski–Mazurkiewicz (KKM) Theo-
rem, and the separating hyperplane theorem. The appendix also contains a brief survey
of linear programming. A teacher can choose to prove each of these theorems in class,
assign the proofs of the theorems as independent reading to the students, or state any of
the theorems without proof based on the assumption that students will see the proofs in
other courses.
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Chapter summary
In the opening chapter of this book, we use the well-known game of chess to illustrate
the notions of strategy and winning strategy. We then prove one of the first results in
game theory, due to John von Neumann: in the game of chess either White (the first
mover) has a winning strategy, or Black (the second mover) has a winning strategy, or
each player has a strategy guaranteeing at least a draw. This is an important and
nontrivial result, especially in view of the fact that to date, it is not known which of the
above three alternatives holds, let alone what the winning strategy is, if one exists.

In later chapters of the book, this result takes a more general form and is applied to
a large class of games.

We begin with an exposition of the elementary ideas in noncooperative game theory, by
analyzing the game of chess. Although the theory that we will develop in this chapter
relates to that specific game, in later chapters it will be developed to apply to much more
general situations.

1.1 Schematic description of the game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The game of chess is played by two players, traditionally referred to as White and Black.
At the start of a match, each player has sixteen pieces arranged on the chessboard. White
is granted the opening move, following which each player in turn moves pieces on the
board, according to a set of fixed rules. A match has three possible outcomes:

� Victory for White, if White captures the Black King.
� Victory for Black, if Black captures the White King.
� A draw, if:

1. it is Black’s turn, but he has no possible legal moves available, and his King is not in
check;

2. it is White’s turn, but he has no possible legal moves available, and his King is not in
check;

3. both players agree to declare a draw;
4. a board position precludes victory for both sides;
5. 50 consecutive turns have been played without a pawn having been moved and

without the capture of any piece on the board, and the player whose turn it is requests
that a draw be declared;

1
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6. or if the same board position appears three times, and the player whose turn it is
requests that a draw be declared.

1.2 Analysis and results
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

For the purposes of our analysis all we need to assume is that the game is finite, i.e.,
the number of possible turns is bounded (even if that bound is an astronomically large
number). This does not apply, strictly speaking, to the game of chess, but since our
lifetimes are finite, we can safely assume that every chess match is finite.

We will denote the set of all possible board positions in chess by X. A board position
by definition includes the identity of each piece on the board, and the board square on
which it is located.

A board position, however, does not provide full details on the sequence of moves that
led to it: there may well be two or sequences of moves leading to the same board position.
We therefore need to distinguish between a “board position” and a “game situation,” which
is defined as follows.

Definition 1.1 A game situation (in the game of chess) is a finite sequence (x0, x1,

x2, . . . , xK ) of board positions in X satisfying

1. x0 is the opening board position.
2. For each even integer k, 0 ≤ k < K , going from board position xK to xK+1 can be

accomplished by a single legal move on the part of White.
3. For each odd integer k, 0 ≤ k < K , going from board position xK to xK+1 can be

accomplished by a single legal move on the part of Black.

We will denote the set of game situations by H .
Suppose that a player wishes to program a computer to play chess. The computer would

need a plan of action that would tell it what to do in any given game situation that could
arise. A full plan of action for behavior in a game is called a strategy.

Definition 1.2 A strategy for White is a function sW that associates every game situation
(x0, x1, x2, . . . , xK ) ∈ H , where K is even, with a board position xK+1, such that going
from board position xK to xK+1 can be accomplished by a single legal move on the part
of White.

Analogously, a strategy for Black is a function sB that associates every game situation
(x0, x1, x2, . . . , xK ) ∈ H , where K is odd, with a board position xK+1 such that going
from board position xK to xK+1 can be accomplished by a single legal move on the part
of Black.

Any pair of strategies (sW , sB) determines an entire course of moves, as follows.
In the opening move, White plays the move that leads to board position x1 = sW (x0).
Black then plays the move leading to board position x2 = sB(x0, x1), and so on. The
succeeding board positions are determined by x2K+1 = sW (x0, x1, . . . , x2K ) and x2K+2 =
sB(x0, x1, . . . , x2K+1) for all K = 0, 1, 2, . . ..
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An entire course of moves (from the opening move to the closing one) is termed a play
of the game.

Every play of the game of chess ends in either a victory for White, a victory for Black,
or a draw. A strategy for White is termed a winning strategy if it guarantees that White
will win, no matter what strategy Black chooses.

Definition 1.3 A strategy sW is a winning strategy for White if for every strategy sB of
Black, the play of the game determined by the pair (sW , sB) ends in victory for White. A
strategy sW is a strategy guaranteeing at least a draw for White if for every strategy sB of
Black, the play of the game determined by the pair (sW , sB) ends in either a victory for
White or a draw.

If sW is a winning strategy for White, then any White player (or even computer program)
adopting that strategy is guaranteed to win, even if he faces the world’s chess champion.

The concepts of “winning strategy” and “strategy guaranteeing at least a draw” for
Black are defined analogously, in an obvious manner.

The next theorem follows from one of the earliest theorems ever published in game
theory (see Theorem 3.13 on page 46).

Theorem 1.4 In chess, one and only one of the following must be true:

(i) White has a winning strategy.
(ii) Black has a winning strategy.

(iii) Each of the two players has a strategy guaranteeing at least a draw.

We emphasize that the theorem does not relate to a particular chess match, but to all
chess matches. That is, suppose that alternative (i) is the true case, i.e., White has a winning
strategy sW . Then any person who is the White player and follows the prescriptions of that
strategy will always win every chess match he ever plays, no matter who the opponent is.
If, however, alternative (ii) is the true case, then Black has a winning strategy sB , and any
person who is the Black player and follows the prescriptions of that strategy will always
win every chess match he ever plays, no matter who the opponent is. Finally, if alternative
(iii) is the true case, then White has a strategy sW guaranteeing at least a draw, and Black
has a strategy sB guaranteeing at least a draw. Any person who is the White player (or the
Black player) and follows the prescriptions of sW (or sB , respectively) will always get at
least a draw in every chess match he ever plays, no matter who the opponent is. Note that if
alternative (i) holds, there may be more than one winning strategy, and similar statements
can be made with regard to the other two alternatives.

So, given that one of the three alternatives must be true, which one is it? We do not know.
If the day ever dawns in which a winning strategy for one of the players is discovered, or
strategies guaranteeing at least a draw for each player are discovered, the game of chess
will cease to be of interest. In the meantime, we can continue to enjoy the challenge of
playing (or watching) a good chess match.

Despite the fact that we do not know which alternative is the true one, the theorem
is significant, because a priori it might have been the case that none of the alternatives
was possible; one could have postulated that no player could ever have a strategy always
guaranteeing a victory, or at least a draw.
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White moves 

Black  moves 

White moves 

Figure 1.1 The game of chess presented in extensive form

We present two proofs of the theorem. The first proof is the “classic” proof, which in
principle shows how to find a winning strategy for one of the players (if such a strategy
exists) or a strategy guaranteeing at least a draw (if such a strategy exists). The second
proof is shorter, but it cannot be used to find a winning strategy for one of the players (if
such a strategy exists) or a strategy guaranteeing at least a draw (if such a strategy exists).

We start with several definitions that are needed for the first proof of the theorem. The
set of game situations can be depicted by a tree1 (see Figure 1.1). Such a tree is called a
game tree. Each vertex of the game tree represents a possible game situation. Denote the
set of vertices of the game tree by H .

The root vertex is the opening game situation x0, and for each vertex x, the set of
children vertices of x are the set of game situations that can be reached from x in one
legal move. For example, in his opening move, White can move one of his pawns one or
two squares forward, or one of his two rooks. So White has 20 possible opening moves,
which means that the root vertex of the tree has 20 children vertices. Every vertex that can
be reached from x by a sequence of moves is called a descendant of x. Every leaf of the
tree corresponds to a terminal game situation, in which either White has won, Black has
won, or a draw has been declared.

Given a vertex x ∈ H , we may consider the subtree beginning at x, which is by definition
the tree whose root is x that is obtained by removing all vertices that are not descendants
of x. This subtree of the game tree, which we will denote by �(x), corresponds to a game
that is called the subgame beginning at x. We will denote by nx the number of vertices in
�(x). The game �(x0) is by definition the game that starts with the opening situation of
the game, and is therefore the standard chess game.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 The mathematical definition of a tree appears in the sequel (see Definition 3.5 on page 42).
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If y is a child vertex of x, then �(y) is a subtree of �(x) that does not contain x. In
particular, nx > ny . Moreover, nx = 1 if and only if x is a terminal situation of the game,
i.e., the players cannot implement any moves at this subgame. In such a case, the strategy
of a player is denoted by ∅.

Denote by

F = {�(x) : x ∈ H } (1.1)

the collection of all subgames that are defined by subtrees of the game of chess.
Theorem 1.4 can be proved using the result of Theorem 1.5.

Theorem 1.5 Every game in F satisfies one and only one of the following alternatives:

(i) White has a winning strategy.
(ii) Black has a winning strategy.

(iii) Each of the players has a strategy guaranteeing at least a draw.

Proof: The proof proceeds by induction on nx , the number of vertices in the subgame
�(x).

Suppose x is a vertex such that nx = 1. As noted above, that means that x is a terminal
vertex. If the White King has been removed from the board, Black has won, in which case
∅ is a winning strategy for Black. If the Black King has been removed from the board,
White has won, in which case ∅ is a winning strategy for White. Alternatively, if both
Kings are on the board at the end of play, the game has ended in a draw, in which case ∅
is a strategy guaranteeing a draw for both Black and White.

Next, suppose that x is a vertex such that nx > 1. Assume by induction that at all
vertices y satisfying ny < nx , one and only one of the alternatives (i), (ii), or (iii) is true
in the subgame �(y).

Suppose, without loss of generality, that White has the first move in �(x). Any board
position y that can be reached from x satisfies ny < nx , and so the inductive assumption
is true in the corresponding subgame �(y). Denote by C(x) the collection of vertices that
can be reached from x in one of White’s moves.

1. If there is a vertex y0 ∈ C(x) such that White has a winning strategy in �(y0), then
alternative (i) is true in �(x): the winning strategy for White in �(x) is to choose as his
first move the move leading to vertex y0, and to follow the winning strategy in �(y0) at
all subsequent moves.

2. If Black has a winning strategy in �(y) for every vertex y ∈ C(x), then alternative
(ii) is true in �(x): Black can win by ascertaining what the vertex y is after White’s
first move, and following his winning strategy in �(y) at all subsequent moves.

3. Otherwise:
� (1) does not hold, i.e., White has no winning strategy in �(y) for any y ∈ C(x).

Because the induction hypothesis holds for every vertex y ∈ C(x), either Black has
a winning strategy in �(y), or both players have a strategy guaranteeing at least a
draw in �(y).

� (2) does not hold, i.e., there is a vertex y0 ∈ C(x) such that Black does not have a
winning strategy in �(y0). But because (1) does not hold, White also does not have a
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winning strategy in �(y0). Therefore, by the induction hypothesis applied to �(y0),
both players have a strategy guaranteeing at least a draw in �(y0).

As we now show, in this case, in �(x) both players have a strategy guaranteeing at least
a draw. White can guarantee at least a draw by choosing a move leading to vertex y0,
and from there by following the strategy that guarantees at least a draw in �(y0). Black
can guarantee at least a draw by ascertaining what the board position y is after White’s
first move, and at all subsequent moves in �(y) either by following a winning strategy or
following a strategy that guarantees at least a draw in that subgame. �

The proof just presented is a standard inductive proof over a tree: one assumes that the
theorem is true for every subtree starting from the root vertex, and then shows that it is true
for the entire tree. The proof can also be accomplished in the following way: select any
vertex x that is neither a terminal vertex nor the root vertex. The subgame starting from
this vertex, �(x), contains at least two vertices, but fewer vertices than the original game
(because it does not include the root vertex), and the induction hypothesis can therefore be
applied to �(x). Now “fold up” the subgame and replace it with a terminal vertex whose
outcome is the outcome that is guaranteed by the induction hypothesis to be obtained
in �(x). This leads to a new game �̂. Since �(x) has at least two vertices, �̂ has fewer
vertices than the original game, and therefore by the induction hypothesis the theorem is
true for �̂. It is straightforward to ascertain that a player has a winning strategy in �̂ if and
only if he has a winning strategy in the original game.

In the proof of Theorem 1.5 we used the following properties of the game of chess:

(C1) The game is finite.
(C2) The strategies of the players determine the play of the game. In other words, there is

no element of chance in the game; neither dice nor card draws are involved.
(C3) Each player, at each turn, knows the moves that were made at all previous stages of

the game.

We will later see examples of games in which at least one of the above properties fails to
hold, for which the statement of Theorem 1.5 also fails to hold (see for example the game
“Matching Pennies,” Example 3.20 on page 52).

We next present a second proof of Theorem 1.4. We will need the following two facts
from formal logic for the proof. Let X be a finite set and let A(x) be an arbitrary logical
formula.2 Then:

� If it is not the case that “for every x ∈ X the formula A(x) holds,” then there exists an
x ∈ X where the formula A(x) does not hold:

¬ (∀x(A)) = ∃x(¬A). (1.2)

� If it is not the case that “there exists an x ∈ X where the formula A(x) holds,” then for
every x ∈ X the formula A(x) does not hold:

¬ (∃x(A)) = ∀x(¬A). (1.3)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Recall that the logical statement “for every x ∈ X event A obtains” is written formally as ∀x(A), and the statement
“there exists an x ∈ X for which event A obtains” is written as ∃x(A), while “event A does not obtain” is written
as ¬A. For ease of exposition, we will omit the set X from each of the formal statements in the proof.
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Second Proof of Theorem 1.4: As stated above, we assume that the game of chess is a
finite game, i.e., there is a natural number K such that every play of the game concludes
after at most 2K turns (K turns on the part of White and K turns on the part of Black).
Assume that there are exactly 2K turns in every play of the game: every play that ends
in fewer turns can be continued by adding more turns, up to 2K , at which each player
alternately implements the move “do nothing,” which has no effect on the board position.

For every k, 1 ≤ k ≤ K , denote by ak the move implemented by White at his k-th turn,
and by bk the move implemented by Black at his k-th turn. Denote by W the sentence that
White wins (after 2K turns). Then ¬W is the sentence that the play ends in either a draw
or a victory for Black. Using these symbols, the statement “White has a winning strategy”
can be written formally as

∃a1∀b1∃a2∀b2∃a3 · · · ∃aK∀bK (W ). (1.4)

It follows that the statement “White does not have a winning strategy” can be written
formally as

¬(∃a1∀b1∃a2∀b2∃a3 · · · ∃aK∀bK (W )). (1.5)

By repeated application of Equations (1.2) and (1.3) we deduce that this is equivalent to

∀a1∃b1∀a2∃b2∀a3 · · · ∀aK∃bK (¬W ). (1.6)

This, however, says that Black has a strategy guaranteeing at least a draw. In other
words, we have proved that if White has no winning strategy, then Black has a strategy
that guarantees at least a draw. We can similarly prove that if Black has no winning strategy,
then White has a strategy that guarantees at least a draw. This leads to the conclusion that
one of the three alternatives of Theorem 1.4 must hold. �

1.3 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The second proof of Theorem 1.4 was brought to the attention of the authors by Abraham
Neyman, to whom thanks are due.

1.4 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.1 “The outcome of every play of the game of chess is either a victory for White,
a victory for Black, or a draw.” Is that statement equivalent to the result of
Theorem 1.4? Justify your answer.

1.2 Find three more games that satisfy Properties (C1)–(C3) on page 6 that are needed
for proving Theorem 1.4.

1.3 Theorem 1.4 was proved in this chapter under the assumption that the length of a
game of chess is bounded. In this exercise we will prove the theorem without that
assumption, that is, we will allow an infinite number of moves. We will agree that the
outcome of an infinitely long game of chess is a draw.
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When one allows infinite plays, the set of game situations is an infinite set. However,
to know how to continue playing, the players need not know all the sequence of
past moves. In fact, only a bounded amount of information needs to be told to the
players, e.g.,

� What is the current board position?
� Have the players played an even or an odd number of moves up to now (for knowing

whose turn it is)?
� For every board position, has it appeared in the play up to now 0 times, once, or

more than once (for knowing whether the player whose turn it is may ask for a
draw)?

We will therefore make use of the fact that one may suppose that there are only a
finite number of board positions in chess.

Consider the following version of chess. The rules of the game are identical to the
rules on page 1, with the one difference that if a board position is repeated during
a play, the play ends in a draw. Since the number of game situations is finite, this
version of chess is a finite game. We will call it “finite chess.”

(a) Prove that in finite chess exactly one of the following holds:
(i) White has a winning strategy.

(ii) Black has a winning strategy.
(iii) Each of the two players has a strategy guaranteeing at least a draw.

(b) Prove that if one of the players has a winning strategy in finite chess, then that
player also has a winning strategy in chess.

We now prove that if each player has a strategy guaranteeing at least a draw in
finite chess, then each player has a strategy guaranteeing at least a draw in chess. We
will prove this claim for White. Suppose, therefore, that White has a strategy σW in
finite chess that guarantees at least a draw. Consider the following strategy σ̂W for
White in chess:

� Implement strategy σW until either the play of chess terminates or a board position
repeats itself (at which point the play of finite chess terminates).

� If the play of chess arrives at a game situation x that has previously appeared,
implement the strategy σW restricted to the subgame beginning at x until the play
arrives at a board position y that has previously appeared, and so on.

(c) Prove that the strategy σ̂W guarantees at least a draw for White in chess.



2 Utility theory

Chapter summary
The objective of this chapter is to provide a quantitative representation of players’
preference relations over the possible outcomes of the game, by what is called a utility
function. This is a fundamental element of game theory, economic theory, and decision
theory in general, since it facilitates the application of mathematical tools in analyzing
game situations whose outcomes may vary in their nature, and often be uncertain.

The utility function representation of preference relations over uncertain outcomes
was developed and named after John von Neumann and Oskar Morgenstern. The main
feature of the von Neumann–Morgenstern utility is that it is linear in the probabilities of
the outcomes. This implies that a player evaluates an uncertain outcome by its expected
utility.

We present some properties (also known as axioms) that players’ preference relations
can satisfy. We then prove that any preference relation having these properties can be
represented by a von Neumann–Morgenstern utility and that this representation is
determined up to a positive affine transformation. Finally we note how a player’s
attitude toward risk is expressed in his von Neumann–Morgenstern utility function.

2.1 Preference relations and their representation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A game is a mathematical model of a situation of interactive decision making, in which
every decision maker (or player) strives to attain his “best possible” outcome, knowing
that each of the other players is striving to do the same thing.

But what does a player’s “best possible” outcome mean? The outcomes of a game need
not be restricted to “Win,” “Loss,” or “Draw.” They may well be monetary payoffs or
non-monetary payoffs, such as “your team has won the competition,” “congratulations,
you’re a father,” “you have a headache,” or “you have granted much-needed assistance to
a friend in distress.”

To analyze the behavior of players in a game, we first need to ascertain the set of
outcomes of a game and then we need to know the preferences of each player with respect
to the set of outcomes. This means that for every pair of outcomes x and y, we need to
know for each player whether he prefers x to y, whether he prefers y to x, or whether
he is indifferent between them. We denote by O the set of outcomes of the game. The
preferences of each player over the set O are captured by the mathematical concept that
is termed preference relation.

9
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Definition 2.1 A preference relation of player i over a set of outcomes O is a binary
relation denoted by �i .

A binary relation is formally a subset of O × O, but instead of writing (x, y) ∈ �i we
write x �i y, and read that as saying “player i either prefers x to y or is indifferent between
the two outcomes”; sometimes we will also say in this case that the player “weakly prefers”
x to y. Given the preference relation �i we can define the corresponding strict preference
relation i , which describes when player i strictly prefers one outcome to another:

x i y ⇐⇒ x �i y and y ��i x. (2.1)

We can similarly define the indifference relation ≈i , which expresses the fact that a player
is indifferent between two possible outcomes:

x ≈i y ⇐⇒ x �i y and y �i x. (2.2)

We will assume that every player’s preference relation satisfies the following three
properties.

Assumption 2.2 The preference relation �i over O is complete; that is, for any pair of
outcomes x and y in O either x �i y, or y �i x, or both.

Assumption 2.3 The preference relation �i over O is reflexive; that is, x �i x for every
x ∈ O.

Assumption 2.4 The preference relation �i over O is transitive; that is, for any triple of
outcomes x, y, and z in O, if x �i y and y �i z then x �i z.

The assumption of completeness says that a player should be able to compare any
two possible outcomes and state whether he is indifferent between the two, or has a
definite preference for one of them, in which case he should be able to state which is the
preferred outcome. One can imagine real-life situations in which this assumption does not
obtain, where a player is unable to rank his preferences between two or more outcomes
(or is uninterested in doing so). The assumption of completeness is necessary for the
mathematical analysis conducted in this chapter.

The assumption of reflexivity is quite natural: every outcome is weakly preferred to
itself.

The assumption of transitivity is needed under any reasonable interpretation of what
a preference relation means. If this assumption does not obtain, then there exist three
outcomes x, y, z such that x �i y and y �i z, but z i x. That would mean that if a
player were asked to choose directly between x and z he would choose z, but if he were
first asked to choose between z and y and then between the outcome he just preferred
(y) and x, he would choose x, so that his choices would depend on the order in which
alternatives are offered to him. Without the assumption of transitivity, it is unclear what a
player means when he says that he prefers z to x.

The greater than or equal to relation over the real numbers ≥ is a familiar preference
relation. It is complete and transitive. If a game’s outcomes for player i are sums of
dollars, it is reasonable to suppose that the player will compare different outcomes using
this preference relation. Since using real numbers and the ≥ ordering relation is very
convenient for the purposes of conducting analysis, it would be an advantage to be able
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in general to represent game outcomes by real numbers, and player preferences by the
familiar≥ relation. Such a representation of a preference relation is called a utility function,
and is defined as follows.

Definition 2.5 Let O be a set of outcomes and � be a complete, reflexive, and transitive
preference relation over O. A function u : O → R is called a utility function representing
� if for all x, y ∈ O,

x � y ⇐⇒ u(x) ≥ u(y). (2.3)

In other words, a utility function u is a function associating each outcome x with a real
number u(x) in such a way that the more an outcome is preferred, the larger is the real
number associated with it.

If the set of outcomes is finite, any complete, reflexive, and transitive preference relation
can easily be represented by a utility function.

Example 2.6 Suppose that O = {a, b, c, d} and the preference relation � is given by

a  b ≈ c  d. (2.4)

Note that although the relation is defined only on part of the set of all pairs of outcomes, the
assumptions of reflexivity and transitivity enable us to extend the relation to every pair of outcomes.
For example, from the above we can immediately conclude that a  c.

The utility function u defined by

u(a) = 22, u(b) = 13, u(c) = 13, u(d) = 0, (2.5)

which represents �. There are, in fact, a continuum of utility functions that represent this relation,
because the only condition that a utility function needs to meet in order to represent � is

u(a) > u(b) = u(c) > u(d). (2.6)

�

The following theorem, whose proof is left to the reader (Exercise 2.2), generalizes the
conclusion of the example.

Theorem 2.7 Let O be a set of outcomes and let � be a complete, reflexive, and transitive
preference relation over O. Suppose that u is a utility function representing �. Then for
every monotonically strictly increasing function v : R → R, the composition v ◦ u defined
by

(v ◦ u)(x) = v(u(x)) (2.7)

is also a utility function representing �.

Given the result of this theorem, a utility function is often called an ordinal function,
because it represents only the order of preferences between outcomes. The numerical
values that a utility function associates with outcomes have no significance, and do not in
any way represent the “intensity” of a player’s preferences.
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2.2 Preference relations over uncertain outcomes: the model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Once we have represented a player’s preferences by a utility function, we need to deal
with another problem: the outcome of a game may well be uncertain and determined by a
lottery. This can occur for two reasons:

� The game may include moves of chance. Examples of such games include backgammon
and Monopoly (where dice are tossed) and bridge and poker (where the shuffling of the
deck introduces chance into the game). In many economic situations, an outcome may
depend on uncertain factors such as changes in currency conversion rates or the valuation
of stocks in the stock market, and the outcome itself may therefore be uncertain. The
most convenient way to model such situations is to describe some of the determining
factors as lottery outcomes.

� One or more of the players may play in a non-deterministic manner, choosing moves by
lottery. For example, in a chess match, a player may choose his opening move by tossing
a coin. The formal analysis of strategies that depend on lotteries will be presented in
Chapter 5.

Example 2.8 Consider the following situation involving one player who has two possible moves, T and B.

The outcome is the amount of dollars that the player receives. If she chooses B, she receives $7,000.
If she chooses T , she receives the result of a lottery that grants a payoff of $0 or $20,000 with
equal probability. The lottery is denoted by [ 1

2 ($20,000), 1
2 ($0)]. What move can we expect the

player to prefer? The answer depends on the player’s attitude to risk. There are many people who
would rather receive $7,000 with certainty than take their chances with a toss of a coin determining
whether they receive $20,000 or $0, while others would take a chance on the large sum of $20,000.
Risk attitude is a personal characteristic that varies from one individual to another, and therefore
affects a player’s preference relation. �

To analyze situations in which the outcome of a game may depend on a lottery over
several possible outcomes, the preference relations of players need to be extended to cover
preferences over lotteries involving the outcomes.

Given an extended preference relation of a player, which includes preferences over
both individual outcomes and lotteries, we can again ask whether such a relation can be
represented by a utility function. In other words, can we assign a real number to each
lottery in such a way that one lottery is preferred by the player to another lottery if and only
if the number assigned to the more-preferred lottery is greater than the number assigned
to the less-preferred lottery?

A convenient property that such a utility function can satisfy is linearity, meaning that
the number assigned to a lottery is equal to the expected value of the numbers assigned
to the individual outcomes over which the lottery is being conducted. For example, if
L = [px, (1 − p)y)] is a lottery assigning probability p to outcome x, and probability
1 − p to outcome y, then the linearity requirement would imply that

u(L) = pu(x) + (1 − p)u(y). (2.8)
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Figure 2.1 Lotteries over outcomes

Such a utility function is linear in the probabilities p and 1 − p; hence the name. The use
of linear utility functions is very convenient for analyzing games in which the outcomes
are uncertain (a topic studied in depth in Section 5.5 on page 172). But we still need to
answer the question which preference relation of a player (over lotteries of outcomes) can
be represented by a linear utility function, as expressed in Equation (2.8)?

The subject of linear utility functions was first explored by the mathematician John von
Neumann and the economist Oskar Morgenstern [1944], and it is the subject matter of
this chapter.

Suppose that a decision maker is faced with a decision determining which of a finite
number of possible outcomes, sometimes designated “prizes,” he will receive. (The terms
“outcome” and “prize” will be used interchangeably in this section.) Denote the set of
possible outcomes by O = {A1, A2, . . . , AK}.

In Example 2.8 there are three outcomes O = {A1, A2, A3}, where A1 = $0, A2 =
$7,000, and A3 = $20,000.

Given the set of outcomes O, the relevant space for conducting analysis is the set of
lotteries over the outcomes in O. Figure 2.1 depicts three possible lotteries over outcomes.

The three lotteries in Figure 2.1 are: L1, a lottery granting A5 and A7 with equal
probability; L2, a lottery granting A1 with probability 2

3 and A2 with probability 1
3 ; and

L3 granting A1, A2, A5, and A7 with respective probabilities 1
2 , 1

4 , 1
8 , and 1

8 .
A lottery L in which outcome Ak has probability pk (where p1, . . . , pK are nonnegative

real numbers summing to 1) is denoted by

L = [p1(A1), p2(A2), . . . , pK (AK )], (2.9)

and the set of all lotteries over O is denoted by L.
The three lotteries in Figure 2.1 can thus be written as

L1 = [
1
2 (A5), 1

2 (A7)
]
, L2 = [

2
3 (A1), 1

3 (A2)
]
,

L3 = [
1
2 (A1), 1

4 (A2), 1
8 (A5), 1

8 (A7)
]
.

The set of outcomes O may be regarded as a subset of the set of lotteries L by identifying
each outcome Ak with the lottery yielding Ak with probability 1. In other words, receiving
outcome Ak with certainty is equivalent to conducting a lottery that yields Ak with
probability 1 and yields all the other outcomes with probability 0,

[0(A1), 0(A2), . . . , 0(Ak−1), 1(Ak), 0(Ak+1), . . . , 0(AK )]. (2.10)
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We will denote a preference relation for player i over the set of all lotteries by �i , so that
L1 �i L2 indicates that player i either prefers lottery L1 to lottery L2 or is indifferent
between the two lotteries.

Definition 2.9 Let �i be a preference relation for player i over the set of lotteries L. A
utility function ui representing the preferences of player i is a real-valued function defined
over L satisfying

ui(L1) ≥ ui(L2) ⇐⇒ L1 �i L2 ∀L1, L2 ∈ L. (2.11)

In words, a utility function is a function whose values reflect the preferences of a player
over lotteries.

Definition 2.10 A utility function ui is called linear if for every lottery L =
[p1(A1), p2(A2), . . . , pK (AK )], it satisfies1

ui(L) = p1ui(A1) + p2ui(A2) + · · · + pKui(AK ). (2.12)

As noted above, the term “linear” expresses the fact that the function ui is a linear
function in the probabilities (pk)Kk=1. If the utility function is linear, the utility of a lottery
is the expected value of the utilities of the outcomes. A linear utility function is also called
a von Neumann–Morgenstern utility function.

Which preference relation of a player can be represented by a linear utility function?
First of all, since≥ is a transitive relation, it cannot possibly represent a preference relation
�i that is not transitive. The transitivity assumption that we imposed on the preferences
over the outcomes O must therefore be extended to preference relations over lotteries.
This alone, however, is still insufficient for the existence of a linear utility function over
lotteries: there are complete, reflexive, and transitive preference relations over the set of
simple lotteries that cannot be represented by linear utility functions (see Exercise 2.18).

The next section presents four requirements on preference relations that ensure that
a preference relation �i over O can be represented by a linear utility function. These
requirements are also termed the von Neumann–Morgenstern axioms.

2.3 The axioms of utility theory
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Given the observations of the previous section, we would like to identify which preference
relations !i over lotteries can be represented by linear utility functions ui . The first
requirement that must be imposed is that the preference relation be extended beyond the
set of simple lotteries to a larger set: the set of compound lotteries.

Definition 2.11 A compound lottery is a lottery of lotteries.

A compound lottery is therefore given by

L̂ = [q1(L1), q2(L1), . . . , qJ (LJ )], (2.13)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Given the identification of outcomes with lotteries, we use the notation ui (Ak) to denote the utility of the lottery in
Equation (2.10), in which the probability of receiving outcome Ak is one.
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Figure 2.2 An example of a compound lottery

where q1, . . . , qJ are nonnegative numbers summing to 1, and L1, . . . , LJ are lotteries in
L. This means that for each 1 ≤ j ≤ J there are nonnegative numbers (pj

k )Kk=1 summing
to 1 such that

Lj = [
p

j
1(A1), pj

2 (A1), . . . , pj
K (AK )

]
. (2.14)

Compound lotteries naturally arise in many situations. Consider, for example, an individual
who chooses his route to work based on the weather: on rainy days he travels by Route
1, and on sunny days he travels by Route 2. Travel time along each route is inconstant,
because it depends on many factors (beyond the weather). We are therefore dealing with
a “travel time to work” random variable, whose value depends on a lottery of a lottery:
there is some probability that tomorrow morning will be rainy, in which case travel time
will be determined by a probability distribution depending on the factors affecting travel
along Route 1, and there is a complementary probability that tomorrow will be sunny, so
that travel time will be determined by a probability distribution depending on the factors
affecting travel along Route 2.

We will show in the sequel that under proper assumptions there is no need to consider
lotteries that are more compound than compound lotteries, namely, lotteries of compound
lotteries. All our analysis can be conducted by limiting consideration to only one level of
compounding.

To distinguish between the two types of lotteries with which we will be working, we
will call the lotteries in L ∈ L simple lotteries. The set of compound lotteries is denoted
by L̂.

A graphic depiction of a compound lottery appears in Figure 2.2. Denoting L1 =
[ 2

3 (A1), 1
3 (A2)] and L2 = [ 1

2 (A5), 1
2 (A7)], the compound lottery in Figure 2.2 is

L̂ = [
3
4 (L1), 1

4 (L2)
]
. (2.15)

Every simple lottery L can be identified with the compound lottery L̂ that yields the
simple lottery L with probability 1:

L̂ = [1(L)]. (2.16)
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As every outcome Ak is identified with the simple lottery

L = [0(A1), . . . , 0(Ak−1), 1(Ak), 0(Ak+1), . . . , 0(AK )], (2.17)

it follows that an outcome Ak is also identified with the compound lottery [1(L)], in which
L is the simple lottery defined in Equation (2.17).

Given these identifications, the space we will work with will be the set of com-
pound lotteries,2 which includes within it the set of simple lotteries L, and the set of
outcomes O.

We will assume from now on that the preference relation �i is defined over the set of
compound lotteries. Player i’s utility function, representing his preference relation �i , is
therefore a function ui : L̂ → R satisfying

ui(L̂1) ≥ ui(L̂2) ⇐⇒ L̂1 �i L̂2, ∀L̂1, L̂2 ∈ L̂. (2.18)

Given the identification of outcomes with simple lotteries, ui(Ak) and ui(L) denote the
utility of compound lotteries corresponding to the outcome Ak and the simple lottery L,
respectively.

Because the preference relation is complete, it determines the preference between any
two outcomes Ai and Aj . Since it is transitive, the outcomes can be ordered, from most
preferred to least preferred. We will number the outcomes (recall that the set of outcomes
is finite) in such a way that

AK �i · · · �i A2 �i A1. (2.19)

2.3.1 Continuity
Every reasonable decision maker will prefer receiving $300 to $100, and prefer receiving
$100 to $0, that is,

$300 i $100 i $0. (2.20)

It is also a reasonable assumption that a decision maker will prefer receiving $300 with
probability 0.9999 (and $0 with probability 0.0001) to receiving $100 with probability 1.
It is reasonable to assume he would prefer receiving $100 with probability 1 to receiving
$300 with probability 0.0001 (and $0 with probability 0.9999). Formally,

[0.9999($300), 0.0001($0)] i 100 i [0.0001($300), 0.9999($0)].

The higher the probability of receiving $300 (and correspondingly, the lower the probabil-
ity of receiving $0), the more the lottery will be preferred. By continuity, it is reasonable
to suppose that there will be a particular probability p at which the decision maker will
be indifferent between receiving $100 and a lottery granting $300 with probability p and
$0 with probability 1 − p:

100 ≈i [p($300), (1 − p)($0)]. (2.21)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 The set of lotteries, as well as the set of compound lotteries, depends on the set of outcomes O, so that in fact we
should denote the set of lotteries by L(O), and the set of compound lotteries by L̂(O). For the sake of readability,
we take the underlying set of outcomes O to be fixed, and we will not specify this dependence in our formal
presentation.
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The exact value of p will vary depending on the decision maker: a pension fund making
many investments is interested in maximizing expected profits, and its p will likely be
close to 1

3 . The p of a risk-averse individual will be higher than 1
3 , whereas for the risk

lovers among us p will be less than 1
3 . Furthermore, the size of p, even for one individual,

may be situation-dependent: for example, a person may generally be risk averse, and have
p higher than 1

3 . However, if this person has a pressing need to return a debt of $200,
then $100 will not help him, and his p may be temporarily lower than 1

3 , despite his risk
aversion.

The next axiom encapsulates the idea behind this example.

Axiom 2.12 (Continuity) For every triplet of outcomes A �i B �i C, there exists a
number θi ∈ [0, 1] such that

B ≈i [θi(A), (1 − θi)(C)]. (2.22)

2.3.2 Monotonicity
Every reasonable decision maker will prefer to increase his probability of receiving a
more-preferred outcome and lower the probability of receiving a less-preferred outcome.
This natural property is captured in the next axiom.

Axiom 2.13 (Monotonicity) Let α, β be numbers in [0, 1], and suppose that A i B.
Then

[α(A), (1 − α)(B)] �i [β(A), (1 − β)(B)] (2.23)

if and only if α ≥ β.

Assuming the Axioms of Continuity and Monotonicity yields the next theorem, whose
proof is left to the reader (Exercise 2.4).

Theorem 2.14 If a preference relation satisfies the Axioms of Continuity and Mono-
tonicity, and if A �i B �i C, and A i C, then the value of θi defined in the Axiom of
Continuity is unique.

Corollary 2.15 If a preference relation �i over L̂ satisfies the Axioms of Continuity
and Monotonicity, and if AK i A1, then for each k = 1, 2, . . . , K there exists a unique
θk
i ∈ [0, 1] such that

Ak ≈i

[
θk
i (AK ),

(
1 − θk

i

)
(A1)

]
. (2.24)

The corollary and the fact that A1 ≈i [0(AK ), 1(A1)] and AK ≈i [1(AK ), 0(A1)] imply
that

θ1
i = 0, θK

i = 1. (2.25)

2.3.3 Simplification of lotteries
The next axiom states that the only considerations that determine the preference between
lotteries are the probabilities attached to each outcome, and not the way that the lottery
is conducted. For example, if we consider the lottery in Figure 2.2, with respect to the
probabilities attached to each outcome that lottery is equivalent to lottery L3 in Figure 2.1:



18 Utility theory

in both lotteries the probability of receiving outcome A1 is 1
2 , the probability of receiving

outcome A2 is 1
4 , the probability of receiving outcome A5 is 1

8 , and the probability of
receiving outcome A7 is 1

8 . The next axiom captures the intuition that it is reasonable to
suppose that a player will be indifferent between these two lotteries.

Axiom 2.16 (Axiom of Simplification of Compound Lotteries) For each j =
1, . . . , J , let Lj be the following simple lottery:

Lj = [
p

j
1 (A1), pj

2(A2), . . . , pj
K (AK )

]
, (2.26)

and let L̂ be the following compound lottery:

L̂ = [q1(L1), q2(L2), . . . , qJ (LJ )]. (2.27)

For each k = 1, . . . , K define

rk = q1p
1
k + q2p

2
k + · · · + qJ pJ

k ; (2.28)

this is the overall probability that the outcome of the compound lottery L̂ will be Ak .
Consider the simple lottery

L = [r1(A1), r2(A2), . . . , rK (AK )]. (2.29)

Then

L̂ ≈i L. (2.30)

As noted above, the motivation for the axiom is that it should not matter whether a
lottery is conducted in a single stage or in several stages, provided the probability of
receiving the various outcomes is identical in the two lotteries. The axiom ignores all
aspects of the lottery except for the overall probability attached to each outcome, so that,
for example, it takes no account of the possibility that conducting a lottery in several stages
might make participants feel tense, which could alter their preferences, or their readiness
to accept risk.

2.3.4 Independence
Our last requirement regarding the preference relation �i relates to the following scenario.
Suppose that we create a new compound lottery out of a given compound lottery by replac-
ing one of the simple lotteries involved in the compound lottery with a different simple
lottery. The axiom then requires a player who is indifferent between the original simple
lottery and its replacement to be indifferent between the two corresponding compound
lotteries.

Axiom 2.17 (Independence) Let L̂ = [q1(L1), . . . , qJ (LJ )] be a compound lottery, and
let M be a simple lottery. If Lj ≈i M then

L̂ ≈i [q1(L1), . . . , qj−1(Lj ), qj (M), qj+1(Lj+1), . . . , qJ (LJ )]. (2.31)

One can extend the Axioms of Simplification and Independence to compound lotteries
of any order (i.e., lotteries over lotteries over lotteries . . . over lotteries over outcomes) in
a natural way. By induction over the levels of compounding, it follows that the player’s
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preference relation over all compound lotteries (of any order) is determined by the player’s
preference relation over simple lotteries (why?).

2.4 The characterization theorem for utility functions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The next theorem characterizes when a player has a linear utility function.

Theorem 2.18 If player i’s preference relation �i over L̂ is complete and transitive, and
satisfies the four von Neumann–Morgenstern axioms (Axioms 2.12, 2.13, 2.16, and 2.17),
then this preference relation can be represented by a linear utility function.

The next example shows how a player whose preference relation satisfies the von
Neumann–Morgenstern axioms compares two lotteries based on his utility from the out-
comes of the lottery.

Example 2.19 Suppose that Joshua is choosing which of the following two lotteries he prefers:

� [ 1
2 (New car), 1

2 (New computer)] – a lottery in which his probability of receiving a new car is 1
2 ,

and his probability of receiving a new computer is 1
2 .

� [ 1
3 (New motorcycle), 2

3 (Trip around the world)] – a lottery in which his probability of receiving
a new motorcycle is 1

3 , and his probability of receiving a trip around the world is 2
3 .

Suppose that Joshua’s preference relation over the set of lotteries satisfies the von Neumann–
Morgenstern axioms. Then Theorem 2.18 implies that there is a linear utility function u representing
his preference relation. Suppose that according to this function u:

u(New Car) = 25,

u(Trip around the world) = 14,

u(New motorcycle) = 3,

u(New computer) = 1.

Then Joshua’s utility from the first lottery is

u
([

1
2 (New Car), 1

2 (New computer)
]) = 1

2 × 25 + 1
2 × 1 = 13, (2.32)

and his utility from the second lottery is

u
([

1
3 (New motorcycle), 2

3 (Trip around the world)
]) = 1

3 × 3 + 2
3 × 14 = 31

3 = 10 1
3 .

(2.33)

It follows that he prefers the first lottery (whose outcomes are a new car and a new computer) to
the second lottery (whose outcomes are a new motorcycle and a trip around the world). �

Proof of Theorem 2.18: We first assume that AK i A1, i.e., the most-desired outcome
AK is strictly preferred to the least-desired outcome A1. If A1 ≈i AK , then by transitivity,
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the player is indifferent between all the outcomes. That case is simple to handle, and we
will deal with it at the end of the proof.

Step 1: Definition of a function ui over the set of lotteries.
By Corollary 2.15, for each 1 ≤ k ≤ K there exists a unique real number 0 ≤ θk

i ≤ 1
satisfying

Ak ≈i

[
θk
i (AK ),

(
1 − θk

i

)
(A1)

]
. (2.34)

We now define a function ui over the set of compound lotteries L̂. Suppose L̂ =
[q1(L1), . . . , qJ (LJ )] is a compound lottery, in which q1, . . . , qJ are nonnegative numbers
summing to 1, and L1, . . . , LJ are simple lotteries given by Lj = [pj

1(A1), . . . , pj
K (AK )].

For each 1 ≤ k ≤ K define

rk = q1p
1
k + q2p

2
k + · · · + qJ pJ

k . (2.35)

This is the probability that the outcome of the lottery is Ak. Define a function ui on the
set of compound lotteries L̂:

ui(L̂) = r1θ
1
i + r2θ

2
i + · · · + rKθk

i . (2.36)

It follows from (2.36) that, in particular, every simple lottery L = [p1(A1), . . . , pK (AK )]
satisfies

ui(L) =
K∑

k=1

pkθ
k
i . (2.37)

Step 2: ui(Ak) = θk
i for all 1 ≤ k ≤ K .

Outcome Ak is equivalent to the lottery L = [1(Ak)], which in turn is equivalent to the
compound lottery L̂ = [1(L)]. The outcome of this lottery L̂ is Ak with probability 1, so
that in this case

rl =
{

1 if l = k,

0 if l �= k.
(2.38)

We deduce that

ui(Ak) = θk
i , ∀k ∈ {1, 2, . . . , K}. (2.39)

Since θ 1
i = 0 and θK

i = 1, we deduce that in particular ui(A1) = 0 and ui(AK ) = 1.

Step 3: The function ui is linear.
To show that ui is linear, it suffices to show that for each simple lottery L =
[p1(A1), . . . , pK (AK )],

ui(L) =
K∑

k=1

pkui(Ak). (2.40)

This equation holds, because Equation (2.37) implies that the left-hand side of this equa-
tion equals

∑K
i=1 pkθ

k
i , and Equation (2.39) implies that the right-hand side also equals∑K

i=1 pkθ
k
i .
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Step 4: L̂ ≈i [ui(L̂)(AK ), (1 − ui(L̂))(A1)] for every compound lottery L̂.
Let L̂ = [q1(L1), . . . , qJ (LJ )] be a compound lottery, where

Lj = [
p

j
1(A1), . . . , pj

K (AK )
]
, ∀j = 1, 2, . . . , J. (2.41)

Denote, as before,

rk =
J∑

j=1

qjp
k
j , ∀k = 1, 2, . . . , K. (2.42)

By the Simplification Axiom,

L̂ ≈i [r1(A1), r2(A2), . . . , rK (AK )]. (2.43)

Denote Mk = [θk
i (AK ), (1 − θk

i )(A1)] for every 1 ≤ k ≤ K . By definition, Ak ≈i Mk

for every 1 ≤ k ≤ K . Therefore, K applications of the Independence Axiom yield Equa-
tion (2.43).

L̂ ≈i [r1(M1), r2(M2), . . . , rK (MK )]. (2.44)

Since all the lotteries (Mk)Kk=1 are lotteries over outcomes A1 and AK , the lottery on the
right-hand side of Equation (2.44) is also a lottery over these two outcomes. Therefore,
if we denote by r∗ the total probability of AK in the lottery on the right-hand side of
Equation (2.44), then

r∗ =
K∑

k=1

rkθ
k
i = ui(L̂), (2.45)

and the Simplification Axiom implies that

L̂ ≈i [r∗(AK ), (1 − r∗)(A1)] = [ui(L̂)(AK ), (1 − ui(L̂))(A1)]. (2.46)

Step 5: The function ui is a utility function.
To prove that ui is a utility function, we need to show that for any pair of compound
lotteries L̂ and L̂′

L̂ �i L̂′ ⇐⇒ ui(L̂) ≥ ui(L̂
′) ∀L̂1, L̂2 ∈ L̂, (2.47)

and this follows from Step 4, and the Monotonicity Axiom. This concludes the proof,
under the assumption that AK i A1.

We next turn to deal with the degenerate case in which the player is indifferent between
all the outcomes:

A1 ≈i A2 ≈i · · · ≈i AK. (2.48)

By the Axioms of Independence and Simplification, the player is indifferent between any
two simple lotteries. To see why, consider the simple lottery L = [p1(A1), . . . , pK (AK )].
By repeated use of the Axiom of Independence,

L ≈i [p1(A1), p2(A1), . . . , pK (A1)]. (2.49)
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The Axiom of Simplification implies that L ≈i [1(A1)], so every compound lottery L̂

satisfies L̂ ≈i [1(A1)]. It follows that the player is indifferent between any two compound
lotteries, so that any constant function ui , represents his preference relation. �

Theorem 2.18 implies that if a player’s preference relation satisfies the von Neumann–
Morgenstern axioms, then in order to know the player’s preferences over lotteries it suffices
to know the utility he attaches to each individual outcome, because the utility of any lottery
can then be calculated from these utilities (see Equation (2.37) and Example 2.19).

Note that the linearity of utility functions in the probabilities of the individual outcomes,
together with the Axiom of Simplification, implies the linearity of utility functions in
the probabilities of simple lotteries. In words, if L1 and L2 are simple lotteries and
L̂ = [q(L1), (1 − q)(L2)], then ui(L̂) = [qui(L1) + (1 − q)ui(L2)] (see Exercise 2.11).

2.5 Utility functions and affine transformations
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 2.20 Let u : X → R be a function. A function v : X → R is a positive affine
transformation of u if there exists a positive real number α > 0 and a real number β such
that

v(x) = αu(x) + β, ∀x ∈ X. (2.50)

The definition implies that if v is a positive affine transformation of u, then u is a
positive affine transformation of v (Exercise 2.19).

The next theorem states that every affine transformation of a utility function is also a
utility function.

Theorem 2.21 If ui is a linear utility function representing player i’s preference rela-
tion �i , then every positive affine transformation of ui is also a linear utility function
representing �i .

Proof: Let �i be player i’s preference relation, and let vi = αui + β be a positive affine
transformation of ui . In particular, α > 0. The first step is to show that vi is a utility function
representing �i . Let L̂1 and L̂2 be compound lotteries. We will show that L̂1 �i L̂2 if and
only if vi(L̂1) ≥ vi(L̂2).

Note that since ui is a utility function representing �i ,

L̂1 �i L̂2 ⇐⇒ ui(L̂1) ≥ ui(L̂2) (2.51)

⇐⇒ αui(L̂1) + β ≥ αui(L̂2) + β (2.52)

⇐⇒ vi(L̂1) ≥ vi(L̂2), (2.53)

which is what we needed to show.
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Next, we need to show that vi is linear. Let L = [p1(A1), p2(A2), . . . , pK (AK )] be a
simple lottery. Since p1 + p2 + · · · + pK = 1, and ui is linear, we get

vi(L) = αui(L) + β (2.54)

= α(p1ui(A1) + p2ui(A2) + · · · + pKui(AK )) + (p1 + p2 + · · · + pK )β (2.55)

= p1vi(A1) + p2vi(A2) + · · · + pKvi(AK ), (2.56)

which shows that vi is linear. �

The next theorem states the opposite direction of the previous theorem. Its proof is left
to the reader (Exercise 2.21).

Theorem 2.22 If ui and vi are two linear utility functions representing player i’s pref-
erence relation, where that preference relation satisfies the von Neumann–Morgenstern
axioms, then vi is a positive affine transformation of ui .

Corollary 2.23 A preference relation of a player that satisfies the von Neumann–
Morgenstern axioms is representable by a linear utility function that is uniquely determined
up to a positive affine transformation.

2.6 Infinite outcome set
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have so far assumed that the set of outcomes O is finite. A careful review of the proofs
reveals that all the results above continue to hold if the following conditions are satisfied:

� The set of outcomes O is any set, finite or infinite.
� The set of simple lotteries L contains every lottery over a finite number of outcomes.
� The set of compound lotteries L̂ contains every lottery over a finite number of simple

lotteries.
� The player has a complete, reflexive, and transitive preference relation over the set of

compound lotteries L̂.
� There exists a (weakly) most-preferred outcome AK ∈ O: the player (weakly) prefers
AK to any other outcome in O.

� There exists a (weakly) least-preferred outcome A1 ∈ O: the player (weakly) prefers
any other outcome in O to A1.

In Exercise 2.22, the reader is asked to check that Theorems 2.18 and 2.22, and
Corollary 2.23, hold in this general model.

2.7 Attitude towards risk
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

There are people who are risk averse, people who are risk neutral, and people who are
risk seeking. The risk attitude of an individual can change over time; it may depend, for
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example, on the individual’s family status or financial holdings. How does risk attitude
affect a player’s utility function?

In this section, we will assume that the set of outcomes is given by the interval O =
[−R, R]: the real number x ∈ [−R, R] represents the monetary outcome that the player
receives. We will assume that every player prefers receiving more, in dollars, to receiving
less, so that x i y if and only if x > y. We will similarly assume that the player has a
complete, reflexive, and transitive preference relation over the set of compound lotteries
that satisfies the von Neumann–Morgenstern axioms.

Denote by ui player i’s utility function. As previously noted, the function ui is deter-
mined by player i’s utility from every outcome of a lottery. These utilities are given by a
real-valued function Ui : R → R. In words, for every x ∈ O,

Ui(x) := ui([1(x)]). (2.57)

Since players are assumed to prefer getting as large a monetary amount as possible, Ui is
a monotonically increasing function.

By the assumption that each player’s preference relation satisfies the von Neumann–
Morgenstern axioms, it follows that for every simple lottery L = [p1(x1), p2(x2), . . . ,
pK (xk)],

ui(L) =
K∑

k=1

pkUi(xk) =
K∑

k=1

pkui([1(xk)]). (2.58)

The significance of this equation is that the utility ui(L) of a lottery L is the expected
utility of the resulting payoff.

Given a lottery L = [p1(x1), p2(x2), . . . , pK (xk)] with a finite number of possible
outcomes, we will denote by μL the expected value of L, given by

μL =
K∑

i=1

pkxk. (2.59)

Definition 2.24 A player i is termed risk neutral if for every lottery L with a finite number
of possible outcomes,

ui(L) = ui([1(μL)]). (2.60)

A player i is termed risk averse if for every lottery L with a finite number of possible
outcomes,

ui(L) ≤ ui([1(μL)]). (2.61)

A player i is termed risk seeking (or risk loving) if for every lottery L with a finite number
of possible outcomes,

ui(L) ≥ ui([1(μL)]). (2.62)

Using Definition 2.24, to establish a player’s risk attitude, we need to compare the utility
he ascribes to every lottery with the utility he ascribes to the expected value of that
lottery. Conducting such a comparison can be exhausting, because it involves checking
the condition with respect to every possible lottery. The next theorem, whose proof is
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left to the reader (Exercise 2.23), shows that it suffices to conduct the comparisons only
between lotteries involving pairs of outcomes.

Theorem 2.25 A player i is risk neutral if and only if for each p ∈ [0, 1] and every pair
of outcomes x, y ∈ R,

ui([p(x), (1 − p)(y)]) = ui([1(px + (1 − p)y)]). (2.63)

A player i is risk averse if and only if for each p ∈ [0, 1] and every pair of outcomes
x, y ∈ R,

ui([p(x), (1 − p)(y)]) ≤ ui([1(px + (1 − p)y)]). (2.64)

A player i is risk seeking if and only if for each p ∈ [0, 1] and every pair of outcomes
x, y ∈ R,

ui([p(x), (1 − p)(y)]) ≥ ui([1(px + (1 − p)y)]). (2.65)

Example 2.26 Consider a player whose preference relation is represented by the utility function Ui(x) that

is depicted in Figure 2.3, which is concave.

x

ui([1(x)]) = Ui(x)

y αy + ( 1 − α)w

Ui(αy+ (1 − α)w)
αUi(y) + (1 − α)Ui(w)

w

Ui(w)

Ui(y)

Figure 2.3 The utility function of a risk-averse player

The figure depicts the graph of the function Ui , which associates each x with the utility of the
player from definitely receiving outcome x (see Equation (2.57)). We will show that the concavity
of the function Ui is an expression of the fact that player i is risk averse. Since the function Ui is
concave, the chord connecting the two points on the graph of the function passes underneath the
graph. Hence for every y,w ∈ R and every α ∈ (0, 1),

ui([1(αy + (1 − α)w))]) = Ui(αy + (1 − α)w) (2.66)

> αUi (y) + (1 − α)Ui(w) (2.67)

= αui ([1(y)]) + (1 − α)ui ([1(w)]) (2.68)

= ui([α(y), (1 − α)(w)]). (2.69)

In words, player i prefers receiving with certainty the expectation αy + (1 − α)w to receiving y

with probability α and w with probability 1 − α, which is precisely what risk aversion means. �
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As Example 2.26 suggests, one’s attitude to risk can be described in simple geometrical
terms, using the utility function.

Theorem 2.27 A player i, whose preference relation satisfies the von Neumann–
Morgenstern axioms, is risk neutral if and only if Ui is a linear function, he is risk
averse if and only if Ui is a concave function, and he is risk seeking if and only if Ui is a
convex function.

Proof: Since by assumption the player’s preference relation satisfies the von Neumann–
Morgenstern axioms, the utility of every simple lottery L = [p1(x1), p2(x2), . . . , pK (xK )]
is given by

ui(L) =
K∑

k=1

pkui([1(xk)]) =
K∑

k=1

pkUi(xk). (2.70)

A player is risk averse if and only if ui(L) ≤ ui([1(μL)]) = Ui(μL), or, in other words, if
and only if

K∑
k=1

pkUi(xk) = ui(L) ≤ Ui(μL) = Ui

(
K∑

k=1

pkxk

)
. (2.71)

In summary, a player is risk averse if and only if

K∑
k=1

pkUi(xk) ≤ Ui

(
K∑

k=1

pkxk

)
. (2.72)

This inequality holds for every (x1, x2, . . . , xK ) and for every vector of nonnegative
numbers (p1, p2, . . . , pK ) summing to 1, if and only if Ui is concave. Similarly, player i

is risk seeking if and only if

K∑
k=1

pkUi(xk) ≥ Ui

(
K∑

k=1

pkxk

)
. (2.73)

This inequality holds for every (x1, x2, . . . , xK ) and for every vector of nonnegative
numbers (p1, p2, . . . , pK ) summing to 1, if and only if Ui is convex.

A player is risk neutral if and only if he is both risk seeking and risk neutral. Since a
function is both concave and convex if and only if it is linear, player i is risk neutral if and
only if Ui is linear. �

2.8 Subjective probability
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A major milestone in the study of utility theory was attained in 1954, with Leonard
Savage’s publication of The Foundations of Statistics. Savage generalized von Neumann
and Morgenstern’s model, in which the probability of each outcome in every lottery is
“objective” and known to the participants. That model is reasonable when the outcome is
determined by a flip of a coin or a toss of dice, but in most of the lotteries we face in real
life, probabilities are often unknown. Consider, for example, the probability of a major
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earthquake occurring over the next year in the San Fernando Valley, or the probability
that a particular candidate will win the next presidential election. The exact probabilities
of these occurrences are unknown. Different people will differ in their assessments of
these probabilities, which are subjective. In addition, as noted above, people often fail to
perceive probability correctly, so that their perceptions contradict the laws of probability.

Savage supposed that there is an infinite set of states of the world, �; each state of the
world is a complete description of all the variables characterizing the players, including
the information they have. Players are asked to choose between “gambles,” which formally
are functions f : � → O. What this means is that if a player chooses gamble f , and the
state of the world (i.e., the true reality) is ω, then the outcome the player receives is f (ω).
Players are assumed to have complete, reflexive, and transitive preference relations over
the set of all gambles. For example, if E, F ⊂ � are two events, and A1, A2, A3, and A4

are outcomes, a player can compare a gamble in which he receives A1 if the true state is
in E and A2 if the true state is not in E, with a gamble in which he receives A3 if the true
state is in F and A4 if the true state is not in F .

Savage proved that if the preference relation of player i satisfies certain axioms, then
there exists a probability distribution qi over � and a function ui : O → R representing
player i’s preference relation. In other words, the player, by preferring one gamble to
another, behaves as if he is maximizing expected utility, where the expected utility is
calculated using the probability distribution qi :

ui(f ) =
∫

�

ui(f (ω))dqi(ω). (2.74)

Similarly to von Neumann–Morgenstern utility, the utility of f is the expected value of
the utility of the outcomes, with qi representing player i’s subjective probability, and
utility ui representing the player’s preferences (whether or not he is conscious of using a
probability distribution and a utility function at all).

A further development in subjective probability theory, slightly different from Savage’s,
was published by Anscombe and Aumann [1963].

2.9 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Theoretically, a simple interview is all that is needed to ascertain a player’s utility function,
assuming his preference relation satisfies the von Neumann–Morgenstern axioms. One
can set the utility of A1, the least-preferred outcome, to be 0, the utility of Ak , the most-
preferred outcome, to be 1, and then find, for every k ∈ {2, 3, . . . , K − 1}, the values of
θk
i such that the player is indifferent between AK and the lottery [θk

i (AK ), (1 − θk
i )(A1)].

Experimental evidence shows that in interviews, people often give responses that indi-
cate their preferences do not always satisfy the von Neumann–Morgenstern axioms. Here
are some examples.

2.9.1 The assumption of completeness
The assumption of completeness appears to be very reasonable, but it should not be
regarded as self-evident. There are cases in which people find it difficult to express clear
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preferences between outcomes. For example, imagine a child whose parents are divorced,
who is asked whether he prefers a day with his mother or his father. Many children find
the choice too difficult, and refuse to answer the question.

2.9.2 The assumption of transitivity
Give a person a sufficiently large set of choices between outcomes, and you are likely to
discover that his declared preferences contradict the assumption of transitivity. Some of
these “errors” can be corrected by presenting the player with evidence of inconsistencies,
careful analysis of the answers, and attempts to correct the player’s valuations.

Violations of transitivity are not always due to inconsistencies on the part of an indi-
vidual player. If a “player” is actually composed of a group of individuals, each of whom
has a transitive preference relation, it is possible for the group’s collective preferences to
be non-transitive. The next example illustrates this phenomenon.

Example 2.28 The Condorcet Paradox Three alternative political policies, A, B, and C, are being debated.

It is suggested that a referendum be conducted to choose between them. The voters, however, have
divided opinions on the relative preferences between the policies, as follows:

Democrats: A D B D C

Republicans: B R C R A

Independents: C I A I B

Suppose that the population is roughly equally divided between Democrats, Republicans, and
Independents. It is possible to fashion a referendum that will result in a nearly two-thirds majority
approving any one of the alternative policies. For example, if the referendum asks the electorate to
choose between A and B, a majority will vote A  B. If, instead, the referendum presents a choice
between B and C, a majority will vote B  C; and a similar result can be fashioned for C  A.
Which of these three policies, then, can we say the electorate prefers?

The lack of transitivity in preferences resulting from the use of the majority rule is an impor-
tant subject in “social choice theory” (see Chapter 21). This was first studied by Condorcet3

(see Example 21.1 on page 854). �

2.9.3 Perceptions of probability
If a person’s preference relation over three possible outcomes A, B, and C satisfies
A  B  C, we may by trial and error present him with various different probability
values p, until we eventually identify a value p0 such that

B ≈ [p0(A), (1 − p0)(C)]. (2.75)

Let’s say, for example, that the player reports that he is indifferent between the following:

$7,000 ≈ [
2
3 ($20,000), 1

3 ($0)
]
. (2.76)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet, 1743–94, was a French philosopher and mathematician
who wrote about political science.



29 2.9 Discussion

Empirically, however, if the same person is asked how large x must be in order for him to
be indifferent between the following:

$7,000 ≈ [
2
3 ($x), 1

3 ($0)
]
, (2.77)

the answer often4 differs from $20,000.
This shows that the perceptions of probability that often occur naturally to decision

makers may diverge from the mathematical formulations. People are not born with internal
calculators, and we must accept the fact that what people perceive may not always follow
the laws of probability.

2.9.4 The Axiom of Simplification
The Axiom of Simplification states that the utility of a compound lottery depends solely
on the probability it eventually assigns to each outcome. We have already noted that this
ignores other aspects of compound lotteries; for example, it ignores the pleasure (or lack
of pleasure) a participant gains from the very act of participating in a lottery. It is therefore
entirely possible that a person may prefer a compound lottery to a simple lottery with
exactly the same outcome probabilities, or vice versa.

2.9.5 Other aspects that can influence preferences
People’s preferences change over time and with changing circumstances. A person may
prefer steak to roast beef today, and roast beef to steak tomorrow.

One also needs to guard against drawing conclusions regarding preferences to quickly
given answers to interview questions, because the answers are liable to depend on the
information available to the player. Take, for example, the following story, based on a
similar story appearing in Luce and Raifa [1957]. A man at a restaurant asks a waiter to
list the available items on the menu. The waiter replies “steak and roast beef.” The man
orders the roast beef. A few minutes later, the waiter returns and informs him that he forgot
to note an additional item on the menu, filet mignon. “In that case,” says the restaurant
guest, “I’ll have the steak, please.”

Does this behavior reveal inconsistency in preferences? Not necessarily. The man may
love steak, but may also be concerned that in most restaurants, the steak is not served
sufficiently tender to his taste. He therefore orders the roast beef, confident that most
chefs know how to cook a decent roast. When he is informed that the restaurant serves
filet mignon, he concludes that there is a high-quality chef in the kitchen, and feels more
confident in the chef’s ability to prepare a tender steak.

In other words, the fact that given a choice between steak and roast beef, a player
chooses roast beef, does not necessarily mean that he prefers roast beef to steak. It may
only indicate that the quality of the steak is unknown, in which case choosing “steak”
may translate into a lottery between quality steak and intolerable steak. Before receiving
additional information, the player ascribes low probability to receiving quality steak. After
the additional information has been given, the probability of quality steak increases in the
player’s estimation, thus affecting his choice. The player’s preference of steak to roast

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 The authors wish to thank Reinhard Selten for providing them with this example.
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beef has not changed at all over time, but rather his perception of the lottery with which
he is presented.

This story illustrates how additional information can bring about changes in choices
without contradicting the assumptions of utility theory.

Another story, this one a true event that occurred during the Second World War on
the Pacific front,5 seems to contradict utility theory. A United States bomber squadron,
charged with bombing Tokyo, was based on the island of Saipan, 3000 kilometers from
the bombers’ targets. Given the vast distance the bombers had to cover, they flew without
fighter-plane accompaniment and carried few bombs, in order to cut down on fuel con-
sumption. Each pilot was scheduled to rotate back to the United States after 30 successful
bombing runs, but Japanese air defenses were so efficient that only half the pilots sent on
the missions managed to survive 30 bombing runs.

Experts in operations research calculated a way to raise the odds of overall pilot
survival by increasing the bomb load carried by each plane – at the cost of placing
only enough fuel in each plane to travel in one direction. The calculations indicated
that increasing the number of bombs per plane would significantly reduce the number
of required bombing runs, enabling three-quarters of the pilots to be rotated back to the
United States immediately, without requiring them to undertake any more missions. The
remaining pilots, however, would face certain death, since they would have no way of
returning to base after dropping their bombs over Tokyo.

If the pilots who are sent home are chosen randomly, then the pilots were, in fact, being
offered the lottery [

3
4 (Life), 1

4 (Death)
]
,

in place of their existing situation, which was equivalent to the lottery[
1
2 (Life), 1

2 (Death)
]
.

Every single pilot rejected the suggested lottery outright. They all preferred their existing
situation.

Were the pilots lacking a basic understanding of probability? Were they contradicting
the von Neumann–Morgenstern axioms? One possible explanation for why they failed to
act in accordance with the axioms is that they were optimists by nature, believing that “it
will not happen to me.” But there are other explanations, that do not necessarily lead to a
rejection of standard utility theory. The choice between life and death may not have been
the only factor that the pilots took into account. There may also have been moral issues,
such as taboos against sending some comrades on certain suicide missions while others
got to return home safely. In addition, survival rates are not fixed in war situations. There
was always the chance that the war would take a dramatic turn, rendering the suicide
missions unnecessary, or that another ingenious solution would be found. And indeed,
a short time after the suicide mission suggestion was raised, American forces captured
the island of Iwo Jima. The air base in Iwo Jima was sufficiently close to Tokyo, only

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 The story was related to the authors by Kenneth Arrow, who heard of it from Merrill F. Flood.
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600 kilometers away, to enable fighter planes to accompany the bombers, significantly
raising the survival rates of American bombers, and the suicide mission suggestion was
rapidly consigned to oblivion.6

2.10 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The authors wish to thank Tzachi Gilboa and Peter Wakker for answering several questions
that arose during the composition of this chapter.

The Sure-Thing Principle, which appears in Exercise 2.12, first appeared in Savage
[1954]. first presented in Marschak [1950] and Nash [1950a]. The property described
in Exercise 2.14 is called “Betweenness.” Exercise 2.15 is based on a column written
by John Branch in The New York Times on August 30, 2010. Exercise 2.25 is based
on Rothschild and Stiglitz [1970], which also contains an example of the phenomenon
appearing in Exercise 2.27. The Arrow–Pratt measure of absolute risk aversion, which
appears in Exercise 2.28, was first defined by Arrow [1965] and Pratt [1964].

2.11 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.1 Prove the following claims:

(a) A strict preference relation  is anti-symmetric and transitive.7

(b) An indifference relation ≈ is symmetric and transitive.8

2.2 Prove Theorem 2.7 (page 11): let O be a set of outcomes, and let � be a complete,
reflexive, and transitive relation over O. Suppose that u is a utility function repre-
senting �. Prove that for every monotonically increasing function v : R → R, the
composition v ◦ u defined by

(v ◦ u)(x) = v(u(x)) (2.78)

is also a utility function representing �.

2.3 Give an example of a countable set of outcomes O and a preference relation � over
O, such that every utility function representing � must include values that are not
integers.

2.4 Prove Theorem 2.14 (page 17): if a preference relation �i satisfies the axioms of
continuity and monotonicity, and if A �i B �i C and A i C, then there exists a
unique number θi ∈ [0, 1] that satisfies

B ≈i [θi(A), (1 − θi)(B)]. (2.79)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Bombing missions emanating from Iwo Jima also proved to be largely inefficient – only ten such missions were
attempted – but American military advances in the Spring of 1945 rapidly made those unnecessary as well.

7 A relation  is anti-symmetric if for each x, y, if x  y, then it is not the case that y  x.
8 A relation ≈ is symmetric if for each x, y, if x ≈ y, then y ≈ x.
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2.5 Prove that the von Neumann–Morgenstern axioms are independent. In other words,
for every axiom there exists a set of outcomes and a preference relation that does
not satisfy that axiom but does satisfy the other three axioms.

2.6 Prove the converse of Theorem 2.18 (page 19): if there exists a linear utility function
representing a preference relation �i of player i, then �i satisfies the von Neumann–
Morgenstern axioms.

2.7 Suppose that a person whose preferences satisfy the von Neumann–Morgenstern
axioms, and who always prefers more money to less money, says that:

� he is indifferent between receiving $500 and participating in a lottery in which he
receives $1,000 with probability 2

3 and receives $0 with probability 1
3 ;

� he is indifferent between receiving $100 and participating in a lottery in which he
receives $500 with probability 3

8 and receives $0 with probability 5
8 .

(a) Find a linear utility function representing this person’s preferences, and in addi-
tion satisfying u($1,000) = 1 and u($0) = 0.

(b) Determine which of the following two lotteries will be preferred by this person:
� A lottery in which he receives $1,000 with probability 3

10 , $500 with probability
1

10 , $100 with probability 1
2 , and $0 with probability 1

10 , or
� A lottery in which he receives $1,000 with probability 2

10 , $500 with probability
3

10 , $100 with probability 2
10 , and $0 with probability 3

10 .
(c) Is it possible to ascertain which of the following two lotteries he will prefer?

Justify your answer.
� A lottery in which he receives $1,000 with probability 3

10 , $500 with probability
1

10 , $100 with probability 1
2 , and $0 with probability 1

10 .
� Receiving $400 with probability 1.

(d) Is it possible to ascertain which of the following two lotteries he will prefer?
Justify your answer.
� A lottery in which he receives $1,000 with probability 3

10 , $500 with probability
1

10 , $100 with probability 1
2 , and $0 with probability 1

10 .
� Receiving $600 with probability 1.

2.8 How would the preferences between the two lotteries in Exercise 2.7(b) change if
u($1,000) = 8 and u($0) = 3? Justify your answer.

2.9 Suppose that a person whose preferences satisfy the von Neumann–Morgenstern
axioms says that his preferences regarding outcomes A, B, C, and D satisfy

C ≈i

[
3
5 (A), 2

5 (D)
]
, B ≈i

[
3
4 (A), 1

4 (C)
]
, A i D. (2.80)

Determine which of the following two lotteries will be preferred by this person:

L1 = [
2
5 (A), 1

5 (B), 1
5 (C), 1

5 (D)
]

or L2 = [
2
5 (B), 3

5 (C)
]
. (2.81)

2.10 What would be your answer to Exercise 2.9 if D i A instead of A i D? Relate
your answer to this exercise with your answer to Exercise 2.9.
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2.11 Prove that if ui is a linear utility function, then

ui(L̂) =
J∑

j=1

qjui(Lj ) (2.82)

is satisfied for every compound lottery L̂ = [q1(L1), q2(L2), . . . , qJ (LJ )].

2.12 The Sure-Thing Principle Prove that a preference relation that satisfies the von
Neumann–Morgenstern axioms also satisfies

[α(L1), (1 − α)(L3)]  [α(L2), (1 − α)(L3)] (2.83)

if and only if

[α(L1), (1 − α)(L4)]  [α(L2), (1 − α)(L4)]. (2.84)

for any four lotteries L1, L2, L3, L4, and any α ∈ [0, 1].

2.13 Suppose a person whose preferences satisfy the von Neumann–Morgenstern axioms
says that with respect to lotteries L1, L2, L3, L4, his preferences are L1  L2 and
L3  L4. Prove that for all 0 ≤ α ≤ 1,

[α(L1), (1 − α)(L3)]  [α(L2), (1 − α)(L4)]. (2.85)

2.14 Suppose a person whose preferences satisfy the von Neumann–Morgenstern axioms
says that with respect to lotteries L1 and L2, his preference is L1  L2. Prove that
for all 0 < α ≤ 1,

[α(L1), (1 − α)(L2)]  L2. (2.86)

2.15 A tennis player who is serving at the beginning of a point has two attempts to
serve; if the ball does not land within the white lines of the opponent’s court on his
first attempt, he receives a second attempt. If the second attempt also fails to land
in the opponent’s court, the serving player loses the point. If the ball lands in the
opponent’s court during either attempt, the players volley the ball over the net until
one or the other player wins the point.

While serving, a player has two alternatives. He may strike the ball with great
force, or with medium force. Statistics gathered from a large number of tennis
matches indicate that if the server strikes the ball with great force, the ball lands
in the opponent’s court with probability 0.65, with the server subsequently winning
the point with probability 0.75. If, however, the server strikes the ball with medium
force, the ball lands in the opponent’s court with probability 0.9, with the server
subsequently winning the point with probability 0.5.

In most cases, servers strike the ball with great force on their first-serve attempts,
and with medium force on their second attempts.

(a) Assume that there are two possible outcomes: winning a point or losing a point,
and that the server’s preference relation over compound lotteries satisfies the
von Neumann–Morgenstern axioms. Find a linear utility function representing
the server’s preference relation.
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(b) Write down the compound lottery that takes place when the server strikes the
ball with great force, and when he strikes the ball with medium force.

(c) The server has four alternatives: two alternatives in her first-serve attempt (strik-
ing the ball with great force or with medium force), and similarly two alternatives
in his second serve attempt if the first attempt failed. Write down the compound
lotteries corresponding to each of these four alternatives. Note that in this case
the compound lotteries are of order 3: lotteries over lotteries over lotteries.

(d) Which compound lottery is most preferred by the server, out of the four com-
pound lotteries you identified in item (c) above? Is this alternative the one chosen
by most tennis players?

2.16 Ron eats yogurt every morning. Ron especially loves yogurt that comes with a small
attached container containing white and dark chocolate balls, which he mixes into
his yogurt prior to eating it. Because Ron prefers white chocolate to dark chocolate,
he counts the number of white chocolate balls in the container, his excitement
climbing higher the greater the number of white chocolate balls. One day, Ron’s
brother Tom has an idea for increasing his brother’s happiness: he will write to the
company producing the yogurt and ask them to place only white chocolate balls in
the containers attached to the yogurt! To Tom’s surprise, Ron opposes this idea: he
prefers the current situation, in which he does not know how many white chocolate
balls are in the container, to the situation his brother is proposing, in which he knows
that each container has only white chocolate balls. Answer the following questions.

(a) Write down the set of outcomes in this situation, and Ron’s preference relation
over those outcomes.

(b) Does Ron’s preference relation over lotteries satisfy the von Neumann–
Morgenstern axioms? Justify your answer.

2.17 A farmer wishes to dig a well in a square field whose coordinates are (0, 0), (0, 1000),
(1000, 0), and (1000, 1000). The well must be located at a point whose coordinates
(x, y) are integers. The farmer’s preferences are lexicographic: if x1 > x2, he prefers
that the well be dug at the point (x1, y1) to the point (x2, y2), for all y1, y2. If x1 = x2,
he prefers the first point only if y1 > y2.

Does there exist a preference relation over compound lotteries over pairs of inte-
gers (x, y), 0 ≤ x, y ≤ 1000, that satisfies the von Neumann–Morgenstern axioms
and extends the lexicographic preference relation? If so, give an example of a linear
utility function representing such a preference relation, and if not, explain why such
a preference relation does not exist.

2.18 In this exercise, we will show that in the situation described in Exercise 2.17, when
the coordinates (x, y) can be any real numbers in the square [0, 1000]2, there does
not exist a utility function that represents the lexicographic preference relation.
Suppose, by contradiction, that there does exist a preference relation over [0, 1000]2

that represents the lexicographic preference relation.

(a) Prove that for each (x, y) ∈ [0, 1000]2 there exists a unique θx,y ∈ [0, 1] such
that the farmer is indifferent between locating the well at point (x, y) and a
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lottery in which the well is located at point (0, 0) with probability 1 − θx,y and
located at point (1000, 1000) with probability θx,y .

(b) Prove that the function (x, y) #→ θx,y is injective, that is, θx ′,y′ �= θx,y whenever
(x′, y′) �= (x, y).

(c) For each x, define Ax := {θx,y : y ∈ [0, 1000]}. Prove that for each x the set Ax

contains at least two elements, and that the sets {Ax, x ∈ [0, 1]} are pairwise
disjoint.

(d) Prove that if x1 < x2 then θ1 < θ2 for all θ1 ∈ Ax1 and for all θ2 ∈ Ax2 .
(e) Prove that there does not exist a set {Ax : x ∈ [0; 1]} satisfying (c) and (d).
(f) Deduce that there does not exist a utility function over [0, 1000]2 that represents

the lexicographic preference relation.
(g) Which of the von Neumann–Morgenstern axioms is not satisfied by the prefer-

ence relation in this exercise?

2.19 Prove that if v is a positive affine transformation of u, then u is a positive affine
transformation of v.

2.20 Prove that if v is a positive affine transformation of u, and if w is a positive affine
transformation of v, then w is a positive affine transformation of u.

2.21 Prove Theorem 2.22 (page 23): suppose a person’s preferences, which satisfy the
von Neumann–Morgenstern axioms, are representable by two linear utility functions
u and v. Prove that v is a positive affine transformation of u.

2.22 Let O be an infinite set of outcomes. Let L be the set of all lotteries over a finite
number of outcomes in O, and let L̂ be the set of all compound lotteries over
a finite number of simple lotteries in L. Suppose that a player has a complete,
reflexive, and transitive preference relation ! over the set of compound lotteries L̂
that satisfies the von Neumann–Morgenstern axioms, and also satisfies the property
that O contains a most-preferred outcome AK , and a least-preferred outcome A1, that
is, AK ! A ! A1 holds for every outcome A in O. Answer the following questions:

(a) Prove Theorem 2.18 (page 19): there exists a linear utility function that represents
the player’s preference relation.

(b) Prove Theorem 2.22 (page 23): if u and v are two linear utility functions of the
player that represent �, then v is a positive affine transformation of u.

(c) Prove Corollary 2.23 (page 23): there exists a unique linear utility function (up
to a positive affine transformation) representing the player’s preference relation.

2.23 Prove Theorem 2.25 on page 25.

2.24 Recall that a linear utility function ui over lotteries with outcomes in the interval
[−R, R] defines a utility function Ui over payoffs in the interval [−R, R] by setting
Ui(x) := ui([1(x)]). In the other direction, every function Ui : [−R, R] → R defines
a linear utility function ui over lotteries with outcomes in the interval [−R, R] by
ui([p1(x1), p2(x2), . . . , pK (xK )]) := ∑K

k=1 pkUi(xk).
For each of the following functions Ui defined on [−R, R], determine whether it

defines a linear utility function of a risk-neutral, risk-averse, or risk-seeking player,
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or none of the above: (a) 2x + 5, (b) −7x + 5, (c) 7x − 5, (d) x2, (e) x3, (f) ex , (g)
ln(x), (h) x for x ≥ 0, and 6x for x < 0, (i) 6x for x ≥ 0, and x for x < 0, (j) x3/2

for x ≥ 0, x for x < 0, (k) x/ ln(2 + x), for x ≥ 0, and x for x < 0. Justify your
answers.

2.25 In this exercise, we show that a risk-averse player dislikes the addition of noise to a
lottery.

Let U : R → R be a concave function, let X be a random variable with a finite
expected value, and let Y be a random variable that is independent of X and has an
expected value 0. Define Z = X + Y . Prove that E[U (X)] ≥ E[U (Z)].

2.26 In this exercise, we show that in choosing between two random variables with the
same expected value, each with a normal distribution, a risk-averse player will prefer
the random variable that has a smaller variance.

Let U : R → R be a concave function, and let X be a random variable with a
normal distribution, expected value μ, and standard deviation σ . Let λ > 1, and let
Y be a random variable with a normal distribution, expected value μ, and standard
deviation λσ .

(a) Prove that U (μ + c) + U (μ − c) ≥ U (μ + c
√

λ) + U (μ − c
√

λ) for all c > 0.
(b) By a proper change of variable, and using item (a) above, prove that∫ ∞

−∞
u(x)

1√
2πσ

e−
(x−μ)2

2σ dx ≥
∫ ∞

−∞
u(y)

1√
2πλσ

e−
(y−μ)2

2λσ dy. (2.87)

(c) Conclude that E[U (X)] ≥ E[U (Y )].

2.27 In Exercises 2.25 and 2.26, a risk-averse player, in choosing between two random
variables with the same expected value, prefers the random variable with smaller
variance. This exercise shows that this does not always hold: sometimes a risk-averse
player called upon to choose between two random variables with the same expected
value will actually prefer the random variable with greater variance.

Let U (x) = 1 − e−x be a player’s utility function.

(a) Is the player risk averse, risk neutral, or risk seeking? Justify your answer.

For each a ∈ (0, 1) and each p ∈ (0, 1), let Xa,p be a random variable whose distri-
bution is

P(Xa,p = 1 − a) = 1 − p

2
, P(Xa,p = 1) = p, P(Xa,p = 1 + a) = 1 − p

2
.

(b) Calculate the expected value E[Xa,p] and the variance Var(Xa,p) for each a ∈
(0, 1) and each p ∈ (0, 1).

(c) Let c2 = a2(1 − p). Show that the expected value of the lottery Xa,p is given by

E[U (Xa,p)] = 1 − 1

2e

(
(ea + e−a + 2)

c2

a2
− 2

)
, (2.88)

which is not a constant function in a and p.
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(d) Show that there exist a1, a2, p1, p2 ∈ (0, 1) such that

E[Xa1,p1 ] = E[Xa2,p2 ], and Var(Xa1,p1 ) = Var(Xa2,p2 ), (2.89)

but E[U (Xa1,p1 )] < E[U (Xa2,p2 )].
(e) Conclude that there exist a1, a2, p1, p2 ∈ (0, 1) such that

E[Xa1,p1 ] = E[Xa2,p2 ], Var(Xa1,p1 ) < Var(Xa2,p2 ),

and E[U (Xa1,p1 )] < E[U (Xa2,p2 )]. (2.90)

2.28 The Arrow–Pratt measure of absolute risk aversion Let Ui be a monotonically
increasing, strictly concave, and twice continuously differentiable function over R,
and let i be a player for which Ui is his utility function for money. The Arrow–Pratt
measure of absolute risk-aversion for player i is

rUi
(x) := −U ′′

i (x)

U ′
i (x)

. (2.91)

The purpose of this exercise is to understand the meaning of this measure.

(a) Suppose the player has $x, and is required to participate in a lottery in which he
stands to gain or lose a small amount $h, with equal probability. Denote by Y the
amount of money the player will have after the lottery is conducted. Calculate
the expected value of Y , E[Y ], and the variance of Y , Var(Y ).

(b) What is the utility of the lottery, ui(Y ), for this player? What is the player’s
utility loss due to the fact that he is required to participate in the lottery; in other
words, what is 
uh := Ui(x) − ui(Y )?

(c) Prove that limh→0

uh

h2 = −U ′′
i (x)
2 .

(d) Denote by yx,h the amount of money that satisfies ui(yx,h) = ui(Y ), and by

xh the difference 
xh := x − yx,h. Explain why 
xh ≥ 0. Make use of the
following figure in order to understand the significance of the various sizes.

x

Ui(x)

Ui(x)
ui(Y)

Δuh

Δxh

Ui(x + h)

x − h xyx,h x + h
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(e) Using the fact that limh→0

uh


xh
= U ′

i (x), and your answers to the items (b) and
(d) above, prove that

lim
h→0


xh

Var(Y )
= − U ′′

i (x)

2U ′
i (x)

= 1
2rUi

(x). (2.92)

We can now understand the meaning of the Arrow–Pratt measure of absolute
risk aversion rUi

(x): it is the sum of money, multiplied by the constant 1
2 , that a

player starting out with $x is willing to pay in order to avoid participating in a
fair lottery over an infinitesimal amount $h with expected value 0, measured in
units of lottery variance.

(f) Calculate the Arrow–Pratt measure of absolute risk aversion for the following
utility functions: (a) Ui(x) = xα for 0 < α < 1, (b) Ui(x) = 1 − e−αx for α > 0.

(g) A function Ui exhibits constant absolute risk aversion if rUi
is a constant function

(i.e., does not depend on x). It exhibits increasing absolute risk aversion if rUi
is

an increasing function in x, and exhibits decreasing absolute risk aversion if rUi

is a decreasing function in x. Check which functions in part (g) exhibit constant,
increasing, or decreasing absolute risk aversion.

2.29 Which of the von Neumann–Morgenstern axioms were violated by the preferences
expressed by the Second World War pilots in the story described on page 30?



3 Extensive-form games

Chapter summary
In this chapter we introduce a graphic way of describing a game, the description in
extensive form, which depicts the rules of the game, the order in which the players make
their moves, the information available to players when they are called to take an action,
the termination rules, and the outcome at any terminal point. A game in extensive form
is given by a game tree, which consists of a directed graph in which the set of vertices
represents positions in the game, and a distinguished vertex, called the root, represents
the starting position of the game. A vertex with no outgoing edges represents a
terminal position in which play ends. To each terminal vertex corresponds an outcome
that is realized when the play terminates at that vertex. Any nonterminal vertex
represents either a chance move (e.g., a toss of a die or a shuffle of a deck of cards) or a
move of one of the players. To any chance-move vertex corresponds a probability
distribution over the edges emanating from that vertex, which correspond to the
possible outcomes of the chance move.

To describe games with imperfect information, in which players do not necessarily
know the full board position (like poker), we introduce the notion of information sets.
An information set of a player is a set of decision vertices of the player that are
indistinguishable by him given his information at that stage of the game. A game of
perfect information is a game in which all information sets consist of a single vertex. In
such a game whenever a player is called to take an action, he knows the exact history of
actions and chance moves that led to that position.

A strategy of a player is a function that assigns to each of his information sets an
action available to him at that information set. A path from the root to a terminal vertex
is called a play of the game. When the game has no chance moves, any vector of
strategies (one for each player) determines the play of the game, and hence the
outcome. In a game with chance moves, any vector of strategies determines a
probability distribution over the possible outcomes of the game.

This chapter presents the theory of games in extensive form. It will be shown that many
familiar games, including the game of chess studied in Chapter 1, can be described
formally as extensive-form games, and that Theorem 1.4 can be generalized to every finite
extensive-form game.

39
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3.1 An example
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

How does one describe a game? Every description of a game must include the following
elements:

� A set of players (decision makers).
� The possible actions available to each player.
� Rules determining the order in which players make their moves.
� A rule determining when the game ends.
� A rule determining the outcome of every possible game ending.

A natural way to depict a game is graphically, where every player’s action is depicted
as a transition from one vertex to another vertex in a graph (as we saw in Figure 1.1 for
the game of chess).

Example 3.1 Consider the simple game shown in Figure 3.1. We start with a table with four squares, labeled

1, 2, 3, and 4.

2 4
1 3

Figure 3.1 The game board in Example 3.1

Two players, labeled Players I and II, participate in the game. Player I has the opening move, in
which he “captures” one of the squares. By alternate turns, each player captures one of the squares,
subject to the following conditions:

1. A square may be captured by a player only if it has not been previously captured by either player.
2. Square 4 may not be captured if Square 2 or Square 3 has been previously captured.
3. The game ends when Square 1 is captured. The player who captures Square 1 is the losing player.

A graphic depiction of this game appears in Figure 3.2.
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Figure 3.2 The game tree in Example 3.1
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Every circled vertex in Figure 3.2 represents a decision by a player, and is labeled with the
number of that player. The terminal vertices of the game are indicated by dark dots. The edges of
the graph depict game actions. The number that appears next to each edge corresponds to the square
that is captured. Next to every terminal vertex, the corresponding game outcome is indicated. A
game depicted by such a graph is called a game in extensive form, or extensive-form game. �

As the example illustrates, a graph that describes a game has a special structure, and
is sometimes called a game tree. To provide a formal definition of a game tree, we first
define a tree.

3.2 Graphs and trees
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 3.2 A (finite) directed graph is a pair G = (V, E), where:

� V is a finite set, whose elements are called vertices.
� E ⊆ V × V is a finite set of pairs of vertices, whose elements are called edges. Each

directed edge is composed of two vertices: the two ends of the edge (it is possible for
both ends of a single edge to be the same vertex).

A convenient way of depicting a graph geometrically is by representing each vertex by
a dot and each edge by an arrow (a straight line, an arc, or a circle) connecting two vertices.
Illustrative examples of geometric depictions of graphs are presented in Figure 3.3.

Remark 3.3 Most of the games that are described in this book are finite games, and can
therefore be represented by finite graphs. But there are infinite games, whose representation
requires infinite graphs. �

Definition 3.4 Let x1 and xK+1 be two vertices in a graph G. A path from x1 to xK+1 is
a finite sequence of vertices and edges of the form

x1, e1, x2, e2, . . . , eK, xK+1 (3.1)

in which the vertices are distinct: ek �= el for every k �= l and for 1 ≤ k ≤ K , the edge ek

connected vertex xk with vertex xk+1. The number K is called the path length. A path is
called cyclic if K ≥ 1 and x1 = xK+1.

Figure 3.3 Examples of graphs
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x0
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x1

Tree B

x0

x1 x2

x3 x4

Tree C

x0
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x 4x 5x 6 x 7 x 8

Tree D

Figure 3.4 Examples of trees

Definition 3.5 A tree is a triple G = (V, E, x0), where (V, E) is a directed graph, x0 ∈ V

is a vertex called the root of the tree, and for every vertex x ∈ V there is a unique path in
the graph from x0 to x.

The definition of a tree implies that a graph containing only one vertex is a tree: the
triple ({x0}, ∅, x0) is a tree. The requirement that for each vertex x ∈ V there exists a
unique path from the root to x guarantees that if there is an edge from a vertex x̂ to a
vertex x then x̂ is “closer” to the root than x: the path leading from the root to x passes
through x̂ (while the path from the root to x̂ does not pass through x). It follows that
there is no need to state explicitly the directions of the edges in the tree. Figure 3.4 shows
several trees. Tree A contains only one vertex, the root x0. Tree B contains two vertices
and one edge, from x0 to x1. Tree C contains four edges, from x0 to x1, from x0 to x2,
from x1 to x3, and from x1 to x4.

A vertex x is called a child of a vertex x̂ if there is a directed edge from x̂ to x. For
example, in the tree in Figure 3.2, g and h are children of c, and s and w are children of
k. A vertex x is a leaf (or a terminal point) if it has no children, meaning that there are no
directed edges emanating from x.

3.3 Game trees
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Various games can be represented by trees. When a tree represents a game, the root of the
tree corresponds to the initial position of the game, and every game position is represented
by a vertex of the tree. The children of each vertex v are the vertices corresponding to the
game positions that can be arrived at from v via one action. In other words, the number
of children of a vertex is equal to the number of possible actions in the game position
corresponding to that vertex.

Figure 3.2 indicates that in addition to the game tree, we need two further components
in order to describe a game fully:

� For every vertex that is not a leaf, we need to specify the player who is to take an action
at that vertex.

� At each leaf, we need to describe the outcome of the game.
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Definition 3.6 Let B be a nonempty set. A partition of B is a collection B1, B2, . . . , BK

of pairwise disjoint and nonempty subsets of B whose union is B.

We are now ready for the first definition of a game in extensive form. We will later add
more elements to this definition.

Definition 3.7 A game in extensive form (or extensive-form game) is an ordered vector1

� = (N, V, E, x0, (Vi)i∈N, O, u), (3.2)

where:

� N is a finite set of players.
� (V, E, x0) is a tree called the game tree.
� (Vi)i∈N is a partition of the set of vertices that are not leaves.
� O is the set of possible game outcomes.
� u is a function associating every leaf of the tree with a game outcome in the set O.

By “possible outcome” we mean a detailed description of what happens as a result of
the actions undertaken by the players. Some examples of outcomes include:

1. Player I is declared the winner of the game, and Player II the loser.
2. Player I receives $2, Player II receives $3, and Player III receives $5.
3. Player I gets to go out to the cinema with Player II, while Player III is left at home.
4. If the game describes bargaining between two parties, the outcome is the detailed

description of the points agreed upon in the bargaining.
5. In most of the following chapters, an outcome u(x) at a leaf x will be a vector of real

numbers representing the utility2 of each player when a play reaches leaf x.

For each player i ∈ N , the set Vi is player i’s set of decision vertices, and for each leaf
x, the outcome at that leaf is u(x).

Note that the partition (Vi)i∈N may contain empty sets. We accept the possibility of
empty sets in (Vi)i∈N in order to be able to treat games in which a player may not be
required to make any moves, but is still a game participant who is affected by the outcome
of the game.

In the example in Figure 3.2,

N = {I, II},
V = {r, a, b, c, d, e, f, g, h, i, j, k, l, m, p, q, s, w, y, z},
x0 = r,

VI = {r, f, h, j, k},
VII = {b, c, d, q, w}.

The set of possible outcomes is

O = {I wins, II wins}, (3.3)
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 The word “ordered” indicates the convention that the elements of the game in extensive form appear in a specific
order: the first element is the set of players, the second is the set of vertices, etc.

2 The subject of utility theory is discussed in Chapter 2.
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and the function u is given by

u(a) = u(l) = u(m) = u(p) = u(s) = II wins,

u(e) = u(g) = u(i) = u(y) = u(z) = I wins.

The requirement that (Vi)i∈N be a partition of the set of vertices that are not leaves
stems from the fact that at each game situation there is one and only one player who is
called upon to take an action. For each vertex x that is not a leaf, there is a single player
i ∈ N for whom x ∈ Vi . That player is called the decision maker at vertex x, and denoted
by J (x). In the example in Figure 3.2,

J (r) = J (f ) = J (h) = J (j ) = J (k) = I,

J (b) = J (c) = J (d) = J (q) = J (w) = II.

Denote by C(x) the set of all children of a non-leaf vertex x. Every edge that leads from
x to one of its children is called a possible action at x. We will associate every action
with the child to which it is connected, and denote by A(x) the set of all actions that are
possible at the vertex x. Later, we will define more complicated games, in which such a
mapping between the possible actions at x and the children of x does not exist.

An extensive-form game proceeds in the following manner:

� Player J (x0) initiates the game by choosing a possible action in A(x0). Equivalently, he
chooses an element x1 in the set C(x0).

� If x1 is not a leaf, Player J (x1) chooses a possible action in A(x1) (equivalently, an
element x2 ∈ C(x1)).

� The game continues in this manner, until a leaf vertex x is reached, and then the game
ends with outcome u(x).

By definition, the collection of the vertices of the graph is a finite set, so that the game
necessarily ends at a leaf, yielding a sequence of vertices (x0, x1, . . . , xk), where x0 is
the root of the tree, xk is a leaf, and xl+1 ∈ C(xl) for l = 0, 1, . . . , k − 1. This sequence
is called a play.3 Every play ends at a particular leaf xk with outcome u(xk). Similarly,
every leaf xk determines a unique play, which corresponds to the unique path connecting
the root x0 with xk .

It follows from the above description that every player who is to take an action knows
the current state of the game, meaning that he knows all the actions in the game that led
to the current point in the play. This implicit assumption is called perfect information, an
important concept to be studied in detail when we discuss the broader family of games
with imperfect information. Definition 3.7 therefore defines extensive-form games with
perfect information.

Remark 3.8 An extensive-form game, as defined here, is a finite game: the number of
vertices V is finite. It is possible to define extensive-form games in which the game tree

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Note carefully the words that are used here: a game is a general description of rules, whereas a play is a sequence
of actions conducted in a particular instance of playing the game. For example, chess is a game; the sequence of
actions in a particular chess match between two players is a play.
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(V, E, x0) is infinite. When the game tree is infinite, there are two possibilities to be
considered. It is possible that the depth of the tree is bounded, i.e., that there exists a
natural number L such that the length of every path in the tree is less than or equal
to L. This corresponds to a game that ends after at most L actions have been played,
and there is at least one player who has an infinite number of actions available at an
information set. The other possibility is that the depth of the vertices of the tree is not
bounded; that is, there exists an infinite path in the game tree. This corresponds to a game
that might never end. The definition of extensive-form game can be generalized to the case
in which the game tree is infinite. Accomplishing this requires implementing mathematical
tools from measure theory that go beyond the scope of this book. With the exception
of a few examples in this chapter, we will assume here that extensive-form games are
finite. �

We are now ready to present one of the central concepts of game theory: the concept of
strategy. A strategy is a prescription for how to play a game. The definition is as follows.

Definition 3.9 A strategy for player i is a function si mapping each vertex x ∈ Vi to an
element in A(x)(equivalently, to an element in C(x)).

According to this definition, a strategy includes instructions on how to behave at each
vertex in the game tree, including vertices that previous actions by the player preclude
from being reached. For example, in the game of chess, even if White’s strategy calls for
opening by moving a pawn from c2 to c3, the strategy must include instructions on how
White should play in his second move if in his first move he instead moved a pawn from
c2 to c4, and Black then took his action.

The main reason this definition is used is its simplicity: it does not require us to provide
details regarding which vertices need to be dealt with in the strategy and which can be
ignored. We will later see that this definition is also needed for further developments of
the theory, which take into account the possibility of errors on the part of players, leading
to situations that were unintended.

Definition 3.10 A strategy vector is a list of strategies s = (si)i∈N , one for each player.

Player i’s set of strategies is denoted by Si , and the set of all strategy vectors is denoted
S = S1 × S2 × . . . Sn. Every strategy vector s = (si)i∈N determines a unique play (path
from the root to a leaf). The play that is determined by a strategy vector s = (si)i∈N is
(x0, x1, x2, . . . , xk), where x1 is the choice of player J (x0), based on his strategy, x2

is the choice of player J (x1) based on his strategy, and so on, and xk is a leaf. The
play corresponds to the terminal point xk (with outcome u(xk)), which we also denote
by u(s).

We next proceed to define the concept of subgame:

Definition 3.11 Let � = (N, V, E, x0, (Vi)i∈N, O, u) be an extensive-form game (with
perfect information), and let x ∈ V be a vertex in the game tree. The subgame starting at x,
denoted by �(x), is the extensive-form game �(x) = (N, V (x), E(x), x, (Vi(x))i∈N, O, u),
where:
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� The set of players N is as in the game �.
� The set of vertices V (x) includes x, and all the vertices that are descendants of x in

the game tree (V, E, x0), that is, the children of x, their children, the children of these
children, and so on.

� The set of edges E(x) includes all the edges in E that connect the vertices in V (x).
� The set of vertices at which player i is a decision maker is Vi(x) = Vi ∩ V (x).
� The set of possible outcomes is the set of possible outcomes in the game �.
� The function mapping leaves to outcomes is the function u, restricted to the set of leaves

in the game tree (V (x), E(x), x).

The original game � is itself a subgame: �(x0) = �. In addition, every leaf x defines
a subgame in which no player can make a choice. We next focus on games with two
players, I and II, whose set of outcomes is O = {I wins, II wins, Draw}. We will define
the concepts of a winning strategy and a strategy guaranteeing at least a draw for such
games.

Definition 3.12 Let � be an extensive-form game with Players I and II, whose set of
outcomes is O = {I wins, II wins, Draw}. A strategy sI of Player I is called a winning
strategy if

u(sI, sII) = I wins, ∀sII ∈ SII. (3.4)

A strategy sI of Player I is called a strategy guaranteeing at least a draw if

u(sI, sII) ∈ {I wins, Draw}, ∀sII ∈ SII. (3.5)

A winning strategy for Player II, and a strategy guaranteeing at least a draw for
Player II, are defined similarly.

Theorem 3.13 (Von Neumann [1928]) In every two-player game (with perfect informa-
tion) in which the set of outcomes is O = {I wins, II wins, Draw}, one and only one of the
following three alternatives holds:

1. Player I has a winning strategy.
2. Player II has a winning strategy.
3. Each of the two players has a strategy guaranteeing at least a draw.

The proof of Theorem 3.13 is similar to the proof of Theorem 1.4 for the game of
chess (page 3), and it is left to the reader as an exercise (Exercise 3.7). As we saw above,
in proving Theorem 1.4 we did not, in fact, make use of any of the rules specific to the
game of chess; the proof is valid for any game that satisfies the three properties (C1)–(C3)
specified on page 6.

Examples of additional games to which Theorem 3.13 applies include, for example,
checkers, the game Nim (see Exercise 3.14), and the game Hex (see Exercise 3.19).

Remark 3.14 In our definition of a game in extensive form, we assumed that the game
tree is finite. The proof of Theorem 3.13 shows that the theorem also holds when the game
tree is infinite, but the depth of the vertices of the tree is bounded: there exists a natural
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Figure 3.5 Gale’s game for n = m = 8

number L such that the depth of each vertex in the tree is less than or equal to L. It turns
out that the theorem is not true when the depth of the vertices of the tree is unbounded.
See Mycielski [1992], Claim 3.1. �

We now consider another game that satisfies the conditions of Theorem 3.13. This game
is interesting because we can prove which of the three possibilities of the theorem holds
in this game, but we do not know how to calculate the appropriate strategy, in contrast to
the game of chess, in which we do not even know which of the three alternatives holds.

3.4 Chomp: David Gale’s game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The game described in this section is known by the name of Chomp, and was invented
by David Gale (see Gale [1974]). It is played on an n × m board of squares. Each
square is denoted by a pair of coordinates (i, j ), 1 ≤ i ≤ n and 1 ≤ j ≤ m: i is the
horizontal coordinate, and j is the vertical coordinate. Figure 3.5 depicts the game board
for n = m = 8.

Every player in turn captures a square, subject to the following rules: if at a certain stage
the square (i0, j0) has been captured, no square that is located north-east of (i0, j0) can
be captured in subsequent moves. This means that after (i0, j0) has been captured, all the
squares (i, j ) satisfying i ≥ i0 and j ≥ j0 can be regarded as if they have been removed
from the board. In Figure 3.5, for example, square (4, 7) has been captured, so that all the
darkened squares in the figure are regarded as having been removed.

Player I has the opening move. The player who captures square (1, 1) (which is marked
in Figure 3.5 with a black inner square) is declared the loser. We note that the game in
Example 3.1 is David Gale’s game for n = m = 2.

Theorem 3.15 In David Gale’s game on an n × n board, the following strategy is a
winning strategy for Player I: in the opening move capture square (2, 2), thus leaving only
the squares in row j = 1 and column i = 1 (see Figure 3.6). From that point on, play
symmetrically to Player II’s actions. That is, if Player II captures square (i, j ), Player I
captures square (j, i) in the following move.
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Figure 3.6 The game board after Player I has captured square (2, 2)

The above strategy is well defined. That is, if Player II captures square (i, j ) (and
(i, j ) �= (1, 1)), square (j, i) has not yet been removed from the board (verify this!). This
strategy is also a winning strategy when the board is infinite, ∞×∞.

What happens if the board is rectangular but not square? Which player then has a
winning strategy? As the next theorem states, the opening player always has a winning
strategy.

Theorem 3.16 For every finite n × m board (with n > 1 or m > 1), Player I, who has
the opening move, has a winning strategy.

Proof: The game satisfies the conditions of von Neumann’s Theorem (Theorem 3.13),
and therefore one of the three possibilities of the theorem must hold. Since the game
cannot end in a draw, there are only two remaining possibilities:

1. Player I has a winning strategy.
2. Player II has a winning strategy.

Theorem 3.16 will be proved once the following claim is proved.

Claim 3.17 For every finite n × m board (with n > 1 or m > 1), if Player II has a winning
strategy, then Player I also has a winning strategy.

Since it is impossible for both players to have winning strategies, it follows that
Player II cannot have a winning strategy, and therefore the only remaining possibility
is that Player I has a winning strategy.

Proof of Claim 3.17: Suppose that Player II has a winning strategy sII. This strategy
guarantees Player II victory over any strategy used by Player I. In particular, the strategy
grants Player II victory even if Player I captures square (n, m) (the top-rightmost square)
in the opening move. Suppose that Player II’s next action, as called for by strategy sII, is
to capture square (i0, j0) (see Figure 3.7(a)).

From this point on, a new game is effectively being played, as depicted in Figure 3.7(b).
In this game Player I has the opening move, and Player II, using strategy sII, guarantees
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Figure 3.7 The board after the first action (a) and the board after the second
action (b)

himself victory. In other words, the player who implements the opening move in this
game is the losing player. But Player I can guarantee himself the situation depicted in
Figure 3.7(b) when Player II opens, by choosing the square (i0, j0) on his first move.
In conclusion, a winning strategy in the original game for Player I is to open with
(i0, j0) and then continue according to strategy sII, thus completing the proof of the
claim. �

It follows from Claim 3.17 that Player II has no winning strategy, so that Player I must
have a winning strategy. �

The conclusion of the theorem is particularly striking, given the fact that for n �= m we
do not know how to find the winning strategy for Player I, even with the aid of computers,
on relatively small boards of n and m between 30 to 40.

3.5 Games with chance moves
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the games we have seen so far, the transition from one state to another is always
accomplished by actions undertaken by the players. Such a model is appropriate for
games such as chess and checkers, but not for card games or dice games (such as poker or
backgammon) in which the transition from one state to another may depend on a chance
process: in card games, the shuffle of the deck, and in backgammon the toss of the dice.
It is possible to come up with situations in which transitions from state to state depend on
other chance factors, such as the weather, earthquakes, or the stock market. These sorts
of state transitions are called chance moves. To accommodate this feature, our model is
expanded by labeling some of the vertices in the game tree (V, E, x0) as chance moves.
The edges emanating from vertices corresponding to chance moves represent the possible
outcomes of a lottery, and next to each such edge is listed the probability that the outcome
it represents will be the result of the lottery.
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Example 3.18 A game with chance moves Consider the two-player game depicted in Figure 3.8.
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Figure 3.8 An example of a game with chance moves

The outcomes of the game are noted by pairs of numbers (zI, zII), where zI is the monetary payoff
to Player I, and zII is the monetary payoff to Player II.

The verbal description of this game is as follows. At the root of the game (vertex R) Player I has
the choice of selecting between action a, which leads to the termination of the game with payoff
(0, 0), and action b, which leads to a chance move at vertex A. The chance move is a lottery (or
a flip of a coin) leading with probability 1

2 to state B, which is a decision vertex of Player II, and
with probability 1

2 to state C, which is a decision vertex of Player I. At state B, Player II chooses
between action f , leading to a termination of the game with payoff (2, 0), and action e leading to
state D which is a chance move; at this chance move, with probability 1

3 the game ends with payoff
(5,−1), and with probability 2

3 the game ends with payoff (−2, 5). At state C, Player I chooses
between action g, leading to the termination of the game with payoff (1, 1), and action h, leading
to a chance move at vertex E. At this chance move the game ends, with payoff (0, 2), or (−1, 1), or
(1, 1), with respective probabilities 1

4 , 1
2 , and 1

4 . �

Formally, the addition of chance moves to the model proceeds as follows. We add a new
player, who is called “Nature,” and denoted by 0. The set of players is thus expanded to
N ∪ {0}. For every vertex x at which a chance move is implemented, we denote by px the
probability vector over the possible outcomes of a lottery that is implemented at vertex x.
This leads to the following definition of a game in extensive form.

Definition 3.19 A game in extensive form (with perfect information and chance moves)
is a vector

� = (N, V, E, x0, (Vi)i∈N∪{0}, (px)x∈V0, O, u), (3.6)

where:

� N is a finite set of players.
� (V, E, x0) is the game tree.
� (Vi)i∈N∪{0} is a partition of the set of vertices that are not leaves.
� For every vertex x ∈ V0, px is a probability distribution over the edges emanating

from x.
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� O is the set of possible outcomes.
� u is a function mapping each leaf of the game tree to an outcome in O.

The notation used in the extension of the model is the same as the previous notation,
with the following changes:

� The partition of the set of vertices is now (Vi)i∈N∪{0}. We have, therefore, added the set V0

to the partition, where V0 is the set of vertices at which a chance move is implemented.
� For each vertex x ∈ V0, a vector px , which is a probability distribution over the edges

emanating from x, has been added to the model.

Games with chance moves are played similarly to games without chance moves, the only
difference being that at vertices with chance moves a lottery is implemented, to determine
the action to be undertaken at that vertex. We can regard a vertex x with a chance move
as a roulette wheel, with the area of the pockets of the roulette wheel proportional to the
values px . When the game is at a chance vertex, the wheel is spun, and the pocket at which
the wheel settles specifies the new state of the game.

Note that in this description we have included a hidden assumption, namely, that the
probabilities of the chance moves are known to all the players, even when the game
includes moves that involve the probability of rain, or an earthquake, or a stock market
crash, and so forth. In such situations, we presume that the probability assessments of
these occurrences are known by all the players. More advanced models take into account
the possibility that the players do not all necessarily share the same assessments of the
probabilities of chance moves. Such models are considered in Chapters 9, 10, and 11.

In a game without chance moves, a strategy vector determines a unique play of
the game (and therefore also a unique game outcome). When a game includes chance
moves, a strategy vector determines a probability distribution over the possible game
outcomes.

Example 3.18 (Continued ) (See Figure 3.8.) Suppose that Player I uses strategy sI, defined as

sI(R) = b, sI(C) = h, (3.7)

and that Player II uses strategy sII, defined as

sII(B) = f. (3.8)

Then:

� the play R → A → B → (2, 0) occurs with probability 1/2, leading to outcome (2, 0);
� the play R → A → C → E → (0, 2) occurs with probability 1/8, leading to outcome (0, 2);
� the play R → A → C → E → (−1, 1) occurs with probability 1/4, leading to outcome (−1, 1);
� the play R → A → C → E → (1, 1) occurs with probability 1/8, leading to

outcome (1, 1). �

Using this model of games with chance moves, we can represent games such as
backgammon, Monopoly, Chutes and Ladders, and dice games (but not card games such
as poker and bridge, which are not games with perfect information, because players do
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not know what cards the other players are holding). Note that von Neumann’s Theorem
(Theorem 3.13) does not hold in games with chance moves. In dice games, such as
backgammon, a player who benefits from favorable rolls of the dice can win regardless of
whether or not he has the first move, and regardless of the strategy adopted by his opponent.

3.6 Games with imperfect information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

One of the distinguishing properties of the games we have seen so far is that at every stage
of the game each of the players has perfect knowledge of all the developments in the game
prior to that stage: he knows exactly which actions were taken by all the other players,
and if there were chance moves, he knows what the results of the chance moves were. In
other words, every player, when it is his turn to take an action, knows precisely at which
vertex in the game tree the game is currently at. A game satisfying this condition is called
a game with perfect information.

The assumption of perfect information is clearly a very restrictive assumption, limiting
the potential scope of analysis. Players often do not know all the actions taken by the other
players and/or the results of chance moves (for example, in many card games the hand of
cards each player holds is not known to the other players). The following game is perhaps
the simplest example of a game with imperfect information.

Example 3.20 Matching Pennies The game Matching Pennies is a two-player game in which each player

chooses one of the sides of a coin, H (for heads) or T (for tails) in the following way: each player
inserts into an envelope a slip of paper on which his choice is written. The envelopes are sealed
and submitted to a referee. If both players have selected the same side of the coin, Player II pays
one dollar to Player I. If they have selected opposite sides of the coin, Player I pays one dollar to
Player II. The depiction of Matching Pennies as an extensive-form game appears in Figure 3.9. In
Figure 3.9, Player I’s actions are denoted by upper case letters, and Player II’s actions are depicted
by lower case letters.

I
R

A

B

H

T

h

t

h

t

(1, −1)

(−1, 1)

(1, −1)

(−1, 1)

II

Figure 3.9 The game Matching Pennies as a game in extensive form

Figure 3.9 introduces a new element to the depictions of extensive-form games: the two vertices
A and B of Player II are surrounded by an ellipse. This visual element represents the fact that when
Player II is in the position of selecting between h and t , he does not know whether the game state
is currently at vertex A or vertex B, because he does not know whether Player I has selected H or
T . These two vertices together form an information set of Player II. �
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Remark 3.21 The verbal description of Matching Pennies is symmetric between the two
players, but in Figure 3.9 the players are not symmetric. The figure depicts Player I
making his choice before Player II’s choice, with Player II not knowing which choice
Player I made; this is done in order to depict the game conveniently as a tree. We could
alternatively have drawn the tree with Player II making his choice before Player I, with
Player I not knowing which choice Player II made. Both trees are equivalent, and they
are equivalent to the verbal description of the game in which the two players make their
choices simultaneously. �

In general, a player’s information set consists of a set of vertices that satisfy the property
that when play reaches one of these vertices, the player knows that play has reached one
of these vertices, but he does not know which vertex has been reached. The next example
illustrates this concept.

Example 3.22 Consider the following situation. David Beckham, star mid-fielder for Manchester United,

is interested in leaving the team and signing up instead with either Real Madrid, Bayern Munich,
or AC Milan. Both Bayern Munich and AC Milan have told Beckham they want to hire him, and
even announced their interest in the star to the media.

Beckham has yet to hear anything on the matter from Real Madrid. With the season fast
approaching, Beckham has only a week to determine which club he will be playing for. Real
Madrid announces that it will entertain proposals of interest from players only up to midnight
tonight, because its Board of Directors will be meeting tomorrow to discuss to which players the
club will be making offers (Real Madrid’s Board of Directors does not rule out making offers to
players who have not approached it with proposals of interest). Only after the meeting will Real
Madrid make offers to the players it wishes to add to its roster for the next season.

Beckham needs to decide whether to approach Real Madrid today with an expression of inter-
est, or wait until tomorrow, hoping that the club will make him an offer on its own initiative. Real
Madrid’s Board of Directors will be called upon to consider two alternatives: hiring an outside expert
to assess Beckham’s potential contribution to the team, or dropping all considerations of hiring Beck-
ham, without even asking for an expert’s opinion. If Real Madrid hires an outside expert, the club will
make an offer to Beckham if the outside expert’s assessment is positive, and decline to make an offer
to Beckham if the assessment is negative. The outside expert, if hired by Real Madrid, will not be
informed whether or not Beckham has approached Real Madrid. If Beckham fails to receive an offer
from Real Madrid, he will not know whether that is because the expert determined his contribution to
the team unworthy of a contract, or because the team did not even ask for an expert’s opinion. After
a week, whether or not he receives an offer from Real Madrid, Beckham must decide which club he
will be playing for next season, Bayern Munich, AC Milan, or Real Madrid, assuming the latter has
sent him an offer. This situation can be described as a three-player game (see Figure 3.10) (verify
this).

There are three information sets in this game that contain more than one vertex. The expert does
not know whether or not Beckham has approached Real Madrid with an expression of interest. If
Beckham has not received an offer from Real Madrid, he does not know whether that is because
the expert determined his contribution to the team unworthy of a contract, or because the team did
not even ask for an expert’s opinion.
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Figure 3.10 The game in Example 3.22 in extensive form �

The addition of information sets to our model leads to the following definition.

Definition 3.23 Let � = (N, V, E, x0, (Vi)i∈N∪{0}, (px)x∈V0, O, u) be a game in extensive
form. An information set of player i is a pair (Ui, A(Ui)) such that

� Ui = {x1
i , x

2
i , . . . , x

j
i } is a subset of Vi that satisfies the property that at each vertex in

Ui player i has the same number of actions li = li(Ui), i.e.,

|A(xj
i )| = li , ∀j = 1, 2, . . . , m. (3.9)

� A(Ui) is a partition of the mli edges
⋃m

j=1 A(xj
i ) to li disjoint sets, each of which

contains one element from the sets (A(xj
i ))mj=1. We denote the elements of the partition by

a1
i , a

2
i , . . . , a

li
i . The partition A(Ui) is called the action set of player i in the information

set Ui .

We now explain the significance of the definition. When the play of the game arrives at
vertex x in information set Ui , all that player i knows is that the play has arrived at one of
the vertices in this information set. The player therefore cannot choose a particular edge
emanating from x. Each element of the partition al

i contains m edges, one edge for each
vertex in the information set. The partition elements a1

i , a
2
i , . . . , a

li
i are the “actions” from

which the player can choose; if player i chooses one of the elements from the partition
al

i , the play continues along the unique edge in the intersection al
i ∩ A(x). For this reason,

when we depict games with information sets, we denote edges located in the same partition
elements by the same letter.

Definition 3.24 A game in extensive form (with chance moves and with imperfect infor-
mation) is a vector

� = (N, V, E, x0, (Vi)i∈N∪{0}, (px)x∈V0, (Uj
i )j=1,...,ki

i∈N , O, u), (3.10)
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where:

� N is a finite set of players.
� (V, E, x0) is a game tree.
� (Vi)i∈N∪{0} is a partition of the set of vertices that are not leaves.
� For each vertex x ∈ V0, px is a probability distribution over the set of edges emanating

from x.
� For each player i ∈ N , (Uj

i )j=1,...,ki is a partition of Vi .
� For each player i ∈ N and every j ∈ {1, 2, . . . , ki}, the pair (Uj

i , A(Uj
i )) is an infor-

mation set of player i.
� O is a set of possible outcomes.
� u is a function mapping each leaf of the game tree to a possible outcome in O.

We have added information sets to the previous definition of a game in extensive form
(Definition 3.19): (Uj

i )j=1,...,ki is a partition of Vi . Every element U
j
i in this partition is

an information set of player i. Note that the information sets are defined only for players
i ∈ N , because, as noted above, Nature has no information sets.

In a game with imperfect information, each player i, when choosing an action, does
not know at which vertex x the play is located. He only knows the information set U

j
i that

contains x. The player then chooses one of the equivalence classes of actions available to
him in U

j
i , i.e., an element in A(Uj

i ).
The game proceeds as described on pages 44 and 51, with one difference: when the

play is x, the decision maker at that state, player J (x), knows only the information set
U

j
J (x) that contains x, and he chooses an element a in A(Uj

J (x)).
We can now describe many more games as games in extensive form: various card games

such as poker and bridge, games of strategy such as Stratego, and many real-life situations,
such as bargaining between two parties.

Definition 3.25 An extensive-form game is called a game with perfect information for
player i if each information set of player i contains only one vertex. An extensive-form
game is called a game with perfect information if it is a game with perfect information
for all of the players.

In Definition 3.11 (page 45), we defined a subgame starting at a vertex x, to be the
game defined by restriction to the subtree starting at x. A natural question arises as to
how this definition can be adapted to games in which players have information sets that
contain several vertices, because player i may have an information set (Ui, A(Ui)) where
ui contains both vertices that are in the subtree starting at x, and vertices that are outside
this subtree. We will say that �(x) is a subgame only if for every player i and each of
this information sets (Ui, A(Ui)), the set Ui is either contained entirely inside the subtree
starting at x, or disjoint from this subtree. For simplicity we will often refer to Ui as an
information set, and omit the set partition A(Ui).

Example 3.26 Consider the two-player game with chance moves and with imperfect information that is

described in Figure 3.11. The outcomes, the names of the actions, and the probabilities assigned to
the chance moves are not specified in this game (as they are not needed for our discussion).
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Figure 3.11 The game in Example 3.26 in extensive form

The game in Figure 3.11 has four subgames: �(R), �(C), �(D), and �(G). The subtree starting
at A (or at B) cannot represent a subgame, because the information set {A,B} of Player II is neither
contained in, nor disjoint from, the subtree. It would therefore be incorrect to write �(A) (or �(B)).
Similarly, the subtrees that start at E and F cannot represent subgames, because the information
set {E,F } of Player II is neither contained in, nor disjoint from, each of these subtrees. �

3.6.1 Strategies in games with imperfect information
Recall that a player’s strategy is a set of instructions telling the player which action to
choose, every time he is called upon to play. When we dealt with games with perfect
information, in which each player, when coming to make a decision, knows the current
vertex x, a strategy was defined as a function si : Vi → V , where si(x) ∈ C(x) for every
x ∈ Vi . In a game with imperfect information, when choosing an action, the player knows
the information set that contains the current vertex. Therefore a strategy is a function that
assigns an action to each information set.

Definition 3.27 A strategy of player i is a function from each of his information sets to
the set of actions available at that information set, i.e.,

si : Ui →
ki⋃

j=1

A(Uj
i ), (3.11)

where Ui = {U 1
i , . . . , U

ki

i } is the collection of player i’s information sets, and for each
information set U

j
i ∈ Ui ,

si(U
j
i ) ∈ A(Uj

i ). (3.12)

Just as in games with chance moves and perfect information, a strategy vector deter-
mines a distribution over the outcomes of a game. For example, in Example 3.22, suppose
that the players implement the following strategies:

� David Beckham approaches Real Madrid, and then chooses to play for Real Madrid if
Real Madrid then makes him an offer; otherwise, he chooses to play for Bayern Munich.

� Real Madrid hires an outside expert if Beckham approaches it, and does not hire an
outside expert if Beckham does not approach the club. Real Madrid makes an offer to
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Beckham only if Beckham first approaches the club, and if the outside expert gives a
positive recommendation.

� The outside expert recommends that Real Madrid not make an offer to Beckham.

There are no chance moves in this game, so that the strategy vector determines a unique
play of the game, and therefore also a unique outcome: Beckham ends up playing for
Bayern Munich, after he approaches Real Madrid, Real Madrid in turn hires an outside
expert to provide a recommendation, the expert returns with a negative recommendation,
Real Madrid does not make an offer to Beckham, and Beckham then decides to play for
Bayern Munich.

3.7 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.1 Describe the following situation as an extensive-form game. Three piles of matches
are on a table. One pile contains a single match, a second pile contains two matches,
and the third pile contains three matches. Two players alternately remove matches
from the table. In each move, the player whose turn it is to act at that move may
remove matches from one and only one pile, and must remove at least one match.
The player who removes the last match loses the game.

By drawing arrows on the game tree, identify a way that one of the players can
guarantee victory.

3.2 Candidate choice Depict the following situation as a game in extensive form.
Eric, Larry, and Sergey are senior partners in a law firm. The three are considering
candidates for joining their firm. Three candidates are under consideration: Lee,
Rebecca, and John. The choice procedure, which reflects the seniority relations
between the three law firm partners, is as follows:

� Eric makes the initial proposal of one of the candidates.
� Larry follows by proposing a candidate of his own (who may be the same candidate

that Eric proposed).
� Sergey then proposes a candidate (who may be one of the previously proposed

candidates).
� A candidate who receives the support of two of the partners is accepted into the

firm. If no candidate has the support of two partners, all three candidates are
rejected.

3.3 Does aggressiveness pay off? Depict the following situation as a game in extensive
form. A bird is defending its territory. When another bird attempts to invade this
territory, the first bird is faced with two alternatives: to stand and fight for its territory,
or to flee and seek another place for its home. The payoff to each bird is defined
to be the expected number of descendants it will leave for posterity, and these are
calculated as follows:

� If the invading bird yields to the defending bird and instead flies to another territory,
the payoff is: 6 descendants for the defending bird, 4 descendants for the invading
bird.
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� If the invading bird presses an attack and the defending bird flies to another
territory, the payoff is: 4 descendants for the defending bird, 6 descendants for the
invading bird.

� If the invading bird presses an attack and the defending bird stands its ground and
fights, the payoff is: 2 descendants for the defending bird, 2 descendants for the
invading bird.

3.4 Depict the following situation as a game in extensive form. Peter and his three
children, Andrew, James, and John, manage a communications corporation. Andrew
is the eldest child, James the second-born, and John the youngest of the children.
Two candidates have submitted offers for the position of corporate accountant at
the communications corporation. The choice of a new accountant is conducted as
follows: Peter first chooses two of his three children. The two selected children
conduct a meeting to discuss the strengths and weaknesses of each of the two
candidates. The elder of the two children then proposes a candidate. The younger
of the two children expresses either agreement or disagreement to the proposed
candidate. A candidate is accepted to the position only if two children support his
candidacy. If neither candidate enjoys the support of two children, both candidates
are rejected.

3.5 (a) How many strategies has each player got in each of the following three games
(the outcomes of the games are not specified in the figures).

I
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X

O X

Figure 3.12 The board of the game Tic-Tac-Toe, after three moves

(b) Write out in full all the strategies of each player in each of the three games.
(c) How many different plays are possible in each of the games?

3.6 In a single-player game in which at each vertex x that is not the root the player has
mx actions, how many strategies has the player got?

3.7 Prove von Neumann’s Theorem (Theorem 3.13 on page 46): in every two-
player finite game with perfect information in which the set of outcomes is
O = {I wins, II wins, Draw}, one and only one of the following three alternatives
holds:

(a) Player I has a winning strategy.
(b) Player II has a winning strategy.
(c) Each of the two players has a strategy guaranteeing at least a draw.

Where does your proof make use of the assumption that the game is finite?

3.8 Tic-Tac-Toe How many strategies has Player I got in Tic-Tac-Toe, in which two
players play on a 3 × 3 board, as depicted in Figure 3.12? Player I makes the first
move, and each player in turn chooses a square that has not previously been selected.
Player I places an X in every square that he chooses, and Player II places an O in
every square that he chooses. The game ends when every square has been selected.
The first player who has managed to place his mark in three adjoining squares,
where those three squares form either a column, a row, or a diagonal, is the winner.4

(Do not attempt to draw a full game tree. Despite the fact that the rules of the game
are quite simple, the game tree is exceedingly large. Despite the size of the game
tree, with a little experience players quickly learn how to ensure at least a draw in
every play of the game.)

3.9 By definition, a player’s strategy prescribes his selected action at each vertex in the
game tree. Consider the following game.

Player I has four strategies, T1T2, T1B2, B1T2, B1B2. Two of these strategies,
B1T2 and B1B2, regardless of the strategy used by Player II, yield the same play
of the game, because if Player I has selected action B1 at the root vertex, he
will never get to his second decision vertex. We can therefore eliminate one of
these two strategies and define a reduced strategy B1, which only stipulates that
Player I chooses B1 at the root of the game. In the game appearing in the above

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 The game, of course, can effectively be ended when one of the players has clearly ensured victory for himself, but
calculating the number of strategies in that case is more complicated.
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figure, the reduced strategies of Player I are T1T2, T1B2, and B1. The reduced
strategies of Player II are the same as his regular strategies, t1t2, t1b2, b1t2, and
b1b2, because Player II does not know to which vertex Player I’s choice will lead.
Formally, a reduced strategy τi of player i is a function from a subcollection Ûi

of player i’s collection of information sets to actions, satisfying the following two
conditions:

(i) For any strategy vector of the remaining players σ−i , given the vector (τi, σ−i),
the game will definitely not get to an information set of player i that is not in the
collection Ûi .

(ii) There is no strict subcollection of Ûi satisfying condition (i).

(a) List the reduced strategies of each of the players in the game depicted in the
following figure.
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(7, 8, 9)

(4, 0, −5)

(7, 5, 2)

(b) What outcome of the game will obtain if the three players make use of the
reduced strategies {(B1), (t1, t3), (β1, τ2)}?

(c) Can any player increase his payoff by unilaterally making use of a different
strategy (assuming that the other two players continue to play according to the
strategies of part (b))?

3.10 Consider the game in the following figure.
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II
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O2

O3
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The outcomes O1, O2, and O3 are distinct and taken from the set {I wins,
II wins, Draw}.
(a) Is there a choice of O1, O2, and O3 such that Player I can guarantee victory for

himself? Justify your answer.
(b) Is there a choice of O1, O2, and O3 such that Player II can guarantee victory for

himself? Justify your answer.
(c) Is there a choice of O1, O2, and O3 such that both players can guarantee for

themselves at least a draw? Justify your answer.

3.11 The Battle of the Sexes The game in this exercise, called Battle of the Sexes, is
an oft-quoted example in game theory (see also Example 4.21 on page 98). The
name given to the game comes from the story often attached to it: a couple is trying
to determine how to spend their time next Friday night. The available activities in
their town are attending a concert (C), or watching a football match (F ). The man
prefers football, while the woman prefers the concert, but both of them prefer being
together to spending time apart.

The pleasure each member of the couple receives from the available alternatives
is quantified as follows:

� From watching the football match together: 2 for the man, 1 for the woman.
� From attending the concert together: 1 for the man, 2 for the woman.
� From spending time apart: 0 for the man, 0 for the woman.

The couple do not communicate well with each other, so each one chooses where he
or she will go on Friday night before discovering what the other selected, and refuses
to change his or her mind (alternatively, we can imagine each one going directly
to his or her choice directly from work, without informing the other). Depict this
situation as a game in extensive form.

3.12 The Centipede game5 The game tree appearing in Figure 3.13 depicts a two-player
game in extensive form (note that the tree is shortened; there are another 94 choice
vertices and another 94 leaves that do not appear in the figure). The payoffs appear
as pairs (x, y), where x is the payoff to Player I (in thousands of dollars) and y is the
payoff to Player II (in thousands of dollars). The players make moves in alternating
turns, with Player I making the first move.

Every player has a till into which money is added throughout the play of the game.
At the root of the game, Player I’s till contains $1,000, and Player II’s till is empty.
Every player in turn, at her move, can elect either to stop the game (S), in which
case every player receives as payoff the amount of money in her till, or to continue
to play. Each time a player elects to continue the game, she removes $1,000 from his
till and places them in the other player’s till, while simultaneously the game-master
adds another $2,000 to the other player’s till. If no player has stopped the game
after 100 turns have passed, the game ends, and each player receives the amount of
money in her till at that point.

How would you play this game in the role of Player I? Justify your answer!

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 The Centipede game was invented by Robert Rosenthal (see Rosenthal [1981]).
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Figure 3.13 The Centipede game (outcomes are in payoffs of thousands of dollars)

3.13 Consider the following game. Two players, each in turn, place a quarter on a round
table, in such a way that the coins are never stacked one over another (although the
coins may touch each other); every quarter must be placed fully on the table. The
first player who cannot place an additional quarter on the table at his turn, without
stacking it on an already placed quarter, loses the game (and the other player is the
winner). Prove that the opening player has a winning strategy.

3.14 Nim6 Nim is a two-player game, in which piles of matches are placed before the
players (the number of piles in the game is finite, and each pile contains a finite
number of matches). Each player in turn chooses a pile, and removes any number
of matches from the pile he has selected (he must remove at least one match). The
player who removes the last match wins the game.

(a) Does von Neumann’s Theorem (Theorem 3.13 on page 46) imply that one of the
players must have a winning strategy? Justify your answer!

We present here a series of guided exercises for constructing a winning strategy in
the game of Nim.

At the beginning of play, list, in a column, the number of matches in each
pile, expressed in base 2. For example, if there are 4 piles containing, respectively,
2, 12, 13, and 21 matches, list:

10
1100
1101

10101

Next, check whether the number of 1s in each column is odd or even. In the above
example, counting from the right, in the first and fourth columns the number of 1s
is even, while in the second, third, and fifth columns the number of 1s is odd.

A position in the game will be called a “winning position” if the number of 1s in
each column is even. The game state depicted above is not a winning position.

(b) Prove that, starting from any position that is not a winning position, it is possible
to get to a winning position in one move (that is, by removing matches from a

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Nim is an ancient game, probably originating in China. There are accounts of the game being played in Europe as
early as the 15th century. The proof presented in this exercise is due to Bouton [1901].
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single pile). In our example, if 18 matches are removed from the largest pile, the
remaining four piles will have 2, 12, 13, and 3 matches, respectively, which in
base 2 are represented as

10
1100
1101

11

which is a winning position, as every column has an even number of 1s.
(c) Prove that at a winning position, every legal action leads to a non-winning

position.
(d) Explain why at the end of every play of the game, the position of the game will

be a winning position.
(e) Explain how we can identify which player can guarantee victory for himself

(given the initial number of piles of matches and the number of matches in each
pile), and describe that player’s winning strategy.

3.15 The game considered in this exercise is exactly like the game of Nim of the previous
exercise, except that here the player who removes the last match loses the game.
(The game described in Exercise 3.1 is an example of such a game.)

(a) Is it possible for one of the players in this game to guarantee victory? Justify
your answer.

(b) Explain how we can identify which player can guarantee victory for himself
in this game (given the initial number of piles of matches and the number of
matches in each pile), and describe that player’s winning strategy.

3.16 Answer the following questions relating to David Gale’s game of Chomp (see
Section 3.4 on page 47).

(a) Which of the two players has a winning strategy in a game of Chomp played on
a 2 ×∞ board? Justify your answer. Describe the winning strategy.

(b) Which of the two players has a winning strategy in a game of Chomp played on
an m ×∞ board, where m is any finite integer? Justify your answer. Describe
the winning strategy.

(c) Find two winning strategies for Player I in a game of Chomp played on an
∞×∞ board.

3.17 Show that the conclusion of von Neumann’s Theorem (Theorem 3.13, page 46)
does not hold for the Matching Pennies game (Example 3.20, page 52), where we
interpret the payoff (1,−1) as victory for Player I and the payoff (−1, 1) as victory
for Player II.

Which condition in the statement of the theorem fails to obtain in Matching
Pennies?

3.18 Prove that von Neumann’s Theorem (Theorem 3.13, page 46) holds in games in
extensive form with perfect information and without chance moves, in which the
game tree has a countable number of vertices, but the depth of every vertex is
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Figure 3.14 The Hex game board for n = 6 (in the play depicted here, dark is the
winner)

bounded; i.e., there exists a positive integer K that is greater than the length of every
path in the game tree.

3.19 Hex Hex7 is a two-player game conducted on a rhombus containing n2 hexagonal
cells, as depicted in Figure 3.14 for n = 6.

The players control opposite sides of the rhombus (in the accompanying figure,
the names of the players are “Light” and “Dark”). Light controls the south-west
(SW ) and north-east (NE) sides, while Dark controls the north-west (NW ) and
south-east sides (SE). The game proceeds as follows. Dark has the opening move.
Every player in turn chooses an unoccupied hexagon, and occupies it with a colored
game piece. A player who manages to connect the two sides he controls with a
continuous path8 of hexagons occupied by his pieces is declared a winner. If neither
player can do so, a draw is called. We will show that a play of the game can never
end in a draw. In Figure 3.14, we depict a play of the game won by Dark. Note that,
by the rules, the players can keep placing game pieces until the entire board has
been filled, so that a priori it might seem as if it might be possible for both players to
win, but it turns out to be impossible, as we will prove. There is, in fact, an intuitive
argument for why a draw cannot occur: imagine that one player’s game pieces are
bodies of water, and the other player’s game pieces are dry land. If the water player
is a winner, it means that he has managed to create a water channel connecting his
sides, through which no land-bridge constructed by the opposing player can cross.
We will see that turning this intuitive argument into a formal proof is not at all easy.9

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Hex was invented in 1942 by a student named Piet Hein, who called it Polygon. It was reinvented, independently,
by John Nash in 1948. The name Hex was given to the game by Parker Bros., who sold a commercial version of it.
The proof that the game cannot end in a draw, and that there cannot be two winners, is due to David Gale [1979].
The presentation in this exercise is due to Jack van Rijswijck (see http://www.cs.ualberta.ca/∼javhar/). The authors
thank Taco Hoekwater for assisting them in preparing the figure of the game board.

8 A continuous path is a chain of adjacent hexagons, where two hexagons are called “adjacent” if they share a
common edge.

9 This argument is equivalent to Jordan’s Theorem, which states that a closed, continuous curve divides a plane into
two parts, in such a way that every continuous curve that connects a point in one of the two disconnected parts with
a point in the other part must necessarily pass through the original curve.
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For simplicity, assume that the edges of the board, as in Figure 3.14, are also
composed of (half) hexagons. The hexagons composing each edge will be assumed
to be colored with the color of the player who controls that respective edge of the
board. Given a fully covered board, we construct a broken line (which begins at the
corner labeled W ). Every leg of the broken line separates a game piece of one color
from a game piece of the other color (see Figure 3.14).

(a) Prove that within the board, with the exception of the corners, the line can always
be continued in a unique manner.

(b) Prove that the broken line will never return to a vertex through which it previously
passed (hint: use induction).

(c) From the first two claims, and the fact that the board is finite, conclude that
the broken line must end at a corner of the board (not the corner from which it
starts). Keep in mind that one side of the broken line always touches hexagons
of one color (including the hexagons comprising the edges of the rhombus), and
the other side of the line always touches hexagons of the other color.

(d) Prove that if the broken line ends at corner S, the sides controlled by Dark are
connected by dark-colored hexagons, so that Dark has won (as in Figure 3.14).
Similarly, if the broken line ends at corner N , Light has won.

(e) Prove that it is impossible for the broken line to end at corner E.
(f) Conclude that a draw is impossible.
(g) Conclude that it is impossible for both players to win.
(h) Prove that the player with the opening move has a winning strategy.

Guidance for the last part: Based on von Neumann’s Theorem (Theorem 3.13, page
46), and previous claims, one (and only one) of the players has a winning strategy.
Call the player with the opening move Player I, and the other player, Player II.
Suppose that Player II has a winning strategy. We will prove then that Player I has a
winning strategy too, contradicting von Neumann’s Theorem. The winning strategy
for Player I is as follows: in the opening move, place a game piece on any hexagon
on the board. Call that game piece the “special piece.” In subsequent moves, play
as if (i) you are Player II (and use his winning strategy), (ii) the special piece has
not been placed, and (iii) your opponent is Player I. If the strategy requires placing
a game piece where the special game piece has already been placed, put a piece on
any empty hexagon, and from there on call that game piece the “special piece.”

3.20 And-Or is a two-player game played on a full binary tree with a root, of depth n (see
Figure 3.15). Every player in turn chooses a leaf of the tree that has not previously
been selected, and assigns it the value 1 or 0. After all the leaves have been assigned
a value, a value for the entire tree is calculated as in the figure. The first step involves
calculating the value of the vertices at one level above the level of the leaves: the
value of each such vertex is calculated using the logic “or” function, operating on
the values assigned to its children. Next, a value is calculated for each vertex one
level up, with that value calculated using the logic “and” function, operating on the
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Figure 3.15 A depiction of the game And-Or of depth n = 4 as an extensive-form
game

values previously calculated for their respective children. The truth tables of the
“and” and “or” functions are:10

x y x and y x or y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Equivalently, x and y = min{x, y} and x or y = max{x, y}. The values of all the
vertices of the tree are alternately calculated in this manner recursively, with the
value of each vertex calculated using either the “and” or “or” functions, operating

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 Equivalently, “x or y” = x ∨ y = max{x, y}, and “x and y” = x ∧ y = min{x, y}.
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on values calculated for their respective children. Player I wins if the value of the
root vertex is 1, and loses if the value of the root vertex is 0. Figure 3.15 shows the
end of a play of this game, and the calculations of vertex values by use of the “and”
and “or” functions. In this figure, Player I is the winner.

Answer the following questions:

(a) Which player has a winning strategy in a game played on a tree of depth two?
(b) Which player has a winning strategy in a game played on a tree of depth 2k,

where k is any positive integer?
Guidance: To find the winning strategy in a game played on a tree of depth 2k,
keep in mind that you can first calculate inductively the winning strategy for a
game played on a tree of depth 2k − 2.

3.21 Each one of the following figures cannot depict a game in extensive form. For each
one, explain why.
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3.22 In each of the following games, Player I has an information set containing more
than one vertex. What exactly has Player I “forgotten” (or could “forget”) during
the play of each game?
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3.23 In which information sets for the following game does Player II know the action
taken by Player I?
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3.24 Sketch the information sets in the following game tree in each of the situations
described in this exercise.

I
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I

III

III

III

(a) Player II does not know what Player I selected, while Player III knows what
Player I selected, but if Player I moved down, Player III does not know what
Player II selected.

(b) Player II does not know what Player I selected, and Player III does not know the
selections of either Player I or Player II.

(c) At every one of his decision points, Player I cannot remember whether or not he
has previously made any moves.

3.25 For each of the following games:

(a) List all of the subgames.
(b) For each information set, note what the player to whom the information set

belongs knows, and what he does not know, at that information set.
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3.26 Only a partial depiction of a game in extensive form is presented in the accompanying
figure of this exercise. Sketch the information sets describing each of the following
situations.

(a) Player II, at his decision points, knows what Player I selected, but does not know
the result of the chance move.

(b) Player II, at his decision points, knows the result of the chance move (where
relevant). If Player I has selected T , Player II knows that this is the case, but
if Player I selected either B or M , Player II does not know which of these two
actions was selected.

(c) Player II, at his decision points, knows both the result of the chance move and
any choice made by Player I.
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3.27 (a) What does Player I know, and what does he not know, at each information set in
the following game:
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(b) How many strategies has Player I got?
(c) The outcome of the game is the payment to Player I. What do you recommend

Player I should play in this game?

3.28 How many strategies has Player II got in the game in the figure in this exercise, in
each of the described situations? Justify your answers.
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(a) The information sets of Player II are: {A}, {B, C}, {D, E}.
(b) The information sets of Player II are: {A, B}, {C}, {D, E}.
(c) The information sets of Player II are: {A, B, C}, {D, E}.
(d) The information sets of Player II are: {A, B, D}, {C}, {E}.

3.29 Consider the following two-player game.
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(a) What does Player II know, and what does he not know, at each of his information
sets?

(b) Depict the same game as a game in extensive form in which Player II makes his
move prior to the chance move, and Player I makes his move after the chance
move.

(c) Depict the same game as a game in extensive form in which Player I makes his
move prior to the chance move, and Player II makes his move after the chance
move.

3.30 Depict the following situation as a game in extensive form. Two corporations manu-
facturing nearly identical chocolate bars are independently considering whether or
not to increase their advertising budgets by $500,000. The sales experts of both
corporations are of the opinion that if both corporations increase their advertising
budgets, they will each get an equal share of the market, and the same result will
ensue if neither corporation increases its advertising budget. In contrast, if one
corporation increases its advertising budget while the other maintains the same level
of advertising, the corporation that increases its advertising budget will grab an 80%
market share, and the other will be left with a 20% market share.
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The decisions of the chief executives of the two corporations are made simulta-
neously; neither one of the chief executives knows what the decision of the other
chief executive is at the time he makes his decision.

3.31 Investments Depict the following situation as a game in extensive form. Jack has
$100,000 at his disposal, which he would like to invest. His options include investing
in gold for one year; if he does so, the expectation is that there is a probability of 30%
that the price of gold will rise, yielding Jack a profit of $20,000, and a probability
of 70% that the price of gold will drop, causing Jack to lose $10,000. Jack can
alternatively invest his money in shares of the Future Energies corporation; if he
does so, the expectation is that there is a probability of 60% that the price of the
shares will rise, yielding Jack a profit of $50,000, and a probability of 40% that
the price of the shares will drop to such an extent that Jack will lose his entire
investment. Another option open to Jack is placing the money in a safe index-linked
money market account yielding a 5% return.

3.32 In the game depicted in Figure 3.16 , if Player I chooses T , there is an ensuing
chance move, after which Player II has a turn, but if Player I chooses B, there is
no chance move, and Player II has an immediately ensuing turn (without a chance
move). The outcome of the game is a pair of numbers (x, y) in which x is the payoff
for Player I and y is the payoff for Player II.
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(a) What are all the strategies available to Player I?
(b) How many strategies has Player II got? List all of them.
(c) What is the expected payoff to each player if Player I plays B and Player II plays

(t1, b2, t3)?
(d) What is the expected payoff to each player if Player I plays T and Player II plays

(t1, b2, t3)?

3.33 The following questions relate to Figure 3.16. The outcome of the game is a triple
(x, y, z) representing the payoff to each player, with x denoting the payoff to Player
I, y the payoff to Player II and z the payoff to Player III.

The outcome of the game is a pair of numbers, representing a payment to each
player.

(a) Depict, by drawing arrows, strategies (a, c, e), (h, j, l), and (m, p, q) of the three
players.
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Figure 3.16

(b) Calculate the expected payoff if the players make use of the strategies in part
(a).

(c) How would you play this game, if you were Player I? Assume that each player
is striving to maximize his expected payoff.

3.34 Bill asks Al to choose heads or tails. After Al has made his choice (without disclosing
it to Bill), Bill flips a coin. If the coin falls on Al’s choice, Al wins. Otherwise, Bill
wins. Depict this situation as a game in extensive form.

3.35 A pack of three cards, labeled 1, 2, and 3, is shuffled. William, Mary, and Anne each
take a card from the pack. Each of the two players holding a card with low values
(1 or 2) pays the amount of money appearing on the card he or she is holding to the
player holding the high-valued card (namely, 3). Depict this situation as a game in
extensive form.

3.36 Depict the game trees of the following variants of the candidate game appearing in
Exercise 3.2:
(a) Eric does not announce which candidate he prefers until the end of the game.

He instead writes down the name of his candidate on a slip of paper, and shows
that slip of paper to the others only after Larry and Sergey have announced their
preferred candidate.

(b) A secret ballot is conducted: no player announces his preferred candidate until
the end of the game.

(c) Eric and Sergey keep their candidate preference a secret until the end of the
game, but Larry announces his candidate preference as soon as he has made his
choice.
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3.37 Describe the game Rock, Paper, Scissors as an extensive-form game (if you are
unfamiliar with this game, see page 78 for a description).

3.38 Consider the following game. Player I has the opening move, in which he chooses
an action in the set {L, R}. A lottery is then conducted, with either λ or ρ selected,
both with probability 1

2 . Finally, Player II chooses either l or r . The outcomes of
the game are not specified. Depict the game tree associated with the extensive-form
game in each of the following situations:

(a) Player II, at his turn, knows Player I’s choice, but does not know the outcome of
the lottery.

(b) Player II, at his turn, knows the outcome of the lottery, but does not know Player
I’s choice.

(c) Player II, at his turn, knows the outcome of the lottery only if Player I has
selected L.

(d) Player II, at his turn, knows Player I’s choice if the outcome of the lottery is λ,
but does not know Player I’s choice if the outcome of the lottery is ρ.

(e) Player II, at his turn, does not know Player I’s choice, and also does not know
the outcome of the lottery.

3.39 In the following game, the root is a chance move, Player I has three information
sets, and the outcome is the amount of money that Player I receives.

(a) What does Player I know in each of his information sets, and what does he not
know?

(b) What would you recommend Player I to play, assuming that he wants to maximize
his expected payoff? Justify your answer.
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4 Strategic-form games

Chapter summary
In this chapter we present the model of strategic-form games. A game in strategic form
consists of a set of players, a strategy set for each player, and an outcome to each vector
of strategies, which is usually given by the vector of utilities the players enjoy from the
outcome. The strategic-form description ignores dynamic aspects of the game, such as
the order of the moves by the players, chance moves, and the informational structure of
the game.

The goal of the theory is to suggest which strategies are more likely to be played by
the players, or to recommend to players which strategy to implement (or not to
implement). We present several concepts that allow one to achieve these goals. The first
concept introduced is domination (strict or weak), which provides a partial ordering of
strategies of the same player; it tells when one strategy is “better” than another
strategy. Under the hypothesis that it is commonly known that “rational” players do not
implement a dominated strategy we can then introduce the process of iterated
elimination of dominated strategies, also called rationalizability. In this process,
dominated strategies are successively eliminated from the game, thereby simplifying it.
We go on to introduce the notion of stability, captured by the concept of Nash
equilibrium, and the notion of security, captured by the concept of the maxmin value
and maxmin strategies. The important class of two-player zero-sum games is introduced
along with its solution called the value (or the minmax value). This solution concept
shares both properties of security and stability. When the game is not zero-sum, security
and stability lead typically to different predictions.

We prove that every extensive-form game with perfect information has a Nash
equilibrium. This is actually a generalization of the theorem on the game of chess
proved in Chapter 1.

To better understand the relationships between the various concepts, we study the
effects of elimination of dominated strategies on the maxmin value and on equilibrium
payoffs. Finally, as a precursor to mixed strategies introduced in the next chapter, we
look at an example of a two-player game on the unit square and compute its Nash
equilibrium.

As we saw in Chapter 3, a player’s strategy in an extensive-form game is a decision
rule that determines that player’s action in each and every one of his information sets.
When there are no chance moves in the game, each vector of strategies – one strategy per
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player – determines the play of the game and therefore also the outcome. If there are
chance moves, a vector of strategies determines a probability distribution over possible
plays of the game, and therefore also over the outcomes of the game. The strategy chosen
by a player therefore influences the outcome (or the probability distribution of outcomes,
if there are chance moves).

If all we are interested in is the outcomes of the game and not the specific actions that
brought about those outcomes, then it suffices to describe the game as the set of strategies
available to each player, along with the distribution over the outcomes that each vector of
strategies brings about.

4.1 Examples and definition of strategic-form games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

For the analysis of games, every player must have preferences with respect to the set of
outcomes. This subject was covered in detail in Chapter 2 on utility theory, where we saw
that if player i’s preference relation !i satisfies the von Neumann–Morgenstern axioms,
then it can be represented by a linear utility function ui . In other words, to every possible
outcome o, we can associate a real number ui(o) representing the utility that player i

ascribes to o, with the player preferring one outcome to another if and only if the utility of
the first outcome is higher than the utility of the second outcome. The player prefers one
lottery to another lottery if and only if the expected utility of the outcomes according to
the first lottery is greater than the expected utility of the outcomes according to the second
lottery.

In most games we analyze in this book, we assume that the preference relations of
the players satisfy the von Neumann–Morgenstern axioms. We will also assume that the
outcomes of plays of games are given in utility terms. This means that the outcome of a
play of a game is an n-dimensional vector, where the i-th coordinate is player i’s utility
from that play of the game.1

Example 4.1 Consider the following two-player game (Figure 4.1) presented in extensive form with six

possible outcomes.

I

II

II

I

L1

R1

l1

r1

l2

r2

L2

R2

L2

R2

O1
O2

O3

O4

O5
O6

Figure 4.1 A two-player game in extensive form

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 This is equivalent to the situation where the outcomes are monetary payoffs and the players are risk neutral, in
which case every lottery over payoffs is equivalent to the expected monetary payoff in the lottery drawing.
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Player I has four strategies: L1L2, L1R2, R1L2, R1R2, and Player II has four strategies: l1l2, l1r2,
r1l2, r1r2. The extensive-form description presents in detail what each player knows at each of his
decision points. But we can ignore all that information, and present the players’ strategies, along
with the outcomes they lead to, in the table in Figure 4.2:

Player II

Player I

R1R2

R1L2

L1R2

L1L2

l1 l2 l1r2 r1 l2 r1r2

O5

O4

O1

O1

O6

O6

O1

O1

O5

O4

O3

O2

O6

O6

O3

O2

Figure 4.2 The game in Figure 4.1 in strategic form

In this description of the game, the rows represent the strategies of Player I and the columns
those of Player II. In each cell of the table appears the outcome that arises if the two players choose
the pair of strategies associated with that cell. For example, if Player I chooses strategy L1L2

and Player II chooses strategy l1l2, we will be in the upper-leftmost cell of the table, leading to
outcome O1. �

A game presented in this way is called a game in strategic form or a game in normal
form.

Definition 4.2 A game in strategic form (or in normal form) is an ordered triple G =
(N, (Si)i∈N, (ui)i∈N ), in which:

� N = {1, 2, . . . , n} is a finite set of players.
� Si is the set of strategies of player i, for every player i ∈ N .

We denote the set of all vectors of strategies by S = S1 × S2 × · · · × Sn.

� ui : S → R is a function associating each vector of strategies s = (si)i∈N with the payoff
(= utility) ui(s) to player i, for every player i ∈ N .

In this definition, the sets of strategies available to the players are not required to be
finite, and in fact we will see games with infinite strategy sets in this book. A game
in which the strategy set of each player is finite is termed a finite game. The fact that
ui is a function of the vector of strategies s, and not solely of player i’s strategy si , is
what makes this a game, i.e., a situation of interactive decisions in which the outcome
for each player depends not on his strategy alone, but on the strategies chosen by all the
players.
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Example 4.3 Rock, Paper, Scissors In the game “Rock, Paper, Scissors,” each one of two players chooses

an action from three alternatives: Rock, Paper, or Scissors. The actions are selected by the players
simultaneously, with a circular dominance relationship obtaining between the three alternatives:
rock smashes scissors, which cut paper, which in turn covers rock. The game in extensive form is
described in Figure 4.3 in which the terminal vertices are labeled by the outcomes “I wins,” “II
wins,” or D (for draw).

I

Draw

I wins

II wins

II wins

Draw

I wins

I wins

II wins

Draw

R

P

S

R

P

S

R

P

S

R

P

S

II

Figure 4.3 Rock, Paper, Scissors as a game in extensive form

Setting the payoff to a player to be 1 for a win, −1 for a loss, and 0 for a draw, we obtain the
game in strategic form appearing in Figure 4.4. In each cell in Figure 4.4 the left number denotes
the payoff to Player I and the right number denotes the payoff to Player II.

Scissors

Paper

Rock

Rock Paper Scissors

0, 0

− 1, 1

1, −11, −1

0, 0

−1, 1−1, 1

1, −1

0, 0

Player I

Player II

Figure 4.4 Rock, Paper, Scissors as a strategic-form game
�

Games in strategic form are sometimes called matrix games because they are described
by matrices.2 When the number of players n is greater than 2, the corresponding matrix is n-
dimensional, and each cell of the matrix contains a vector with n coordinates, representing
the payoffs to the n players.

When there are no chance moves, a game in strategic form is derived from a game in
extensive form in the following way:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 When n = 2 it is customary to call these games bimatrix games, as they are given by two matrices, one for the
payoff of each player.
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� List the set of all strategies Si available to each player i in the extensive-form game.
� For each vector of strategies s = (si)i∈N find the play determined by this vector of

strategies, and then derive the payoffs induced by this play:

u(s) := (u1(s), u2(s), . . . , un(s)).

� Draw the appropriate n-dimensional matrix. When there are two players, the number of
rows in the matrix equals the number of strategies of Player I, the number of columns
equals the number of strategies of Player II, and the pair of numbers appearing in each
cell is the pair of payoffs defined by the pair of strategies associated with that cell. When
there are more than two players, the matrix is multi-dimensional (see Exercises 4.17
and 4.18 for examples of games with three players).

How is a strategic-form game derived from an extensive-form game when there are
chance moves? In that case, every strategy vector s = (si)i∈N determines a probability
distribution μs over the set O of the game’s possible outcomes, where for each o ∈ O the
value of μs(o) is the probability that if the players play according to strategy vector s the
outcome will be o. The cell corresponding to strategy vector s contains the average of
the payoffs corresponding to the possible outcomes according to this probability distribu-
tion, i.e., the vector u(s) = (ui(s))i∈N ∈ RN defined by

ui(s) :=
∑
o∈O

μs(o) × ui(o). (4.1)

Since we are assuming that the preference relations of all player satisfy the von
Neumann–Morgenstern axioms, ui(s) is the utility that player i receives from the lot-
tery over the outcomes of the game that is induced when the players play according to
strategy vector s.

Example 4.4 Consider the game in extensive form presented in Figure 4.5.
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Figure 4.5 An extensive-form game with chance moves

In this game the outcome is a payoff to each of the players. This is a game of perfect information.
Player I has two decision nodes, in each of which he has two possible actions. Player I’s strategy
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set is therefore

SI = {(a, g), (a, h), (b, g), (b, h)}. (4.2)

Player II has one decision node with two possible actions, so that Player II’s strategy set is

SII = {e, f }. (4.3)

To see how the payoffs are calculated, look, for example, at Player I’s strategy (b, g) and at
Player II’s strategy e. If the players choose these strategies, three possible plays can occur with
positive probability:

� The play R → A → B → D → (5,−1), with probability 1
6 .

� The play R → A → B → D → (−2, 5), with probability 1
3 .

� The play R → A → C → (1, 1), with probability 1
2 .

It follows that the expected payoff is

1
6 (5,−1) + 1

3 (−2, 5) + 1
2 (1, 1) = (

2
3 , 2

)
. (4.4)

We can similarly calculate the payoffs to each pair of strategies. The resulting strategic-form game
appears in Figure 4.6 (verify!).

Player II

Player I

(b , h)

(b , g)

(a , h)

(a , g)

ef

7
8 , 5

8

3
2 , 1

2

0, 0

0, 0

1
24 , 17

8

2
3 , 2

0, 0

0, 0

Figure 4.6 The strategic form of the game in Figure 4.5
�

In the game in Figure 4.6, Player I’s two strategies (a, g) and (a, h) correspond to the
same row of payoffs. This means that, independently of Player II’s strategy, the strategy
(a, g) leads to the same payoffs as does the strategy (a, h). We say that these two strategies
are equivalent. This equivalence can be understood by considering the corresponding game
in extensive form (Figure 4.5): when Player I chooses R (at vertex a), the choice between
g and h has no effect on the outcome of the game, because the play never arrives at vertex
C. We can therefore represent the two strategies (a, g) and (a, h) by one strategy, (a), and
derive the strategic-form game described in Figure 4.7.

A strategic-form game in which every set of equivalent strategies is represented by a
single strategy (“the equivalence set”) is called a game in reduced strategic form. This is
essentially the form of the game that is arrived at when we take into account the fact that
a particular action by a player excludes reaching some information sets of that player. In
that case, there is no need to specify his strategies at those information sets.
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Player II

Player I

(b, h)

(b, g)

(a)

ef

7
8 , 5

8

3
2 , 1

2

0, 0

1
24 , 17

8

2
3 , 2

0, 0

Figure 4.7 The reduced strategic form of the game in Figure 4.5

Example 4.5 The game of chess in strategic form The number of strategies in the game of chess is immense

even if we impose a maximal (large) number of moves after which the outcome is declared as a draw.
There is no practical way to write down its game matrix (just as there is no practical way to present
the game in extensive form). But it is significant that in principle the game can be represented by
a finite matrix (even if its size is astronomic) (see Figure 4.8). The only possible outcomes of the
game appearing in the cells of the matrix are W (victory for White), B (victory for Black), and D

(draw).

Black

White

21 3 ···
1 DW W ···
2 DD B ···
3 BB D ···
· ·· ····
· ·· ····

Figure 4.8 The game of chess in strategic form

A winning strategy for the White player (if one exists) would be represented by a row all of
whose elements are W . A winning strategy for the Black player (if one exists) would be represented
in this matrix by a column all of whose elements are B. A strategy ensuring at least a draw for
White (or Black) is a row (or a column) all of whose elements are D or W (or B or D).

It follows from Theorem 1.4 (page 3) that in the matrix representing the game of chess, one and
only one of the following alternatives holds:

1. There is a row all of whose elements are W .
2. There is a column all of whose elements are B.
3. There is a row all of whose elements are W or D, and a column all of whose elements are B

or D.

If the third possibility obtains, then the cell at the intersection of the row ensuring at least a draw
for White and the column guaranteeing at least a draw for Black must contain D: if both players
are playing a strategy guaranteeing at least a draw, then the outcome of the play must necessarily
be a draw. �
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4.2 The relationship between the extensive form and the
strategic form
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have shown that every extensive-form game can be associated with a unique reduced
strategic-form game (meaning that every set of equivalent strategies in the extensive-form
game is represented by one strategy in the strategic-form game). We have also exhibited a
way of deriving a strategic-form game from an extensive-form game. There are two natural
questions that arise with respect to the inverse operation: Does every strategic-form game
have an extensive-form game from which it is derived? Is there a unique extensive-form
game associated with a strategic-form game? The answer to the first question is affirmative,
while the answer to the second question is negative. To show that the first question has an
affirmative answer, we will now describe how to associate an extensive-form game with a
given strategic-form game.

Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, and denote the strategies
of each player i by Si = {s1

i , . . . , s
mi

i }. The reader can verify that G is the strategic-form
game associated with the extensive-form game that appears in Figure 4.9.

This is a natural description that is also called “the canonical representation” of the
game. It captures the main characteristic of a strategic-form game: in essence, the players
choose their strategies simultaneously. This property is expressed in Figure 4.9 by the
fact that each player has a single information set. For example, despite the fact that in the
extensive-form game Player 1 chooses his strategy first, none of the other players, when
coming to choose their strategies, know which strategy Player 1 has chosen. Clearly, the
order of the players that appear in Figure 4.10 can be selected arbitrarily. Since there
are n! permutations over the set of n players, and each permutation defines a different
ordering of the players, there are n! such extensive-form canonical descriptions of the
same strategic-form game.

Are there other, significantly different, ways of describing the same strategic-form
game? The answer is positive. For example, each one of the three games in Figure 4.11
yields the two-player strategic-form game of Figure 4.10.

Representation A in Figure 4.11 is the canonical representation of the game. In rep-
resentation C we have changed the order of the players: instead of Player I playing first
followed by Player II, we have divided the choice made by Player II into two parts: one
choice is made before Player I makes his selection, and one afterwards. As neither player
knows which strategy was selected by the other player, the difference is immaterial to
the game. Representation B is more interesting, because in that game Player II knows
Player I’s selection before he makes his selection (verify that the strategic form of each
of the extensive-form games in Figure 4.11 is identical to the strategic-form game in
Figure 4.10.)

The fact that a single strategic-form game can be derived from several different
extensive-form games is not surprising, because the strategic-form description of a game
is a condensed description of the extensive-form game. It ignores many of the dynamic
aspects of the extensive-form description. An interesting mathematical question that arises
here is “what is the extent of the difference” between two extensive-form games associ-
ated with the same strategic-form game? Given two extensive-form games, is it possible
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Figure 4.9 A canonical representation of a strategic-form game as an
extensive-form game
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Figure 4.10 The strategic-form game derived from each of the three games in
Figure 4.11

to identify whether or not they yield the same strategic-form game, without explicitly
calculating their strategic-form representation? This subject was studied by Thompson
[1952], who defined three elementary operations that do not change the “essence” of a
game. He then proved that if two games in extensive form with the same set of players can
be transformed into each other by a finite number of these three elementary operations,



84 Strategic-form games
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Figure 4.11 Three extensive-form games corresponding to the same strategic-form
game in Figure 4.10

then those two extensive-form games correspond to the same strategic-form game. He also
showed that the other direction obtains: if two games in extensive form yield the same
strategic-form game, then they can be transformed into each other by a finite number of
these three elementary operations.

4.3 Strategic-form games: solution concepts
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have dealt so far only with the different ways of describing games in extensive and
strategic form. We discussed von Neumann’s theorem in the special case of two players
and three possible outcomes: victory for White, a draw, or victory for Black. Now we will
look at more general games, and consider the central question of game theory: What can
we say about what “will happen” in a given game? First of all, note that this question has
at least three different possible interpretations:
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1. An empirical, descriptive interpretation: How do players, in fact, play in a given game?
2. A normative interpretation: How “should” the players play in a given game?
3. A theoretical interpretation: What can we predict will happen in a game given certain

assumptions regarding “reasonable” or “rational” behavior on the part of the players?

Descriptive game theory deals with the first interpretation. This field of study involves
observations of the actual behavior of players, both in real-life situations and in artificial
laboratory conditions where they are asked to play games and their behavior is recorded.
This book will not address that area of game theory.

The second interpretation would be appropriate for a judge, legislator, or arbitrator
called upon to determine the outcome of a game based on several agreed-upon principles,
such as justice, efficiency, nondiscrimination, and fairness. This approach is best suited
for the study of cooperative games, in which binding agreements are possible, enabling
outcomes to be derived from “norms” or agreed-upon principles, or determined by an
arbitrator who bases his decision on those principles. This is indeed the approach used for
the study of bargaining games (see Chapter 15) and the Shapley value (see Chapter 18).

In this chapter we will address the third interpretation, the theoretical approach. After
we have described a game, in either extensive or strategic form, what can we expect
to happen? What outcomes, or set of outcomes, will reasonably ensue, given certain
assumptions regarding the behavior of the players?

4.4 Notation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Let N = {1, . . . , n} be a finite set, and for each i ∈ N let Xi be any set. Denote X :=
×i∈N Xi , and for each i ∈ N define X−i :=×j �=i Xj . For each i ∈ N we will denote by

X−i = ×
j �=i

Xj (4.5)

the Cartesian product of all the sets Xj except for the set Xi . In other words,

X−i = {(x1, . . . , xi−1, xi+1, . . . , xn) : xj ∈ Xj, ∀j �= i}. (4.6)

An element in X−i will be denoted x−i = (x1, . . . , xi−1, xi+1, . . . , xn), which is the
(n − 1)-dimensional vector derived from (x1, . . . , xn) ∈ X by suppressing the i-th coor-
dinate.

4.5 Domination
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider the two-player game that appears in Figure 4.12, in which Player I chooses a
row and Player II chooses a column.

Comparing Player II’s strategies M and R, we find that:

� If Player I plays T , the payoff to Player II under strategy M is 2, compared to only 1
under strategy R.

� If Player I plays B, the payoff to Player II under strategy M is 1, compared to only 0
under strategy R.
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Player II
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0, 1

1, 2

2, 0

0, 1

Figure 4.12 Strategy M dominates strategy R

We see that independently of whichever strategy is played by Player I, strategy M

always yields a higher payoff to Player II than strategy R. This motivates the following
definition:

Definition 4.6 A strategy si of player i is strictly dominated if there exists another strategy
ti of player i such that for each strategy vector s−i ∈ S−i of the other players,

ui(si, s−i) < ui(ti , s−i). (4.7)

If this is the case, we say that si is strictly dominated by ti , or that ti strictly dominates si .

In the example in Figure 4.12 strategy R is strictly dominated by strategy M . It is
therefore reasonable to assume that if Player II is “rational,” he will not choose R, because
under any scenario in which he might consider selecting R, the strategy M would be a
better choice. This is the first rationality property that we assume.

Assumption 4.7 A rational player will not choose a strictly dominated strategy.

We will assume that all the players are rational.

Assumption 4.8 All players in a game are rational.

Can a strictly dominated strategy (such as strategy R in Figure 4.12) be eliminated,
under these two assumptions? The answer is: not necessarily. It is true that if Player II
is rational he will not choose strategy R, but if Player I does not know that Player II is
rational, he is liable to believe that Player II may choose strategy R, in which case it would
be in Player I’s interest to play strategy B. So, in order to eliminate the strictly dominated
strategies one needs to postulate that:

� Player II is rational, and
� Player I knows that Player II is rational.

On further reflection, it becomes clear that this, too, is insufficient, and we also need to
assume that:

� Player II knows that Player I knows that Player II is rational.

Otherwise, Player II would need to consider the possibility that Player I may play B,
considering R to be a strategy contemplated by Player II, in which case Player II may be
tempted to play L. Once again, further scrutiny reveals that this is still insufficient, and
we need to assume that:



87 4.5 Domination

Player II

Player I
B

T

ML

0, 3

1, 0

0, 1

1, 2

Figure 4.13 The game in Figure 4.12 after the elimination of strategy R

Player II

Player I T

ML

1, 0 1, 2

Figure 4.14 The game in Figure 4.12 following the elimination of strategies R and B

� Player I knows that Player II knows that Player I knows that Player II is rational.
� Player II knows that Player I knows that Player II knows that Player I knows that Player II

is rational.
� And so forth.

If all the infinite conditions implied by the above are satisfied, we say that the fact that
Player II is rational is common knowledge among the players. This is an important concept
underlying most of our presentation. Here we will give only an informal presentation of
the concept of common knowledge. A formal definition appears in Chapter 9, where we
extensively study common knowledge.

Definition 4.9 A fact is common knowledge among the players of a game if for any finite
chain of players i1, i2, . . . , ik the following holds: player i1 knows that player i2 knows
that player i3 knows . . . that player ik knows the fact.

The chain in Definition 4.9 may contain several instances of the same player (as indeed
happens in the above example). Definition 4.9 is an informal definition since we have
not formally defined what the term “fact” means, nor have we defined the significance of
knowing a fact. We will now add a further assumption to the two assumptions listed above:

Assumption 4.10 The fact that all players are rational (Assumption 4.8) is common
knowledge among the players.

Strictly dominated strategies can be eliminated under Assumptions 4.7, 4.8, and 4.10
(we will not provide a formal proof of this claim). In the example in Figure 4.12, this means
that, given the assumptions, we should focus on the game obtained by the elimination of
strategy R, which appears in Figure 4.13.

In this game strategy B of Player I is strictly dominated by strategy T . Because the
rationality of Player I is common knowledge, as is the fact that B is a strictly dominated
strategy, after the elimination of strategy R, strategy B can also be eliminated. The players
therefore need to consider a game with even fewer strategies, which is given in Figure 4.14.
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Because in this game strategy L is strictly dominated (for Player II) by strategy M ,
after its elimination only one result remains, (1, 2), which obtains when Player I plays T

and Player II plays M .
The process we have just described is called iterated elimination of strictly dominated

strategies. When this process yields a single strategy vector (one strategy per player), as in
the example above, then, under Assumptions 4.7, 4.8, and 4.10, that is the strategy vector
that will obtain, and it may be regarded as the solution of the game.

A special case in which such a solution is guaranteed to exist is the family of games
in which every player has a strategy that strictly dominates all of his other strategies,
that is, a strictly dominant strategy. Clearly, in that case, the elimination of all strictly
dominated strategies leaves each player with only one strategy: his strictly dominant
strategy. When this occurs we say that the game has a solution in strictly dominant
strategies.

Example 4.11 The Prisoner’s Dilemma The “Prisoner’s Dilemma” is a very simple game that is interesting

in several respects. It appears in the literature in the form of the following story.
Two individuals who have committed a serious crime are apprehended. Lacking incriminating

evidence, the prosecution can obtain an indictment only by persuading one (or both) of the prisoners
to confess to the crime. Interrogators give each of the prisoners – both of whom are isolated in
separate cells and unable to communicate with each other – the following choices:

1. If you confess and your friend refuses to confess, you will be released from custody and receive
immunity as a state’s witness.

2. If you refuse to confess and your friend confesses, you will receive the maximum penalty for
your crime (ten years of incarceration).

3. If both of you sit tight and refuse to confess, we will make use of evidence that you have
committed tax evasion to ensure that both of you are sentenced to a year in prison.

4. If both of you confess, it will count in your favor and we will reduce each of your prison terms
to six years.

This situation defines a two-player strategic-form game in which each player has two strategies: D,
which stands for Defection, betraying your fellow criminal by confessing, and C, which stands for
Cooperation, cooperating with your fellow criminal and not confessing the crime. In this notation,
the outcome of the game (in prison years) is shown in Figure 4.15.

Player I

Player II

C

D

CD

10, 0

6, 6

1, 1

0, 10

Figure 4.15 The Prisoner’s Dilemma in prison years

As usual, the left-hand number in each cell of the matrix represents the outcome (in
prison years) for Player I, and the right-hand number represents the outcome for Player II.
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We now present the game in utility units. For example, suppose the utility of both players is given
by the following function u:

u(release) = 5, u(one year in prison) = 4,

u(6 years in prison) = 1, u(10 years in prison) = 0.

The game in utility terms appears in Figure 4.16.

Player I

Player II

C

D

CD

0, 5

1, 1

4, 4

5, 0

Figure 4.16 The Prisoner’s Dilemma in utility units

For both players, strategy D (Defect) strictly dominates strategy C (Cooperate). Elimination of
strictly dominated strategies leads to the single solution (D,D) in which both prisoners confess,
resulting in the payoff (1, 1). �

What makes the Prisoner’s Dilemma interesting is the fact that if both players choose
strategy C, the payoff they receive is (4, 4), which is preferable for both of them. The
solution derived from Assumptions 4.7, 4.8, and 4.10, which appear to be quite reasonable
assumptions, is “inefficient”: The pair of strategies (C, C) is unstable, because each
individual player can deviate (by defecting) and gain an even better payoff of 5 (instead
of 4) for himself (at the expense of the other player, who would receive 0).

In the last example, two strictly dominated strategies were eliminated (one per player),
but there was no specification regarding the order in which these strategies were eliminated:
was Player I’s strategy C eliminated first, or Player II’s, or were they both eliminated simul-
taneously? In this case, a direct verification reveals that the order of elimination makes no
difference. It turns out that this is a general result: whenever iterated elimination of strictly
dominated strategies leads to a single strategy vector, that outcome is independent of the
order of elimination. In fact, we can make an even stronger statement: even if iterated
elimination of strictly dominated strategies yields a set of strategies (not necessarily a
single strategy), that set does not depend on the order of elimination (see Exercise 4.10).

There are games in which iterated elimination of strictly dominated strategies does
not yield a single strategy vector. For example, in a game that has no strictly dominated
strategies, the process fails to eliminate any strategy. The game in Figure 4.17 provides
an example of such a game.

Although there are no strictly dominated strategies in this game, strategy B does have a
special attribute: although it does not always guarantee a higher payoff to Player I relative
to strategy T , in all cases it does grant him a payoff at least as high, and in the special case
in which Player II chooses strategy L, B is a strictly better choice than T . In this case we
say that strategy B weakly dominates strategy T (and strategy T is weakly dominated by
strategy B).
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Player II

Player I
B

T

RL

2, 2

1, 2

2, 0

2, 3

Figure 4.17 A game with no strictly dominated strategies

Definition 4.12 Strategy si of player i is termed weakly dominated if there exists another
strategy ti of player i satisfying the following two conditions:

(a) For every strategy vector s−i ∈ S−i of the other players,

ui(si, s−i) ≤ ui(ti , s−i). (4.8)

(b) There exists a strategy vector t−i ∈ S−i of the other players such that

ui(si, t−i) < ui(ti , t−i). (4.9)

In this case we say that strategy si is weakly dominated by strategy ti , and that strategy ti
weakly dominates strategy si .

If strategy ti dominates (weakly or strictly) strategy si , then si does not (weakly or
strictly) dominate ti . Clearly, strict domination implies weak domination. Because we will
refer henceforth almost exclusively to weak domination, we use the term “domination”
to mean “weak domination,” unless the term “strict domination” is explicitly used. The
following rationality assumption is stronger than Assumption 4.7.

Assumption 4.13 A rational player does not use a dominated strategy.

Under Assumptions 4.8, 4.10, and 4.13 we may eliminate strategy T in the game in
Figure 4.17 (as it is weakly dominated), and then proceed to eliminate strategy R (which
is strictly dominated after the elimination of T ). The only remaining strategy vector is
(B, L), with a payoff of (2, 2). Such a strategy vector is called rational, and the process
of iterative elimination of weakly dominated strategies is called rationalizability. The
meaning of “rationalizability” is that a player who expects a certain strategy vector to
obtain can explain to himself why that strategy vector will be reached, based on the
assumption of rationality.

Definition 4.14 A strategy vector s ∈ S is termed rational if it is the unique result of a
process of iterative elimination of weakly dominated strategies.

Whereas Assumption 4.7 looks reasonable, Assumption 4.13 is quite strong. Reinhard
Selten, in trying to justify Assumption 4.13, suggested a concept he termed the trembling
hand principle. The basic postulate of this principle is that every single strategy available
to a player may be used with positive probability, which may well be extremely small. This
may happen simply by mistake (the player’s hand might tremble as he reaches to press
the button setting in motion his chosen strategy, so that by mistake the button associated
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with a different strategy is activated instead), by irrationality on the part of the player,
or because the player chose a wrong strategy due to miscalculations. This topic will be
explored in greater depth in Section 7.3 (page 262).

To illustrate the trembling hand principle, suppose that Player II in the example of
Figure 4.17 chooses strategies L and R with respective probabilities x and 1 − x, where
0 < x < 1. The expected payoff to Player I in that case is x + 2(1 − x) = 2 − x if he
chooses strategy T , as opposed to a payoff of 2 if he chooses strategy B. It follows that
strategy B grants him a strictly higher expected payoff than T , so that a rational Player I
facing Player II who has a trembling hand will choose B and not T ; i.e., he will not choose
the weakly dominated strategy.

The fact that strategy si of player i (weakly or strictly) dominates his strategy ti depends
only on player i’s payoff function, and is independent of the payoff functions of the other
players. Therefore, a player can eliminate his dominated strategies even when he does not
know the payoff functions of the other players. This property will be useful in Section 4.6.
In the process of rationalizability we eliminate dominated strategies one after the other.
Eliminating strategy si of player i after strategy sj of player j means that we assume that
player i believes that player j will not implement sj . This assumption is reasonable only if
player i knows player j ’s payoff function. Therefore, the process of iterative elimination
of dominated strategies can be justified only if the payoff functions of the players are
common knowledge among them; if this condition does not hold, this process is harder to
justify.

The process of rationalizability – iterated elimination of dominated strategies – is
an efficient tool that leads, sometimes surprisingly, to significant results. The following
example, taken from the theory of auctions, provides an illustration.

4.6 Second-price auctions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A detailed study of auction theory is presented in Chapter 12. In this section we will
concentrate on the relevance of the concept of dominance to auctions known as sealed-bid
second-price auctions, which are conducted as follows:

� An indivisible object is offered for sale.
� The set of buyers in the auction is denoted by N . Each buyer i attaches a value vi

to the object; that is, he is willing to pay at most vi for the object (and is indifferent
between walking away without the object and obtaining it at price vi). The value vi is
buyer i’s private value, which may arise from entirely subjective considerations, such
as his preference for certain types of artistic objects or styles, or from potential profits
(for example, the auctioned object might be a license to operate a television channel).
This state of affairs motivates our additional assumption that each buyer i knows his
own private value vi but not the values that the other buyers attach to the object. This
does not, however, prevent him from assessing the private values of the other buyers, or
from believing that he knows their private values with some level of certainty.

� Each buyer i bids a price bi (presented to the auctioneer in a sealed envelope).
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� The winner of the object is the buyer who makes the highest bid. That may not be
surprising, but in contrast to the auctions most of us usually see, the winner does not
proceed to pay the bid he submitted. Instead he pays the second-highest price offered
(hence the name second-price auction). If several buyers bid the same maximal price,
a fair lottery is conducted between them to determine who will receive the object in
exchange for paying that amount (which in this case is also the second-highest price
offered.)

Let us take a concrete example. Suppose there are four buyers respectively bidding 5,
15, 2, and 21. The buyer bidding 21 is the winner, paying 15 in exchange for the object.
In general, the winner of the auction is a buyer i for which

bi = max
j∈N

bj . (4.10)

If buyer i is the winner, the amount he pays is maxj �=i bj . We now proceed to describe a
sealed-bid second-price auction as a strategic-form game:3

1. The set of players is the set N of buyers in the auction.
2. The set of strategies available to buyer i is the set of possible bids Si = [0,∞).
3. The payoff to buyer i, when the strategy vector is b = (b1, . . . , bn), is

ui(b) =
{

0 if bi < maxj∈N bj ,
vi−maxj �=i bj

|{k : bk=maxj∈N bj }| if bi = maxj∈N bj .
(4.11)

How should we expect a rational buyer to act in this auction? At first glance, this
appears to be a very difficult problem to solve, because no buyer knows the private values
of his competitors, let alone the prices they will bid. He may not even know how many
other buyers are participating in the auction. So what price bi will buyer i bid? Will he
bid a price lower than vi , in order to ensure that he does not lose money in the auction, or
higher than vi , in order to increase his probability of winning, all the while hoping that
the second-highest bid will be lower than vi? The process of rationalizability leads to the
following result:

Theorem 4.15 In a second-price sealed-bid auction, the strategy bi = vi weakly domi-
nates all other strategies.

In other words, under Assumptions 4.8, 4.10, and 4.13, the auction will proceed as
follows:

� Every buyer will bid bi = vi .
� The winner will be the buyer whose private valuation of the object is the highest.4 The

price paid by the winning buyer (i.e., the object’s sale price) is the second-highest private
value. If several buyers share the same maximal bid, one of them, selected randomly by
a fair lottery, will get the object, and will pay his private value (which in this special
case is also the second-highest bid, and his profit will therefore be 0).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 The relation between this auction method and other, more familiar, auction methods is discussed in Chapter 12.
4 This property is termed efficiency in the game theory and economics literature.
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vi

vi

B−i

u(bi, B−i)

Figure 4.18 The payoff function for strategy bi = vi

Each buyer knows his private value vi and therefore he also knows his payoff function.
Since buyers do not necessarily know each other’s private value, they do not necessarily
know each other’s payoff functions. Nevertheless, as we mentioned on page 91, the
concept of domination is defined also when a player does not know the other players’
payoff functions.

Proof: Consider a buyer i whose private value is vi . Divide the set of strategies available
to him, Si = [0,∞), into three subsets:

� The strategies in which his bid is less than vi : [0, vi).
� The strategy in which his bid is equal to vi : {vi}.
� The strategies in which his bid is higher than vi : (vi,∞).

We now show that strategy bi = vi dominates all the strategies in the other two subsets.
Given the procedure of the auction, the payment eventually made by buyer i depends

on the strategies selected by the other buyers, through their highest bid, and the number of
buyers bidding that highest bid. Denote the maximal bid put forward by the other buyers
by

B−i = max
j �=i

bj , (4.12)

and the number of buyers who offered this bid by

N−i =
∣∣∣∣{k �= i : bk = max

j �=i
bj

}∣∣∣∣ . (4.13)

The payoff function of buyer i, as a function of the strategy vector b (i.e., the vector of
all the bids made by the buyers) is

ui(b) =
⎧⎨⎩

0 if bi < B−i ,
vi−B−i

N−i+1 if bi = B−i ,

vi − B−i if bi > B−i .

(4.14)

Since the only dependence that the payoff function ui(b) has on the bids b−i of the
other buyers is via the highest bid, B−i , we sometimes denote this function by ui(bi, B−i).
If buyer i chooses strategy bi = vi , his payoff as a function of B−i is given in Figure 4.18.

If buyer i chooses strategy bi satisfying bi < vi , his payoff function is given by
Figure 4.19.
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vi

vi

bi

B−i

u(bi, B−i)

Figure 4.19 The payoff function for strategy bi < vi

vi

vi

bi
B−i

u(bi, B−i)

Figure 4.20 The payoff function for strategy bi > vi

The height of the dot in Figure 4.19, when bi = B−i , depends on the number of buyers
who bid B−i .

The payoff function in Figure 4.18 (which corresponds to the strategy bi = vi) is
(weakly) greater than the one in Figure 4.19 (corresponding to a strategy bi with bi <

vi). The former is strictly greater than the latter when bi ≤ B−i < vi . It follows that
strategy bi = vi dominates all strategies in which the bid is lower than buyer i’s private
value.

The payoff function for a strategy bi satisfying bi > vi is displayed in Figure 4.20.
Again, we see that the payoff function in Figure 4.18 is (weakly) greater than the payoff

function in Figure 4.20. The former is strictly greater than the latter when vi < B−i ≤ bi .
It follows that the strategy in which the bid is equal to the private value weakly dominates
all other strategies, as claimed. �

Theorem 4.15 holds also when some buyers do not know the number of buyers partici-
pating in the auction, their private values, their beliefs (about the number of buyers and the
private values of the other buyers), and their utility functions (for example, information
on whether the other players are risk seekers, risk averse, or risk neutral; see Section 2.7).
The only condition needed for Theorem 4.15 to hold is that each buyer know the rules of
the auction.
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4.7 The order of elimination of dominated strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we have argued, when only strictly dominated strategies are involved in a process
of iterated elimination, the result is independent of the order in which strategies are
eliminated (Exercise 4.10). In iterated elimination of weakly dominated strategies, the
result may be sensitive to the order of elimination. This phenomenon occurs for example
in the following game.

Example 4.16 Consider the strategic-form game that appears in Figure 4.21.

Player I

Player II

B

M

T

L C R

2, 1

2, 2

1, 2

0, 0

2, 1

2, 3

1, 0

3, 2

0, 3

Figure 4.21 A game in which the order of the elimination of dominated strategies influences the
yielded result

In the table below, we present three strategy elimination procedures, each leading to a different
result (verify!).

Order of elimination
from left to right Result Payoff

(1) T ,R,B,C ML 2, 2
(2) B,L,C, T MR 3, 2
(3) T ,C,R ML or BL 2, 2 or 2, 1

The last line shows that eliminating strategies in the order T ,C,R leaves two results ML and BL,
with no possibility for further elimination because Player I is indifferent between the two results.
This means that the order of elimination may determine not only the yielded strategy vector, but
also whether or not the process yields a single strategy vector. �

4.8 Stability: Nash equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Dominance is a very important concept in game theory. As we saw in the previous section,
it has several limitations, and it is insufficient for predicting a rational result in every game.
In this section we present another important principle, stability.

Consider the following two-player game in strategic form (Figure 4.22).
There is no dominance relationship between the strategies in this game. For example, if

we compare the strategies T and M of Player I, it turns out that neither of them is always
preferable to the other: M is better than T if Player II chooses L, and T is better than M if
Player II chooses C. In fact, M is the best reply of Player I to L, while T is his best reply
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Player I

Player II

B

M

T

CL R

3, 3

6, 0

0, 6

3, 3

0, 6

6, 0

5, 5

4, 3

4, 3

Figure 4.22 A two-player game with no dominated strategies

to C, and B is his best reply to R. Similarly, for Player II, L is the best reply to T and C

is the best reply to M , while strategy R is the best reply to B.
A player who knows the strategies used by the other players is in effect playing a game

in which only he is called upon to choose a strategy. If that player is rational, he will
choose the best reply to those strategies used by the other players. For example, in the
game in Figure 4.22:

� If Player II knows that Player I will choose T , he will choose L (his best reply to T ).
� If Player I knows that Player II will choose L, he will choose M (his best reply to L).
� If Player II knows that Player I will choose M , he will choose C (his best reply to M).
� If Player I knows that Player II will choose C, he will choose T (his best reply to C).
� If Player II knows that Player I will choose B, he will choose R (his best reply to B).
� If Player I knows that Player II will choose R, he will choose B (his best reply to R).

The pair of strategies (B, R) satisfies a stability property: each strategy in this pair is the
best reply to the other strategy. Alternatively, we can state this property in the following
way: assuming the players choose (B, R), neither player has a profitable deviation; that
is, under the assumption that the other player indeed chooses his strategy according to
(B, R), neither player has a strategy that grants a higher payoff than sticking to (B, R).
This stability property was defined by John Nash, who invented the equilibrium concept
that bears his name.

Definition 4.17 A strategy vector s∗ = (s∗1 , . . . , s∗n) is a Nash equilibrium if for each
player i ∈ N and each strategy si ∈ Si the following is satisfied:

ui(s∗) ≥ ui(si, s
∗
−i). (4.15)

The payoff vector u(s∗) is the equilibrium payoff corresponding to the Nash
equilibrium s∗.

The strategy ŝi ∈ Si is a profitable deviation of player i at a strategy vector s ∈ S

if ui (̂si, s−i) > ui(s). A Nash equilibrium is a strategy vector at which no player has a
profitable deviation.
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The Nash equilibrium is often simply referred to as an equilibrium, and sometimes as
an equilibrium point. As defined above, it says that no player i has a profitable unilateral
deviation from s∗. The Nash equilibrium can be equivalently expressed in terms of the
best-reply concept, which we first define.

Definition 4.18 Let s−i be a strategy vector of all the players not including player i.
Player i’s strategy si is termed a best reply to s−i if

ui(si, s−i) = max
ti∈Si

ui(ti, s−i). (4.16)

The next definition, based on the best-reply concept, is equivalent to the definition of
Nash equilibrium in Definition 4.17 (Exercise 4.15).

Definition 4.19 The strategy vector s∗ = (s∗1 , . . . , s∗n) is a Nash equilibrium if s∗i is a best
reply to s∗−i for every player i ∈ N .

In the example in Figure 4.22, the pair of strategies (B, R) is the unique Nash equilibrium
(verify!). For example, the pair (T , L) is not an equilibrium, because T is not a best reply
to L; Player I has a profitable deviation from T to M or to B. Out of all the nine strategy
pairs, (B, R) is the only equilibrium (verify!).

Social behavioral norms may be viewed as Nash equilibria. If a norm were not an
equilibrium, some individuals in society would find some deviation from that behavioral
norm to be profitable, and it would cease to be a norm.

A great deal of research in game theory is devoted to identifying equilibria and studying
the properties of equilibria in various games. One important research direction that has
been emerging in recent years studies processes (such as learning, imitation, or regret)
leading to equilibrium behavior, along with the development of algorithms for calculating
equilibria.

Example 4.11 The Prisoner’s Dilemma (continued) The Prisoner’s Dilemma is presented in the matrix in

Figure 4.23.

Player I

Player II

C

D

CD

0, 5

1, 1

4, 4

5, 0

Figure 4.23 The Prisoner’s Dilemma

The unique equilibrium is (D,D), in which both prisoners confess to the crime, resulting in
payoff (1, 1). Recall that this is the same result that is obtained by elimination of strictly dominated
strategies. �
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Example 4.20 Coordination game The game presented in Figure 4.24 is an example of a broad class of

games called “coordination games.” In a coordination game, it is in the interests of both players to
coordinate their strategies. In this example both (A, a) and (B, b) are equilibrium points. The equi-
librium payoff associated with (A, a) is (1, 1), and the equilibrium payoff of (B, b) is (3, 3). In both
cases, and for both players, the payoff is better than (0, 0), which is the payoff for “miscoordinated”
strategies (A, b) or (B, a).

Player I

Player II

B

A

ba

0, 0

1, 1

3, 3

0, 0

Figure 4.24 A coordination game
�

Example 4.21 Battle of the Sexes The game in Figure 4.25 is called the “Battle of the Sexes.”

Man

Woman

C

F

CF

1, 2

0, 0

0, 0

2, 1

Figure 4.25 Battle of the Sexes

The name of the game is derived from the following description. A couple is trying to plan
what they will be doing on the weekend. The alternatives are going to a concert (C) or watching
a football match (F ). The man prefers football and the woman prefers the concert, but both prefer
being together to being alone, even if that means agreeing to the less-preferred recreational pastime.

There are two equilibrium points: (F,F ) with a payoff of (2, 1) and (C,C) with a payoff of
(1, 2). The woman would prefer the strategy pair (C,C) while the man would rather see (F,F )
chosen. However, either one is an equilibrium. �

Example 4.22 The Security Dilemma The game illustrated in Figure 4.26 is also a coordination game

called the “Security Dilemma.” The game describes the situation involving the Union of Soviet
Socialist Republics (USSR, Player 1) and the United States (US, Player 2) after the Second World
War. Each of these countries had the capacity to produce nuclear weapons. The best outcome for
each country (4 utility units in the figure) was the one in which neither country had nuclear weapons,
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because producing nuclear weapons is expensive and possession of such weapons is liable to lead
to war with severe consequences. A less desirable outcome for each country (3 utility units in the
figure) is for it to have nuclear weapons while the other country lacks nuclear weapons. Even less
desirable for each country (2 utility units in the figure) is for both countries to have nuclear weapons.
The worst outcome for a country (1 utility unit in the figure) is for it to lack nuclear weapons while
the other country has nuclear weapons.

USSR

US

Produce
nuclear
weapons

Don’t
produce
nuclear
weapons

1, 3

2, 2

4, 4

3, 1

Don’t produce nuclear weapons

Produce nuclear weapons

Figure 4.26 The Security Dilemma

There are two Nash equilibria in this game: in one equilibrium neither country produces nuclear
weapons and in the other equilibrium both countries produce nuclear weapons. If the US believes
that the USSR is not going to produce nuclear weapons then it has no reason to produce nuclear
weapons, while if the US believes that the USSR is going to produce nuclear weapons then it would
be better off producing nuclear weapons. In the first equilibrium each country runs the risk that
the other country will produce nuclear weapons, but in the second equilibrium there is no such
risk: if the US does produce nuclear weapons then if the USSR also produces nuclear weapons
then the US has implemented the best strategy under the circumstances, while if the USSR does
not produce nuclear weapons then the outcome for the US has improved from 2 to 3. In other
words, the more desirable equilibrium for both players is also the more risky one. This is why this
game got the name the Security Dilemma. Some have claimed that the equilibrium under which
both countries produce nuclear weapons is the more reasonable equilibrium (and that is in fact
the equilibrium that has obtained historically). Note that the maxmin strategy of each country is
to produce nuclear weapons; that strategy guarantees a country implementing it at least 2, while
a country implementing the strategy of not producing nuclear weapons runs the risk of getting
only 1. �

Example 4.23 Cournot5 duopoly competition Two manufacturers, labeled 1 and 2, produce the same

product and compete for the same market of potential customers. The manufacturers simultaneously
select their production quantities, with demand determining the market price of the product, which
is identical for both manufacturers. Denote by q1 and q2 the quantities respectively produced by

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 Antoine Augustin Cournot, August 28, 1801–March 31, 1877, was a French philosopher and mathematician. In
his book Researches on the Mathematical Principles of the Theory of Wealth, published in 1838, he presented the
first systematic application of mathematical tools for studying economic theory. The book marks the beginning of
modern economic analysis.
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Manufacturers 1 and 2. The total quantity of products in the market is therefore q1 + q2. Assume
that when the supply is q1 + q2 the price of each item is 2 − q1 − q2. Assume also that the per-item
production cost for the first manufacturer is c1 > 0 and that for the second manufacturer it is c2 > 0.
Does there exist an equilibrium in this game? If so, what is it?

This is a two-player game (Manufacturers 1 and 2 are the players), and the strategy set of each
player is [0,∞). If Player 1 chooses strategy q1 and Player 2 chooses strategy q2, the payoff for
Player 1 is

u1(q1, q2) = q1(2 − q1 − q2) − q1c1 = q1(2 − c1 − q1 − q2), (4.17)

and the payoff for Player 2 is

u2(q1, q2) = q2(2 − q1 − q2) − q1c2 = q2(2 − c2 − q1 − q2). (4.18)

Player 1’s best reply to Player 2’s strategy q2 is the value q1 maximizing u1(q1, q2). The function
q1 #→ u1(q1, q2) is a quadratic function that attains its maximum at the point where the derivative
of the function is zero:

∂u1

∂q1
(q1, q2) = 0. (4.19)

Differentiating the right-hand side of Equation (4.17) yields the first-order condition 2 − c1 −
2q1 − q2 = 0, or

q1 = 2 − c1 − q2

2
. (4.20)

Similarly, Player 2’s best reply to Player 1’s strategy q1 is given by the point where the derivative
of u2(q1, q2) with respect to q2 is zero. Taking the derivative, we get

q2 = 2 − c2 − q1

2
. (4.21)

Solving equations (4.20) and (4.21) yields

q∗
1 = 2 − 2c1 + c2

3
, q∗

2 = 2 − 2c2 + c1

3
. (4.22)

A careful check indicates that this is an equilibrium (Exercise 4.24) and this is the only equilibrium
of the game. The payoffs to the players at equilibrium are

u1(q∗
1 , q∗

2 ) =
(

2 − 2c1 + c2

3

)2

= (q∗
1 )2, (4.23)

u2(q∗
1 , q∗

2 ) =
(

2 − 2c2 + c1

3

)2

= (q∗
2 )2. (4.24)

For example, if the two players have identical production costs c1 = c2 = 1, then the equilibrium

production quantities will be q∗
1 = q∗

2 = 1
3 , and the payoff to each player is

(
1
3

)2 = 1
9 . �

4.9 Properties of the Nash equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The Nash equilibrium is the most central and important solution concept for games in
strategic form or extensive form. To understand why, it is worthwhile to consider both the
advantages and limitations of Nash’s seminal concept.
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Player II

Player I
B

T

RL

3, 5

0, 0

0, 0

4, 2

Figure 4.27 A coordination game

4.9.1 Stability
The most important property expressed by the Nash equilibrium is stability: under Nash
equilibrium, each player acts to his best possible advantage with respect to the behavior of
the other players. Indeed, this would appear to be a requirement for any solution concept:
if there is to be any “expected” result (by any conceivable theory predicting the result of
a game), that result must be in equilibrium, because otherwise there will be at least one
player with a profitable deviation and the “expected” result will not materialize. From this
perspective, the Nash equilibrium is not a solution concept but rather a meta-solution: the
stability property is one that we would like every “expected” or “reasonable” solution to
exhibit.

4.9.2 A self-fulfilling agreement
Another way to express the property of stability is to require that if there is “agreement”
to play a particular equilibrium, then, even if the agreement is not binding, it will not
be breached: no player will deviate from the equilibrium point, because there is no way
to profit from any unilateral violation of the agreement. This appears to be particularly
convincing in games of coordination, as in the example in Figure 4.27.

This game has two Nash equilibria, (T , R) and (B, L), and it is reasonable to suppose
that if the players were to communicate they would “agree” (probably after a certain
amount of debate) to play one of them. The properties of the equilibrium concept imply
that whether they choose (T , R) or (B, L) they will both fulfill the agreement and not
deviate from it, because any unilateral deviation will bring about a loss to the deviator
(and to the other player).

4.9.3 Equilibrium and evolution
The principle of the survival of the fittest is one of the fundamental principles of Darwin’s
Theory of Evolution. The principle postulates that our world is populated by a multitude of
species of plants and animals, including many mutations, but only those whose inherited
traits are fitter than those of others to withstand the test of survival will pass on their
genes to posterity. For example, if an animal that has been endowed with certain inherited
characteristics has on average four offspring who manage to live to adulthood, while a
mutation of the animal with a different set of traits has on average only three offspring
living to adulthood, then, over several generations, the descendants of the first animal will
overwhelm the descendants of the mutation in absolute numbers.
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A picturesque way of expressing Darwin’s principle depicts an animal (or plant) being
granted the capacity of rational intelligence prior to birth and selecting the genetic traits
with which it will enter the world. Under that imaginary scenario we would expect the
animal (or plant) to choose those traits that grant the greatest possible advantages in the
struggle for survival. Animals, of course, are not typically endowed with rational thought
and no animal can choose its own genetic inheritance. What actually happens is that those
individuals born with traits that are a poor fit relative to the conditions for survival will pass
those same characteristics on to their progeny, and over time their numbers will dwindle.

In other words, the surviving and prevailing traits are a kind of “best reply” to the
environment – from which the relationship to the concept of Nash equilibrium follows.
Section 5.8 (page 186) presents in greater detail how evolutionary processes can be
modeled in game-theoretic terms and the role played by the Nash equilibrium in the
theory of evolution.

4.9.4 Equilibrium from the normative perspective
Consider the concept of equilibrium from the normative perspective of an arbitrator
or judge recommending a certain course of action (hopefully based on reasonable and
acceptable principles). In that case we should expect the arbitrator’s recommendation
to be an equilibrium point. Otherwise (since it is a recommendation and not a bind-
ing agreement) there will be at least one agent who will be tempted to benefit from
not following his end of the recommendation. Seeking equilibrium alone, however, is
not enough for the arbitrator to arrive at a decision. If, for example, there is more than
one equilibrium point, as in the coordination game in Figure 4.27, choosing between
them requires more considerations and principles. A rich literature, in fact, deals with
“refinements” of the concept of equilibrium, which seek to choose (or “invalidate”) cer-
tain equilibria within the set of all possible equilibria. This subject will be discussed in
Chapter 7.

Despite all its advantages, the Nash equilibrium is not the final be-all and end-all in the
study of strategic- or extensive-form games. Beyond the fact that in some games there is
no equilibrium and in others there may be a multiplicity of equilibria, even when there is
a single Nash equilibrium it is not always entirely clear that the equilibrium will be the
strategy vector that is “recommended” or “predicted” by a specific theory. There are many
who believe, for example, that the unique equilibrium of the Prisoner’s Dilemma does
not constitute a “good recommendation” or a “good prediction” of the outcome of the
game. We will later see additional examples in which it is unclear that an equilibrium will
necessarily be the outcome of a game (cf. the first example in Section 4.10, the repeated
Prisoner’s Dilemma in Example 7.15 (page 259), the Centipede game (Examples 7.16,
page 259), and Example 7.17 on page 261).

4.10 Security: the maxmin concept
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we have already pointed out, the concept of equilibrium, despite its advantages, does
not always describe the expected behavior of rational players, even in those cases where an
equilibrium exists and is unique. Consider, for example, the game described in Figure 4.28.
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Player I

Player II

B

M

T

RL

−100, 2

3, 0

2, 1

3, 3

−10, 1

2, −20

Figure 4.28 A game with a unique but “dangerous” equilibrium

The unique equilibrium in this game is (B, R), with a payoff of (3, 3). But thinking
this over carefully, can we really expect this result to obtain with high probability? One
can imagine Player I hesitating to choose B: what if Player II were to choose L (whether
by accident, due to irrationality, or for any other reason)? Given that the result (B, L)
is catastrophic for Player I, he may prefer strategy T , guaranteeing a payoff of only
2 (compared to the equilibrium payoff of 3), but also guaranteeing that he will avoid
getting −100 instead. If Player II is aware of this hesitation, and believes that there is
a reasonable chance that Player I will flee to the safety of T , he will also be wary of
choosing the equilibrium strategy R (and risking the −20 payoff), and will likely choose
strategy L instead. This, in turn, increases Player I’s motivation to choose T .

This underscores an additional aspect of rational behavior that exists to some extent in
the behavior of every player: guaranteeing the best possible result without “relying” on
the rationality of the other players, and even making the most pessimistic assessment of
their potential behavior.

So what can player i, in a general game, guarantee for himself? If he chooses strategy
si , the worst possible payoff he can get is

min
t−i∈S−i

ui(si, t−i). (4.25)

Player i can choose the strategy si that maximizes this value. In other words, disregarding
the possible rationality (or irrationality) of the other players, he can guarantee for himself
a payoff of

vi := max
si∈Si

min
t−i∈S−i

ui(si, t−i). (4.26)

The quantity vi is called the maxmin value of player i, which is sometimes also called the
player’s security level. A strategy s∗i that guarantees this value is called a maxmin strategy.
Such a strategy satisfies

min
t−i∈S−i

ui(s
∗
i , t−i) ≥ min

t−i∈S−i

ui(si, t−i), ∀si ∈ Si, (4.27)

which is equivalent to

ui(s
∗
i , t−i) ≥ vi, ∀t−i ∈ S−i . (4.28)
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Figure 4.29 The game in Figure 4.28 with the security value of each player

Remark 4.24 The definition of a game in strategic form does not include a requirement
that the set of strategies available to any of the players be finite. When the strategy set is
infinite, the minimum in Equation (4.25) may not exist for certain strategies si ∈ Si . Even
if the minimum in Equation (4.25) is attained for every strategy si ∈ Si , the maximum in
Equation (4.26) may not exist. It follows that when the strategy set of one or more players
is infinite, we need to replace the minimum and maximum in the definition of the maxmin
value by infimum and supremum, respectively:

vi := sup
si∈Si

inf
t−i∈S−i

ui(si, t−i). (4.29)

If the supremum is never attained there is no maxmin strategy: for each ε > 0 the player
can guarantee for himself at least vi − ε, but not at least vi .

A continuous function defined over a compact domain always attains a maximum and
a minimum. Moreover, when X and Y are compact sets in Rm and f : X × Y → R is a
continuous function, the function x #→ miny∈Y f (x, y) is also continuous (Exercise 4.22).
It follows that when the strategy sets of the players are compact and the payoff functions
are continuous, the maxmin strategies of the players are well defined. �

We will now proceed to calculate the value guaranteed by each strategy in the example
in Figure 4.28. In Figure 4.29, the numbers in the right-most column (outside the payoff
matrix) indicate the the worst payoff to Player I if he chooses the strategy of the corre-
sponding row. Similarly, the numbers in the bottom-most row (outside the payoff matrix)
indicate the worst payoff to Player II if he chooses the strategy of the corresponding
column. Finally, the oval contains the maxmin value of both players.

The maxmin value of Player I is 2 and the strategy that guarantees this value is T . The
maxmin value of Player II is 0 with maxmin strategy L. If the two players choose their
maxmin strategies, the result is (T , L) with payoff (2, 1), in which Player II’s payoff of 1
is greater than his maxmin value.

As the next example illustrates, a player may have several maxmin strategies. In such a
case, when the players use maxmin strategies the payoff depends on which strategies they
have chosen.
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Example 4.25 Consider the two-player game appearing in Figure 4.30.

Player I

Player II

B

T

RL

2, 3

3, 1

1, 1

0, 4

1

0

11 1, 1minsI 
∈ SI uII (sI, sII)

minsII 
∈ SII uI (sI, sII)

Figure 4.30 A game with the maxmin values of the players

The maxmin value of Player I is 1 and his unique maxmin strategy is B. The maxmin value of
Player II is 1, and both L and R are his maxmin strategies. It follows that when the two players
implement maxmin strategies the payoff might be (2, 3), or (1, 1), depending on which maxmin
strategy is implemented by Player II. �

We next explore the connection between the maxmin strategy and dominant strategies.

Theorem 4.26 A strategy of player i that dominates all his other strategies is a maxmin
strategy for that player. Such a strategy, furthermore, is a best reply of player i to any
strategy vector of the other players.

The proof of this theorem is left to the reader (Exercise 4.25). The theorem implies the
following conclusion.

Corollary 4.27 In a game in which every player has a strategy that dominates all of his
other strategies, the vector of dominant strategies is an equilibrium point and a vector of
maxmin strategies.

An example of this kind of game is a sealed-bid second-price auction, as we saw in
Section 4.6. The next theorem constitutes a strengthening of Corollary 4.27 in the case of
strict domination (for the proof see Exercise 4.26).

Theorem 4.28 In a game in which every player i has a strategy s∗i that strictly dominates
all of his other strategies, the strategy vector (s∗1 , . . . , s∗n) is the unique equilibrium point
of the game as well as the unique vector of maxmin strategies.

Is there a relation between the maxmin value of a player and his payoff in a Nash
equilibrium? As the next theorem states, the payoff of each player in a Nash equilibrium
is at least his maxmin value.

Theorem 4.29 Every Nash equilibrium σ ∗ of a strategic-form game satisfies ui(σ ∗) ≥ vi

for every player i.

Proof: For every strategy si ∈ Si we have

ui(si, s
∗
−i) ≥ min

s−i∈S−i

ui(si, s−i). (4.30)
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Since the definition of an equilibrium implies that ui(s∗) = maxsi∈Si
ui(si, s

∗
−i), we deduce

that

ui(s
∗) = max

si∈Si

ui(si, s
∗
−i) ≥ max

si∈Si

min
s−i∈S−i

ui(si, s−i) = vi, (4.31)

as required. �

4.11 The effect of elimination of dominated strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Elimination of dominated strategies was discussed in Section 4.5 (page 85). A natural
question that arises is how does the process of iterative elimination of dominated strategies
change the maxmin values and the set of equilibria of the game? We will show here that the
elimination of strictly dominated strategies has no effect on a game’s set of equilibria. The
iterated elimination of weakly dominated strategies can reduce the set of equilibria, but it
cannot create new equilibria. On the other hand, the maxmin value of any particular player
is unaffected by the elimination of his dominated strategies, whether those strategies are
weakly or strictly dominated.

Theorem 4.30 Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game, and let ŝj ∈ Sj

be a dominated strategy of player j . Let Ĝ be the game derived from G by the elimination
of strategy ŝj . Then the maxmin value of player j in Ĝ is equal to his maxmin value in G.

Proof: The maxmin value of player j in G is

vj = max
sj∈Sj

min
s−j∈S−j

uj (sj , s−j ), (4.32)

and his maxmin value in Ĝ is

v̂j = max
{sj∈Sj ,sj �=̂sj }

min
s−j∈S−j

uj (sj , s−j ). (4.33)

Let tj be a strategy of player j that dominates ŝj in G. Then the following is satisfied:

uj (̂sj , s−j ) ≤ uj (tj , s−j ), ∀s−j ∈ S−j , (4.34)

and therefore

min
s−j∈S−j

uj (̂sj , s−j ) ≤ min
s−j∈S−j

uj (tj , s−j ) ≤ max
{sj∈Sj ,sj �=̂sj }

min
s−j∈S−j

uj (sj , s−j ). (4.35)

This leads to the conclusion that

vj = max
sj∈Sj

min
s−j∈S−j

uj (sj , s−j ) (4.36)

= max

{
max

{sj∈Sj ,sj �=̂sj }
min

s−j∈S−j

uj (sj , s−j ), min
s−j∈S−j

uj (̂sj , s−j )

}
(4.37)

= max
{sj∈Sj ,sj �=̂sj }

min
s−j∈S−j

uj (sj , s−j ) = v̂j , (4.38)

which is what we wanted to prove. �
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Note that the elimination of a (strictly or weakly) dominated strategy of one player may
increase the maxmin values of other players (but not decrease them; see Exercise 4.27).

It follows that when calculating the maxmin value of player i we can eliminate his
dominated strategies, but we must not eliminate dominated strategies of other players,
since this may result in increasing player i’s maxmin value. Therefore, iterated elimination
of (weakly or strictly) dominated strategies may increase the maxmin value of some
players.

The next theorem states that if we eliminate some of the strategies of each player
(whether or not they are dominated), then every equilibrium of the original game (the
game prior to the elimination of strategies) is also an equilibrium of the game resulting
from the elimination process, provided that none of the strategies of that equilibrium were
eliminated.

Theorem 4.31 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, and let Ĝ =
(N, (Ŝi)i∈N, (ui)i∈N ) be the game derived from G through the elimination of some of the
strategies, namely, Ŝi ⊆ Si for each player i ∈ N . If s∗ is an equilibrium in game G, and
if s∗i ∈ Ŝi for each player i, then s∗ is an equilibrium in the game Ĝ.

Proof: Because s∗ is an equilibrium of the game G, it follows that for each player i,

ui(si, s
∗
−i) ≤ ui(s

∗), ∀si ∈ Si. (4.39)

Because Ŝi ⊆ Si for each player i ∈ N , it is the case that

ui(si, s
∗
−i) ≤ ui(s

∗), ∀si ∈ Ŝi . (4.40)

Because s∗ is a vector of strategies in the game Ĝ, we conclude that it is an equilibrium
of Ĝ. �

It should be noted that in general the post-elimination game Ĝ may contain new
equilibria that were not equilibria in the original game (Exercise 4.28). The next theorem
shows that this cannot happen if the eliminated strategies are weakly dominated – that
is, no new equilibria are created if a weakly dominated strategy of a particular player is
eliminated. Repeated application of the theorem then yields the fact that the process of
iterated elimination of weakly dominated strategies does not lead to the creation of new
equilibria (Corollary 4.33).

Theorem 4.32 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, let j ∈ N ,
and let ŝj ∈ Sj be a weakly dominated strategy of player j in this game. Denote by Ĝ the
game derived from G by the elimination of the strategy ŝj . Then every equilibrium of Ĝ is
also an equilibrium of G.

Proof: The strategy sets of the game Ĝ are

Ŝi =
{

Si if i �= j,

Sj \ {̂sj } if i = j.
(4.41)
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Let s∗ = (s∗i )i∈N be an equilibrium strategy vector of the game Ĝ. Then

ui(si, s
∗
−i) ≤ ui(s∗), ∀i �= j, ∀si ∈ Ŝi = Si, (4.42)

uj (sj , s
∗
−j ) ≤ uj (s∗), ∀sj ∈ Ŝj . (4.43)

To show that s∗ is an equilibrium of the game G we must show that no player i can profit
in G by deviating to a strategy that differs from s∗i . First we will show that this is true of
every player i, i �= j . Let i be a player who is not player j . Since Ŝi = Si , by Equation
(4.42) player i has no deviation from s∗i that is profitable for him. As for player j , Equation
(4.43) implies that he cannot profit from deviating to any strategy in Ŝj = Sj \ {̂sj }. It
only remains, then, to check that player j sees no gain from switching from strategy s∗j to
strategy ŝj .

Because ŝj is a dominated strategy, there exists a strategy tj ∈ Sj that dominates it. It
follows that tj �= ŝj , and in particular that tj ∈ Ŝj , so that

uj (̂sj , s−j ) ≤ uj (tj , s−j ), ∀s−j ∈ S−j . (4.44)

Inserting s−j = s∗−j in Equation (4.44) and sj = tj in Equation (4.43), we get

uj (̂sj , s
∗
−j ) ≤ uj (tj , s∗−j ) ≤ uj (s∗j , s

∗
−j ), (4.45)

which shows that deviating to strategy ŝj is indeed not profitable for player j . �

The following corollary (whose proof is left to the reader in Exercise 4.29) is implied
by Theorem 4.32.

Corollary 4.33 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, and let Ĝ

be the game derived from the game G by iterative elimination of dominated strategies.
Then every equilibrium s∗ of Ĝ is also an equilibrium of G. In particular, if the iterative
elimination results in a single vector s∗, then s∗ is an equilibrium of the game G.

Iterated elimination of dominated strategies, therefore, cannot create new equilibria.
However, as the next example shows, it can result in the loss of some of the equilibria
of the original game. This can happen even when there is only one elimination process
possible.

Example 4.34 Consider the two-player game given by the matrix in Figure 4.31.

Player I

Player II

B

T

RL

3, 2

0, 0

1, 2

2, 1

Figure 4.31 Elimination of dominated strategies may eliminate an equilibrium point
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The game has two equilibria: (T ,R) and (B,L). The only dominated strategy in the game is L

(dominated by R). The elimination of strategy L results in a game in which B is dominated,
and its elimination in turn yields the result (T ,R). Thus, the elimination of L also eliminates
the strategy vector (B,L) – an equilibrium point in the original game. The payoff corresponding
to the eliminated equilibrium is (3, 2), which for both players is preferable to (2, 1), the payoff
corresponding to (T ,R), the equilibrium of the post-elimination game. �

In fact, the iterative elimination of weakly dominated strategies can result in the elim-
ination of all the equilibria of the original game (Exercise 4.12). But this cannot happen
under iterative elimination of strictly dominated strategies, which preserves the set of
equilibrium points. That is the content of the following theorem.

Theorem 4.35 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, let j ∈ N , and
let ŝj ∈ Sj be a strictly dominated strategy of player j . Let Ĝ be the game derived from
G by the elimination of strategy ŝj . Then the set of equilibria in the game Ĝ is identical
to the set of equilibria of the game G.

Theorem 4.35 leads to the next corollary.

Corollary 4.36 A strictly dominated strategy cannot be an element of a game’s equilib-
rium.

The conclusion of the last corollary is not true for weakly dominated strategies. As can
be seen in Example 4.34, a weakly dominated strategy can be an element of an equilibrium.
Indeed, there are cases in which an equilibrium strategy vector s∗ is comprised of a weakly
dominated strategy s∗i for each player i ∈ N (Exercise 4.30).

Proof of Theorem 4.35 Denote by E the set of equilibria of the game G, and by Ê the
set of equilibria of the game Ĝ. Theorem 4.32 implies that Ê ⊆ E, because every strictly
dominated strategy is also a weakly dominated strategy. It remains to show that E ⊆ Ê.

Let s∗ ∈ E be an equilibrium of the game G. To show that s∗ ∈ Ê, we will show that
s∗ is a strategy vector in the game Ĝ, which by Theorem 4.31 then implies that s∗ ∈ Ê.
As the game Ĝ was derived from the game G by elimination of player j ’s strategy ŝj , it
suffices to show that s∗j �= ŝj . Strategy ŝj is strictly dominated in the game G, so that there
exists a strategy tj ∈ Sj that strictly dominates it:

uj (̂sj , s−j ) < uj (tj , s−j ), ∀s−j ∈ S−j . (4.46)

Because s∗ is an equilibrium point, by setting s−j = s∗−j in Equation (4.46) we get

uj (̂sj , s
∗
−j ) < uj (tj , s∗−j ) ≤ ui(s∗j , s

∗
−j ), (4.47)

thus yielding the conclusion that ŝj �= s∗j , which is what we needed to show. �
When we put together Corollary 4.33 and Theorem 4.35, the following picture emerges:

in implementing a process of iterated elimination of dominated strategies we may lose
equilibria, but no new equilibria are created. If the elimination is of only strictly dominated
strategies, the set of equilibria remains unchanged throughout the process. In particular, if
the process of eliminating strictly dominated strategies results in a single strategy vector,
this strategy vector is the unique equilibrium point of the original game (because it is
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the equilibrium of the game at the end of the process in which each player has only
one strategy remaining). The uniqueness of the equilibrium constitutes a strengthening of
Corollary 4.33 in the case in which only strictly dominated strategies are eliminated.

Corollary 4.37 If iterative elimination of strictly dominated strategies yields a unique
strategy vector s∗, then s∗ is the unique Nash equilibrium of the game.

In summary, to find a player’s maxmin values we can first eliminate his (strictly or
weakly) dominated strategies. In implementing this elimination process we may eliminate
some of his maxmin strategies and also change the maxmin values of some other players.
For finding equilibria we can also eliminate strictly dominated strategies without changing
the set of equilibria of the game. Elimination of weakly dominated strategies may eliminate
some equilibria of the game. The process of iterated elimination of weakly dominated
strategies is useful for cases in which finding all equilibrium points is a difficult problem
and we can be content with finding at least one equilibrium.

4.12 Two-player zero-sum games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we have seen, the Nash equilibrium and the maxmin are two different concepts that
reflect different behavioral aspects: the first is an expression of stability, while the second
captures the notion of security. Despite the different roots of the two concepts, there are
cases in which both lead to the same results. A special case where this occurs is in the
class of two-player zero-sum games, which is the subject of this section.

In a given two-player game, denote, as we have done so far, the set of players by
N = {I, II} and the set of strategies respectively by SI and SII.

Example 4.38 Consider the two-player game appearing in Figure 4.32.

Player I

Player II

B

M

T

CL R

6, −6

1, −1

3, −3

−3, 3

4, −4

−5, 5

−5, 5

1, −1

−2, 2

−5

1

−5

−6 −4 −1 1, −1minsI 
∈ SI uII (sI, sII)

minsII 
∈ SII uI (sI, sII)

Figure 4.32 A two-player zero-sum game

In this example, vI = 1 and vII = −1. The maxmin strategy of Player I is M and that of Player II
is R. The strategy pair (M,R) is also the equilibrium of this game (check!). In other words, here we
have a case where the vector of maxmin strategies is also an equilibrium point: the two concepts
lead to the same result. �
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In the game in Example 4.38, for each pair of strategies the sum of the payoffs that
the two players receive is zero. In other words, in any possible outcome of the game the
payoff one player receives is exactly equal to the payoff the other player has to pay.

Definition 4.39 A two-player game is a zero-sum game if for each pair of strategies
(sI, sII) one has

uI(sI, sII) + uII(sI, sII) = 0. (4.48)

In other words, a two-player game is a zero-sum game if it is a closed system from the
perspective of the payoffs: each player gains what the other player loses. It is clear that in
such a game the two players have diametrically opposed interests.

Remark 4.40 As we saw in Chapter 2, assuming that the players have von Neumann–
Morgenstern linear utilities, any player’s utility function is determined only up to a
positive affine transformation. Therefore, if the payoffs represent the players’ utilities
from the various outcomes of the game, then they are determined up to a positive affine
transformation. Changing the representation of the utility function of the players can
then transform a zero-sum game into a non-zero-sum game. We will return to this issue
in Section 5.5 (page 172); it will be proved there that the results of this chapter are
independent of the particular representation of utility functions, and they hold true in
two-player non-zero-sum games that are obtained from two-player zero-sum games by
applying positive affine transformations to the players’ payoffs. �

Most real-life situations analyzed using game theory are not two-player zero-sum
games, because even though the interests of the players diverge in many cases, they are
often not completely diametrically opposed. Despite this, two-player zero-sum games
have a special importance that justifies studying them carefully, as we do in this section.
Here are some of the reasons:

1. Many classical games, such as chess, backgammon, checkers, and a plethora of dice
games, are two-player zero-sum games. These were the first games to be studied
mathematically and the first to yield formal results, results that spawned and shaped
game theory as a young field of study in the early part of the twentieth century.

2. Given their special and highly restrictive properties, these games are generally simpler
and easier to analyze mathematically than many other games. As is usually the case
in mathematics, this makes them convenient objects for the initial exploration of ideas
and possible directions for research in game theory.

3. Because of the fact that two-player zero-sum games leave no room for cooperation
between the players, they are useful for isolating certain aspects of games and checking
which results stem from cooperative considerations and which stem from other aspects
of the game (information flows, repetitions, and so on).

4. In every situation, no matter how complicated, a natural benchmark for each player is
his “security level”: what he can guarantee for himself based solely on his own efforts,
without relying on the behavior of other players. In practice, calculating the security
level means assuming a worst-case scenario in which all other players are acting as an
adversary. This means that the player is considering an auxiliary zero-sum game, in
which all the other players act as if they were one opponent whose payoff is the opposite
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Figure 4.33 The payoff function u of the zero-sum game in Example 4.38

of his own payoff. In other words, even when analyzing a game that is non-zero-sum,
the analysis of auxiliary zero-sum games can prove useful.

5. Two-player zero-sum games emerge naturally in other models. One example is games
involving only a single player, which are often termed decision problems. They involve
a decision maker choosing an action from among a set of alternatives, with the resultant
payoff dependent both on his choice of action and on certain, often unknown, parameters
over which he has no control. To calculate what the decision maker can guarantee for
himself, we model the player’s environment as if it were a second player who controls
the unknown parameters and whose intent is to minimize the decision maker’s payoff.
This in effect yields a two-player zero-sum game. This approach is used in statistics,
and we will return to it in Section 14.8 (page 600).

Let us now turn to the study of two-player zero-sum games. Since the payoffs uI and uII

satisfy uI + uII = 0, we can confine our attention to one function, uI = u, with uII = −u.
The function u will be termed the payoff function of the game, and it represents the
payment that Player II makes to Player I. Note that this creates an artificial asymmetry
(albeit only with respect to the symbols being used) between the two players: Player I,
who is usually the row player, seeks to maximize u(s) (his payoff) and Player II, who is
usually the column player, is trying to minimize u(s), which is what he is paying (since
his payoff is −u(s)).

The game in Example 4.38 (page 110) can therefore be represented as shown in
Figure 4.33.

The game of Matching Pennies (Example 3.20, page 52) can also be represented as a
zero-sum game (see Figure 4.34).

Consider now the maxmin values of the players in a two-player zero-sum game.
Player I’s maxmin value is given by

vI = max
sI∈SI

min
sII∈SII

u(sI, sII), (4.49)

and Player II’s maxmin value is

vII = max
sII∈SII

min
sI∈SI

(−u(sI, sII)) = − min
sII∈SII

max
sI∈SI

u(sI, sII). (4.50)
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Figure 4.34 The payoff function u of the game Matching Pennies
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Figure 4.35 A game in strategic form with the maxmin and minmax values

Denote

v := max
sI∈SI

min
sII∈SII

u(sI, sII), (4.51)

v := min
sII∈SII

max
sI∈SI

u(sI, sII). (4.52)

The value v is called the maxmin value of the game, and v is called the minmax value.
Player I can guarantee that he will get at least v, and Player II can guarantee that he will
pay no more than v. A strategy of Player I that guarantees v is termed a maxmin strategy.
A strategy of Player II that guarantees v is called a minmax strategy.

We next calculate the maxmin value and minmax value in various examples of games.
In Example 4.38, v = 1 and v = 1. In other words, Player I can guarantee that he will get
a payoff of at least 1 (using the maxmin strategy M), while Player II can guarantee that
he will pay at most 1 (by way of the minmax strategy R).

Consider the game shown in Figure 4.35. In this figure we have indicated on the right of
each row the minimal payoff that the corresponding strategy of Player I guarantees him.
Beneath each column we have indicated the maximal amount that Player II will pay if he
implements the corresponding strategy.

In this game v = 0 but v = 3. Player I cannot guarantee that he will get a payoff
higher than 0 (which he can guarantee using his maxmin strategy B) and Player II
cannot guarantee that he will pay less than 3 (which he can guarantee using his minmax
strategy L).

Finally, look again at the game of Matching Pennies (Figure 4.36).
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Figure 4.36 Matching Pennies with the maxmin and minmax values

In this game, v = −1 and v = 1. Neither of the two players can guarantee a result that
is better than the loss of one dollar (the strategies H and T of Player I are both maxmin
strategies, and the strategies H and T of Player II are both minmax strategies).

As these examples indicate, the maxmin value v and the minmax value v may be
unequal, but it is always the case that v ≤ v. The inequality is clear from the definitions
of the maxmin and minmax: Player I can guarantee that he will get at least v, while
Player II can guarantee that he will not pay more than v. As the game is a zero-sum game,
the inequality v ≤ v must hold. A formal proof of this fact can of course also be given
(Exercise 4.34).

Definition 4.41 A two-player game has a value if v = v. The quantity v := v = v is then
called the value of the game.6 Any maxmin and minmax strategies of Player I and Player II
respectively are then called optimal strategies.

Consider again the game shown in Figure 4.33. This game has a value equal to 1.
Player I can guarantee that he will get at least 1 for himself by selecting the optimal
strategy M , and Player II can guarantee that he will not pay more than 1 by choosing the
optimal strategy R. Note that the strategy pair (M, R) is also a Nash equilibrium.

Another example of a game that has a value is the game of chess, assuming that
if the play does not end after a predetermined number of moves, it terminates in a
draw. We do not know what that value is, but the existence of a value follows from
Theorem 1.4 (page 3). Since it is manifestly a two-player game in which the interests
of the players are diametrically opposed, we describe chess as a zero-sum game where
White is the maximizer and Black is the minimizer by use of the following payoff
function:

u(White wins) = 1,

u(Black wins) = −1, (4.53)

u(Draw) = 0.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 The value of a game is sometimes also called the minmax value of the game.
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Theorem 1.4 (page 3) implies that one and only one of the following must occur:

(i) White has a strategy guaranteeing a payoff of 1.
(ii) Black has a strategy guaranteeing a payoff of −1.

(iii) Each of the two players has a strategy guaranteeing a payoff of 0; that is, White
can guarantee a payoff in the set {0, 1}, and Black can guarantee a payoff in the set
{0,−1}.

If case (i) holds, then v ≥ 1. As the maximal payoff is 1, it must be true that v ≤ 1.
Since we always have v ≤ v, we deduce that 1 ≤ v ≤ v ≤ 1, which means that v = v = 1.
Thus, the game has a value and v = v = 1 is its value.

If case (ii) holds, then v ≤ −1. Since the minimal payoff is −1, it follows that v ≥ −1.
Hence −1 ≤ v ≤ v ≤ −1, leading to v = v = −1, and the game has a value of −1.

Finally, suppose case (iii) holds. Then v ≥ 0 and v ≤ 0. So 0 ≤ v ≤ v ≤ 0, leading to
v = v = 0, and the game has a value of 0.

Note that in chess each pair of optimal strategies is again a Nash equilibrium. For
example, if case (i) above holds, then White’s strategy is optimal if and only if it is
a winning strategy. On the other hand, any strategy of Black guarantees him a payoff
of at least −1 and therefore all his strategies are optimal. Every pair consisting of a
winning strategy for White and any strategy for Black is an equilibrium. Since White
can guarantee victory for himself, he certainly has no profitable deviation; since Black
will lose no matter what, no deviation is strictly profitable for him either. The following
conclusion has therefore been proved.

Corollary 4.42 The game of chess has a value that is either 1 (if case (i) holds), or −1
(if case (ii) holds), or 0 (if case (iii) holds).

The following theorem can be proven in the same way that Theorem 3.13 (page 46)
was proved. Later in this book, a more general result is shown to be true, for games that
are not zero-sum (see Theorem 4.49 on page 118).

Theorem 4.43 Every finite two-player zero-sum extensive-form game with perfect infor-
mation has a value.

In every example we have considered so far, every zero-sum game with a value also
has an equilibrium. The following two theorems establish a close relationship between
the concepts of the value and of Nash equilibrium in two-player zero-sum games.

Theorem 4.44 If a two-player zero-sum game has a value v, and if s∗I and s∗II are optimal
strategies of the two players, then s∗ = (s∗I , s∗II) is an equilibrium with payoff (v,−v).

Theorem 4.45 If s∗ = (s∗I , s∗II) is an equilibrium of a two-player zero-sum game, then
the game has a value v = u(s∗I , s∗II), and the strategies s∗I and s∗II are optimal strategies.

Before we prove Theorems 4.44 and 4.45, we wish to stress that these theorems show
that in two-player zero-sum games the concept of equilibrium, which is based on stability,
and the concept of minmax, which is based on security levels, coincide. If security level
considerations are important factors in determining players’ behavior, one may expect
that the concept of equilibrium will have greater predictive power in two-player zero-sum
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games (where equilibrium strategies are also minmax strategies) than in more general
games in which the two concepts lead to different predictions regarding players’ behavior.

Note that despite the fact that the strategic form of the game is implicitly a simulta-
neously played game in which each player, in selecting his strategy, does not know the
strategy selected by the other player, if the game has a value then each player can reveal
the optimal strategy that he intends to play to the other player and still guarantees his
maxmin value. Suppose that s∗I is an optimal strategy for Player I in a game with value v.
Then

min
sII∈SII

u(s∗I , sII) = v, (4.54)

and therefore for each sII ∈ SII the following inequality is satisfied:

u(s∗I , sII) ≥ v. (4.55)

In other words, even if Player I were to “announce” to Player II that he intends to
play s∗I , Player II cannot bring about a situation in which the payoff (to Player I) will be
less than the value. This simple observation has technical implications for the search for
optimal strategies: in order to check whether or not a particular strategy, say of Player I,
is optimal, we check what it can guarantee, that is, what the payoff will be when Player II
knows that this is the strategy chosen by Player I and does his best to counter it.

Proof of Theorem 4.44: From the fact that both s∗I and s∗II are optimal strategies, we
deduce that

u(s∗I , sII) ≥ v, ∀sII ∈ SII, (4.56)

u(sI, s
∗
II) ≤ v, ∀sI ∈ SI. (4.57)

Inserting sII = s∗II into Equation (4.56) we deduce u(s∗I , s∗II) ≥ v, and inserting sI = s∗I
into Equation (4.57) we get u(s∗I , s∗II) ≤ v. The equation v = u(s∗I , s∗II) follows. Equations
(4.56) and (4.57) can now be written as

u(s∗I , sII) ≥ u(s∗I , s∗II), ∀sII ∈ SII, (4.58)

u(sI, s
∗
II) ≤ u(s∗I , s∗II), ∀sI ∈ SI, (4.59)

and therefore (s∗I , s∗II) is an equilibrium with payoff (v,−v). �
Proof of Theorem 4.45: Since (s∗I , s∗II) is an equilibrium, no player can benefit by a
unilateral deviation:

u(sI, s
∗
II) ≤ u(s∗I , s∗II), ∀sI ∈ SI (4.60)

u(s∗I , sII) ≥ u(s∗I , s∗II), ∀sII ∈ SII. (4.61)

Let v = u(s∗I , s∗II). We will prove that v is indeed the value of the game. From Equation
(4.60) we get

u(s∗I , sII) ≥ v, ∀sII ∈ SII, (4.62)

and therefore v ≥ v. From Equation (4.60) we deduce that

u(sI, s
∗
II) ≤ v, ∀sI ∈ SI, (4.63)



117 4.12 Two-player zero-sum games

Player I

Player II

B

A

ba

0, 0

1, 1

3, 3

0, 0

Figure 4.37 Coordination game

and therefore v ≤ v. Because it is always the case that v ≤ v we get

v ≤ v ≤ v ≤ v, (4.64)

which implies that the value exists and is equal to v. Furthermore, from Equation (4.62)
we deduce that s∗I is an optimal strategy for Player I, and from Equation (4.63) we deduce
that s∗II is an optimal strategy for Player II. �

Corollary 4.46 In a two-player zero-sum game, if (s∗I , s∗II) and (s∗∗I , s∗∗II ) are two equilib-
ria, then it follows that

1. Both equilibria yield the same payoff: u(s∗I , s∗II) = u(s∗∗I , s∗∗II ).
2. Both (s∗I , s∗∗II ) and (s∗∗I , s∗II) are also equilibria (and, given the above, they also yield

the same payoff).

Proof: The first part follows from Theorem 4.45, because the payoff of each one of the
equilibria is necessarily equal to the value of the game. For the second part, note that
Theorem 4.45 implies that all the strategies s∗I , s∗∗I , s∗II, s

∗∗
II are optimal strategies. By

Theorem 4.44 we conclude that (s∗I , s∗∗II ) and (s∗∗I , s∗II) are equilibria. �

Neither of the two conclusions of Corollary 4.46 is necessarily true in a two-player
game that is not zero-sum. Consider, for example, the coordination game in Example
4.20, shown in Figure 4.37.

(A, a) and (B, b) are two equilibria with different payoffs (thus, the first part of
Corollary 4.46 does not hold in this example) and (A, b) and (B, a) are not equilibria
(thus the second part of the corollary does not hold).

The most important conclusion to take away from this section is that in two-player
zero-sum games the value and Nash equilibrium, two different solution concepts, actually
coincide and lead to the same results. Put another way, in two-player zero-sum games, the
goals of security and stability are unified. John Nash regarded his concept of equilibrium
to be a generalization of the value. But while the concept of the value expresses both the
aspects of security and stability, the Nash equilibrium expresses only the aspect of stability.
In games that are not zero-sum games, security and stability are different concepts, as we
saw in the game depicted in Figure 4.28.

There is a geometric interpretation to the value of a two-player zero-sum game, which
finds expression in the concept of the saddle point.
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Definition 4.47 A pair of strategies (s∗I , s∗II) is a saddle point of the function u : SI × SII →
R if

u(s∗I , s∗II) ≥ u(sI, s
∗
II), ∀sI ∈ SI, (4.65)

u(s∗I , s∗II) ≤ u(s∗I , sII), ∀sII ∈ SII. (4.66)

In other words, u(s∗I , s∗II) is the highest value in column s∗II, and the smallest in the
row s∗I .

The name “saddle point” stems from the shape of a horse’s saddle, whose center is
perceived to be the minimal point of the saddle from one direction and the maximal point
from the other direction.

The proof of the next theorem is left to the reader (Exercise 4.36).

Theorem 4.48 In a two-player zero-sum game, (s∗I , s∗II) is a saddle point of the payoff
function u if and only if s∗I is an optimal strategy for Player I and s∗II is an optimal strategy
for Player II. In that case, u(s∗I , s∗II) is the value of the game.

4.13 Games with perfect information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we have shown, there are games in which there exists no Nash equilibrium. These
games will be treated in Chapter 5. In this section we focus instead on a large class of
widely applicable games that all have Nash equilibria. These games are best characterized
in extensive form. We will show that if an extensive-form game satisfies a particular
characteristic, then it always has a Nash equilibrium. Furthermore, there are even equilibria
that can be calculated directly from the game tree, without requiring that the game first
be transformed into strategic form. Because it is often more convenient to work directly
with the extensive form of a game, this way of calculating equilibria has a significant
advantage.

In this section we study extensive-form games with perfect information. Recall that an
extensive-form game is of perfect information if every information set of every player
consists of only one vertex.

Theorem 4.49 (Kuhn) Every finite game with perfect information has at least one Nash
equilibrium.

Kuhn’s Theorem constitutes a generalization of Theorem 4.43, which states that every
two-player zero-sum game with perfect information has a value. The proof of the theorem
is similar to the proof of Theorem 1.4 (page 3), and involves induction on the number
of vertices in the game tree. Every child of the root of a game tree defines a subgame
containing fewer vertices than the original game (a fact that follows from the assumption
that the game has perfect recall) and the induction hypothesis then implies that the
subgame has an equilibrium. Choose one equilibrium for each such subgame. If the root
of the original game involves a chance move, then the union of the equilibria of all the
subgames defines an equilibrium for the entire game. If the root involves a decision taken
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Figure 4.38 The game tree and subgames starting at the children of the root

by player i, then that player will survey the subgames that will be played (one for each child
that he may choose), calculate the payoff he will receive under the chosen equilibrium in
each of those subgames, and choose the vertex leading to the subgame that grants him the
maximal payoff. These intuitive ideas will now be turned into a formal proof.

Proof of Theorem 4.49: It is convenient to assume that if a player in any particular game
has no action available in any vertex in the game tree, then his strategy set consists of a
single strategy denoted by ∅.

The proof of the theorem is by induction on the number of vertices in the game tree. If the
game tree is comprised of a single vertex, then the unique strategy vector is (∅, . . . , ∅) (so
a fortiori there are no available deviations), and it is therefore the unique Nash equilibrium.

Assume by induction that the claim is true for each game in extensive form containing
fewer than K vertices, and consider a game � with K vertices. Denote by x1, . . . , xL the
children of the root v0, and by �(xl) the subgame whose root is xl and whose vertices
are those following xl in the tree (see Figure 4.38). Because the game is one with perfect
information, �(xl) is indeed a subgame. If we had not assumed this then �(xl) would not
necessarily be a subgame, because there could be an information set containing vertices
that are descendants of both xl1 and xl2 (where l1 �= l2) and we would be unable to make
use of the induction hypothesis.

The payoff functions of the game � are, as usual, ui : ×i∈N Si → R. For each l ∈
1, 2, . . . , L, the payoff functions in the subgame �(xl) are ul

i : ×i∈N Sl
i → R, where Sl

i

is player i’s set of strategies in the subgame �(xl).
For any l ∈ {1, . . . , L}, the root v0 of the original game � is not a vertex of �(xl),

and therefore the number of vertices in �(xl) is less than K . By the induction hypothesis,
for each l ∈ {1, 2, . . . , L} the game �(xl) has an equilibrium s∗l = (s∗li )i∈N (if there are
several such equilibria we arbitrarily choose one of them).



120 Strategic-form games

Case 1: The root v0 is a chance move.
For each l ∈ {1, 2, . . . , L} denote by pl the probability that child xl is chosen. For each
player i consider the strategy s∗i in the game � defined as follows. If vertex xl is chosen
in the first move of the play of the game, implement strategy s∗li in the subgame �(xl). By
definition it follows that ui(s∗) = ∑L

l=1 plul
i(s

∗l).
We will show that the strategy vector s∗ = (s∗i )i∈N is a Nash equilibrium. Suppose

that player j deviates to a different strategy sj . Let sl
j be the restriction of sj to the

subgame �(xl). The expected payoff to player j under the strategy vector (sl
j , s

∗l
−j ) is∑L

l=1 plul
j (sl

j , s
∗l
−j ).

Since s∗l is an equilibrium of �(xl), ul
j (sl

j , s
∗l
−j ) ≤ ul

j (s∗l) for all l = 1, . . . , L, and
therefore

uj (sj , s
∗
−j ) =

L∑
l=1

plul
j

(
sl
j , s

∗l
−j

) ≤ L∑
l=1

plul
j (s∗l) = uj (s∗). (4.67)

In other words, player j does not profit by deviating from s∗j to sj . Since this holds true
for every player j ∈ N , the strategy vector s∗ is indeed a Nash equilibrium.

Case 2: The root is a decision vertex for player i0.
We first define a strategy vector s∗ = (s∗i )i∈N and then show that it is a Nash equilibrium.
For each player i, i �= i0, consider the strategy s∗i defined as follows. If vertex xl is chosen
in the first move of the play of the game, in the subgame �(xl) implement strategy s∗li .
For player i0 define the following strategy s∗i0 : at the root choose the child xl0 at which the
maximum max1≤l≤L ul

i(s
∗l) is attained. For each l ∈ {1, 2, . . . , L}, in the subgame �(xl)

implement7 the strategy s∗li . The payoff under the strategy vector s∗ = (s∗i )i∈N is ul0 (s∗l0 ).
The proof that each player i, except for player i0, cannot profit from a deviation from

s∗i is similar to the proof in Case 1 above. We will show that player i0 also cannot profit
by deviating from s∗i0 , thus completing the proof that the strategy vector s∗ is a Nash
equilibrium.

Suppose that player i0 deviates by selecting strategy si0 . Let xl̂ be the child of the root
selected by this strategy, and for each child xl of the root let sl

i0
be the strategy si0 restricted

to the subgame �(xl).

� If l̂ = l0, since s∗l0 is an equilibrium of the subgame �(xl0 ), the payoff to player i0 is

ui0 (si0, s
∗
−i0

) = u
l0
i0

(
s
l0
i0
, s

∗l0
−i0

)
≤ u

l0
i0

(s∗l0 ) = ui0 (s∗). (4.68)

In other words, the deviation is not a profitable one.
� If l̂ �= l0, since s ∗̂l is an equilibrium of the subgame �(xl̂) and using the definition of l0

we obtain

ui0 (si0, s
∗
−i0

) = ûl
i0

(
sl̂
i0
, s ∗̂l−i0

)
≤ ûl

i0
(s∗̂l) ≤ u

l0
i (s∗l0 ) = ui0 (s∗). (4.69)

This too is not a profitable deviation, which completes the proof. �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Since defining a strategy requires defining how a player plays at each node at which he chooses an action, we also
need to define s∗i0 in the subgames �(xl) which the first move of the play of the game does not lead to (l �= l0).
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Remark 4.50 In the course of the last proof, we proceeded by induction from the root
to its children and beyond. This is called forward induction. We can prove the theorem by
backward induction, as follows. Let x be a vertex all of whose children are leaves. Since
the game has perfect recall, the player choosing an action at vertex x knows that the play
of the game has arrived at that vertex (and not at a larger information set containing x)
and he therefore chooses the leaf l giving him the maximal payoff. We can imagine erasing
the leaves following x and thus turning x into a leaf with a payoff equal to the payoff of
l. The resulting game tree has fewer vertices than the original tree, so we can apply the
induction hypothesis to it. The reader is asked to complete this proof in Exercise 4.39.
This process is called backward induction. It yields a practical algorithm for finding an
equilibrium in finite games with perfect information: start at vertices leading immediately
to leaves. Assuming the play of the game gets to such a vertex, the player at that vertex
will presumably choose the leaf granting him the maximal payoff (if there are two or
more such vertices, the player may arbitrarily choose any one of them). We then attach
that payoff to such a vertex. If one of these vertices is the vertex of a chance move, the
payoff at that vertex is the expectation of the payoff at the leaf reached by the chance
move. From here we proceed in stages: at each stage, we attach payoffs to vertices leading
immediately to vertices that had payoffs attached to them in previous stages. At each such
vertex, the player controlling that vertex will make a selection leading to the maximal
possible payoff to him, and that is the payoff associated with the vertex. We continue by
this process to climb the tree until we reach the root. In some cases this process leads to
multiple equilibria. As shown in Exercise 4.40 some equilibria cannot be obtained by this
process. �

4.14 Games on the unit square
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we analyze two examples of two-player games in which the set of strategies
is infinite, namely, the unit interval [0, 1]. These examples will be referred to in Chapter
5, where we introduce mixed strategies.

4.14.1 A two-player zero-sum game on the unit square
Consider the two-player zero-sum strategic-form game in which:8

� the strategy set of Player I is X = [0, 1];
� the strategy set of Player II is Y = [0, 1];
� the payoff function (which is what Player II pays Player I) is

u(x, y) = 4xy − 2x − y + 3, ∀x ∈ [0, 1], ∀y ∈ [0, 1]. (4.70)

This game is called a game on the unit square, because the set of strategy vectors is the
unit square in R2. We can check whether or not this game has a value, and if it does, we

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 In games on the unit square it is convenient to represent a strategy as a continuous variable, and we therefore denote
player strategies by x and y (rather than sI and sII), and the sets of strategies are denoted by X and Y respectively
(rather than SI and SII).
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Figure 4.39 The function x #→ miny∈[0,1] u(x, y)

can identify optimal strategies for the two players, as follows. First we calculate

v = max
x∈[0,1]

min
y∈[0,1]

u(x, y), (4.71)

and

v = min
y∈[0,1]

max
x∈[0,1]

u(x, y), (4.72)

and check whether or not they are equal. For each x ∈ [0, 1],

min
y∈[0,1]

u(x, y) = min
y∈[0,1]

(4xy − 2x − y + 3) = min
y∈[0,1]

(y(4x − 1) − 2x + 3). (4.73)

For each fixed x, this is a linear function in y, and therefore the point at which the
minimum is attained is determined by the slope 4x − 1: if the slope is positive the
function is increasing and the minimum is attained at y = 0; if the slope is negative this is
a decreasing function and the minimum is attained at y = 1; if the slope is 0 the function
is constant in y and every point is a minimum point. This leads to the following (see
Figure 4.39):

min
y∈[0,1]

u(x, y) =
{

2x + 2 if x ≤ 1
4 ,

−2x + 3 if x ≥ 1
4 .

(4.74)

This function of x attains a unique maximum at x = 1
4 , and its value there is 2 1

2 .
Therefore,

v = max
x∈[0,1]

min
y∈[0,1]

u(x, y) = 2 1
2 . (4.75)

We similarly calculate the following (see Figure 4.40):

max
x∈[0,1]

u(x, y) = max
x∈[0,1]

(4xy − 2x − y + 3) = max
x∈[0,1]

(x(4y − 2) − y + 3) (4.76)

=
{−y + 3 if y ≤ 1

2 ,

3y + 1 if y ≥ 1
2 .

(4.77)
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Figure 4.40 The function y #→ maxx∈[0,1] u(x, y)

This function of y attains a unique minimum at y = 1
2 , and its value there is 2 1

2 .

v = min
y∈[0,1]

max
x∈[0,1]

u(x, y) = 2 1
2 . (4.78)

In other words, the game has a value v = 2 1
2 , and x∗ = 1

4 and y∗ = 1
2 are optimal

strategies (in fact the only optimal strategies in this game).
Since x∗ and y∗ are the only optimal strategies of the players, we deduce from

Theorems 4.44 and 4.45 that (x∗, y∗) is the only equilibrium of the game.

4.14.2 A two-player non-zero-sum game on the unit square
Consider the following two-player non-zero-sum game in strategic form:

� the strategy set of Player I is X = [0, 1];
� the strategy set of Player II is Y = [0, 1];
� the payoff function of Player I is

uI(x, y) = 3xy − 2x − 2y + 2, ∀x ∈ [0, 1], ∀y ∈ [0, 1]; (4.79)

� the payoff function of Player II is

uII(x, y) = −4xy + 2x + y, ∀x ∈ [0, 1], ∀y ∈ [0, 1]. (4.80)

Even though this is not a zero-sum game, the maxmin concept, reflecting the security
level of a player, is still well defined (see Equation (4.26)). Player I can guarantee

vI = max
x∈[0,1]

min
y∈[0,1]

uI(x, y), (4.81)

and Player II can guarantee

vII = max
y∈[0,1]

min
x∈[0,1]

uII(x, y). (4.82)
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Figure 4.41 The function x #→ miny∈[0,1] uI(x, y)

Similarly to the calculations carried out in Section 4.14.1, we derive the following (see
Figure 4.41):

min
y∈[0,1]

uI(x, y) = min
y∈[0,1]

(3xy − 2x − 2y + 2) = min
y∈[0,1]

(y(3x − 2) − 2x + 2) (4.83)

=
{

x for x ≤ 2
3 ,

−2x + 2 for x ≥ 2
3 .

(4.84)

This function of x has a single maximum, attained at x = 2
3 , with the value 2

3 . We
therefore have

vI = max
x∈[0,1]

min
y∈[0,1]

uI(x, y) = 2
3 . (4.85)

The sole maxmin strategy available to Player I is x̂ = 2
3 . We similarly calculate for Player II

(see Figure 4.42):

min
x∈[0,1]

uII(x, y) = min
x∈[0,1]

(−4xy + 2x + y) = min
x∈[0,1]

(x(2 − 4y) + y) (4.86)

=
{

y for y ≤ 1
2 ,

2 − 3y for y ≥ 1
2 .

(4.87)

This function of y has a single maximum, attained at y = 1
2 , with value 1

2 . We therefore
have

vII = max
y∈[0,1]

min
x∈[0,1]

uII(x, y) = 1
2 , (4.88)

and the sole maxmin strategy of Player II is ŷ = 1
2 .

The next step is to calculate a Nash equilibrium of this game, assuming that there is
one. The most convenient way to do so is to use the definition of the Nash equilibrium
based on the “best reply” concept (Definition 4.18 on page 97): a pair of strategies (x∗, y∗)
is a Nash equilibrium if x∗ is Player I’s best reply to y∗, and y∗ is Player II’s best reply
to x∗.
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Figure 4.42 The function y #→ minx∈[0,1] uII(x, y)

For each x ∈ [0, 1], denote by brII(x) the collection of best replies9 of Player II to the
strategy x:

brII(x) := argmaxy∈[0,1]uII(x, y) = {y ∈ [0, 1] : uII(x, y) ≥ uII(x, z) ∀z ∈ [0, 1]}.
(4.89)

In other words, brII(x) is the collection of values y at which the maximum of uII(x, y) is
attained. To calculate brII(x) in this example, we will write uII(x, y) as

uII(x, y) = y(1 − 4x) + 2x. (4.90)

For each fixed x, this is a linear function of y: if it has a positive slope the function
is increasing and attains its maximum at y = 1. If the slope is negative, the function is
decreasing and the maximum point is y = 0. If the slope of the function is 0, then the
function is constant and every point y ∈ [0, 1] is a maximum point. The slope turns from
positive to negative at x = 1

4 , and the graph of brII(x) is given in Figure 4.43.
Note that brII is not a function, because brII( 1

4 ) is not a single point but the interval
[0, 1].

The calculation of brI(y) is carried out similarly. The best reply of Player I to each
y ∈ [0, 1] is

brI(y) := argmaxx∈[0,1]uI(x, y) = {x ∈ [0, 1] : uI(x, y) ≥ uI(z, y) ∀z ∈ [0, 1]} . (4.91)

Writing uI(x, y) as

uI(x, y) = x(3y − 2) − 2y + 2 (4.92)

shows that, for each fixed y, this is a linear function in x: if it has a positive slope the
function is increasing and attains its maximum at x = 1. A negative slope implies that
the function is decreasing and its maximum point is x = 0, and a slope of 0 indicates a

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 br stands for best reply.
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Figure 4.44 The graph of brI(y)

constant function where every point x ∈ [0, 1] is a maximum point. The slope turns from
negative to positive at y = 2

3 , and the graph of brI(y) is given in Figure 4.44.
Note that the variable y is represented by the vertical axis, even though it is the

variable of the function brI(y). This is done so that both graphs, brI(y) and brII(x), can be
conveniently depicted within the same system of axes, as follows (Figure 4.45):

In terms of the best-reply concept, the pair of strategies (x∗, y∗) is an equilibrium point
if and only if x∗ ∈ brI(y∗) and y∗ ∈ brII(x∗). In other words, we require (x∗, y∗) to be on
both graphs brII(x) and brI(y). As is clear from Figure 4.40, the only point satisfying this
condition is (x∗ = 1

4 , y∗ = 2
3 ).

We conclude that the game has a single Nash equilibrium (x∗, y∗) where x∗ = 1
4 and

y∗ = 2
3 , with the equilibrium payoff of uI(x∗, y∗) = 2

3 to Player I and uII(x∗, y∗) = 1
2 to

Player II.
This example shows, again, that in games that are not zero-sum the concepts of Nash

equilibrium and optimal strategies differ; despite the fact that for both players the equilib-
rium payoff is equal to the security level ( 2

3 for Player I and 1
2 for Player II), the maxmin

strategies are not the equilibrium strategies. The maxmin strategies are x̂ = 2
3 and ŷ = 1

2 ,
while the equilibrium strategies are x∗ = 1

4 and y∗ = 2
3 .
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Figure 4.45 The graphs of x #→ brII(x) (darker line) and y #→ brI(y) (lighter line)

� The pair of maxmin strategies, x̂ = 2
3 and ŷ = 1

2 , is not an equilibrium. The payoff to
Player I is 2

3 , but he can increase his payoff by deviating to x = 0 because

uI(0, ŷ) = uI
(
0, 1

2

) = 1 > 2
3 = uI(̂x, ŷ). (4.93)

The payoff to Player II is 1
2 , and he can also increase his payoff by deviating to y = 0

because

uII(̂x, 0) = uII
(

2
3 , 0

) = 4
3 > 1

2 = uII(̂x, ŷ). (4.94)

� The equilibrium strategies x∗ = 1
4 and y∗ = 2

3 are not optimal strategies. If Player I
chooses strategy x∗ = 1

4 and Player II plays y = 1, the payoff to Player I is less than his
security level 2

3 :

uI
(

1
4 , 1

) = 1
4 < 2

3 = vI. (4.95)

Similarly, when Player II plays y∗ = 2
3 , if Player I plays x = 1 then the payoff to

Player II is less than his security level 1
2 :

uII
(
1, 2

3

) = 0 < 1
2 = vII. (4.96)

Note that uI(x, 2
3 ) = 2

3 for all x ∈ [0, 1]. It follows that when Player II implements
the strategy y∗ = 2

3 , Player I is “indifferent” between all of his strategies. Similarly,
uII( 1

4 , y) = 1
2 for all y ∈ [0, 1]. It follows that when Player I implements the strategy

x∗ = 1
4 , Player II is “indifferent” between all of his strategies. This outcome occurs in

every two-player game on the unit square when the payoff functions are bilinear functions
with a unique equilibrium (x∗, y∗) satisfying 0 < x∗, y∗ < 1. This is not a coincidence: it
is the result of a general game-theoretic principle called the indifference principle, which
is studied in Chapter 5 in Section 5.2.3.
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4.15 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Mathematician John Nash received the Nobel Memorial Prize in Economics in 1994 for
the equilibrium concept that is named after him. The Nash equilibrium is a central concept
in mathematical economics.

The Prisoner’s Dilemma game was first defined and studied by Merrill Flood and
Melvin Dresher in 1950. The name commonly given to that game, as well as the accompa-
nying story, was first suggested by Albert Tucker. The version of the Prisoner’s Dilemma
appearing in Exercise 4.1 was suggested by Reinhard Selten.

The name “Security Dilemma” (see Example 4.22 on page 98) was coined by Herz
[1950]. The dilemma was extensively studied in the political science literature (see, for
example, Jervis [1978]). Alain Ledoux [1985] was the first to present the Guessing Game
appearing in Exercise 4.44. Many experiments have been based on this game, including
experiments conducted by Rosmarie Nagel. Exercise 4.47 describes the Braess Paradox,
which first appeared in Braess [1968]. Exercise 4.48 is a variation of the Braess Paradox,
due to Kameda and Hosokawa [2000]. The authors wish to thank Hisao Kameda for
bringing this example to their attention. Exercise 4.49 is an example of a location “game,”
a concept that was first introduced and studied in Hotelling [1929].

4.16 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4.1 William and Henry are participants in a televised game show, seated in separate
booths with no possibility of communicating with each other. Each one of them is
asked to submit, in a sealed envelope, one of the following two requests (requests
that are guaranteed to be honored):

� Give me $1,000.
� Give the other participant $4,000.

Describe this situation as strategic-form game. What is the resulting game? What
will the players do, and why?

4.2 Describe the following games in strategic form.

I

II

O1

O2

O3

T

B t

b
Game A

I

II

II

A

B

C

D

E

a

b

c

d

e

f

g

Game B
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I

I
II

II

A

F

E

D

C

B
T1

B1

t1

b1

t2

b2

T2

M2

B2

Game  C

II

II

I

A

B

C

D

E

t1

b1

t2

b2

T2

B2

Game D

I

0

II

II

II

(12, 6)

(9, 3)

(0, 6)

(9, 3)

(6, 12)

(9, 5)

(7, 7)

(5, 9)

T

B

2
3

1
3

t1
m1

b1

t2

m2

b2

t3

b3

Game E

0

I

I

0

(4, 8)

(9, 12)

(3, 6)

(8, 12)

(12, 8)

1
2

1
2

T1

B1

T2

B2

1
2

1
2

Game F

0 I II

(4, 2)

(8, 4)

(0, 6)

(8, 0)
(6, 6)

(10, 4)

(4, 10)

(8, 6)

1
2

1
2

T

B

T

B

T

B
T

B T

B
T

B

Game G

0

II

II

I

(40, 30)

(60, 20)

(40, 10)

(20, 30)
(0, 0)

(30, 20)

6
10

4
10

t1

b1

t2

b2

T1

B1

T1

B1

Game H

0

I

I

II

II

O1

O2

O3

O4

O5
O6

O7
O8

7
10

3
10

T1

B1

T2

B2

t1

b1

t1

b1

t2

b2

t2

b2

U1
II

U2
II

Game I

0

0

0

I

I

W

L

L

W

W
L

L
W

1
3

2
3

1
2

1
2
1
4

3
4

T1

B1

T1

B1

T2

B2

T2

B2

Game J

U1
I

U2
I
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4.3 Consider the following two-player game.

0

I

I

II

II

O1

O2

O3

O4

O5
O6

O7
O8

7
10

3
10

T1

B1

T2

B2

t1

b1

t1

b1

t2

b2

t2

b2

U1
II

U2
II

(a) What does Player II know in each one of his information sets? What does he not
know?

(b) Describe as a game in extensive form the version of this game in which Player
II knows the result of the chance move but does not know the action chosen by
Player I.

(c) Describe as a game in extensive form the version of this game in which
Player II knows both the result of the chance move and the action chosen by
Player I.

(d) Convert all three games into strategic-form games. Are all the matrices you
derived in this way identical?

4.4 In the game of Hex (Exercise 3.19 on page 64) the two players eliminate (weakly)
dominated strategies. What remains of the game once the elimination process
ends?

4.5 Establish whether there exists a two-player game in extensive form with perfect
information, and possible outcomes I (Player I wins), II (Player II wins), and D (a
draw), whose strategic-form description is

Player II

Player I

s3
I

s2
I

s1
I

s1
II

s2
II

s3
II

s4
II

I

I

D

I

II

I

II

I

II

II

D

I

If the answer is yes, describe the game. If not, explain why not.
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4.6 Repeat Exercise 4.5, with respect to the following strategic-form game:

Player II

Player I

s3
I

s2
I

s1
I

s1
II s2

II s3
II s4

II

II

I

D

II

I

D

D

II

D

D

II

D

4.7 In each of the following games, where Player I is the row player and Player II is
the column player, determine whether the process of iterated elimination of strictly
dominated strategies yields a single strategy vector when it is completed. If so, what
is that vector? Verify that it is the only Nash equilibrium of the game.

T

H

RL

1, 1

4, 2

3, 3

0, 1

Game A

T

H

RL

0, 4

1, 3

0, 2

2, 3

Game B

α

β

γ

ba c

2, 1

3, 1

1, 0

1, 6

0, 1

3, 0

0, 2

1, 2

2, 1

Game C

4.8 What advice would you give to the players in each of the following four games?
Provide a detailed justification for all advice given.

Player I

Player II

T

H

RL

0, 0

2, 3

4, 1

1, 5

Game A

Player I

Player II

T

H

RL

3, 7

4, 8

6, 20

5, 10

Game B

Player I

Player II

α

β

γ

δ

ba dc

4, 0

0, 9

6, 4

2, 13

0, 4

7, 7

2, 3

4, 8

4, 6

2, 7

3, 8

6, 5

6, 0

14, 8

8, 4

8, 2

Game C

Player I

Player II

α

β

γ

δ

ba dc

−1, 6

0, 0

−4, 1

−5, 5

2, −2

1, −1

−3, 3

−4, 4

7, 1

−4, 4

−2, 2

−5, 1

5, 2

−3, 3

1, 1

0, 4

Game D
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4.9 A Nash equilibrium s∗ is termed strict if every deviation undertaken by a player
yields a definite loss for that player, i.e., ui(s∗) > ui(si, s

∗
−i) for each player i ∈ N

and each strategy si ∈ Si \ {s∗i }.
(a) Prove that if the process of iterative elimination of strictly dominated strategies

results in a unique strategy vector s∗, then s∗ is a strict Nash equilibrium, and it
is the only Nash equilibrium of the game.

(b) Prove that if s∗ = (s∗i )ni=1 is a strict Nash equilibrium, then none of the strategies
s∗i can be eliminated by iterative elimination of dominated strategies (under
either strict or weak domination).10

4.10 Prove that the result of iterated elimination of strictly dominated strategies (that is,
the set of strategies remaining after the elimination process has been completed) is
independent of the order of elimination. Deduce that if the result of the elimination
process is a single vector s∗, then that same vector will be obtained under every
possible order of the elimination of strictly dominated strategies.

4.11 Find all rational strategy vectors in the following games.

Player I

Player II

β

α

ba dc

8, 5

6, 2

6, 9

6, 3

4, 6

7, 6

4, 7

2, 8

Game A

Player I

Player II

β

α

ba

8, 6

9, 5

8, 4

5, 3

Game B 

Player I

Player II

γ

β

α

ba dc

−5, 20

27, 20

−1, 20

−3, 5

13, −1

−7, −7

7, −1

21, 2

−1, 2

3, −4

13, −1

−5, 8

Game C

Player I

Player II

δ

γ

β

α

ba dc

4, 5

4, 5

5, 3

3, 7

4, 5

3, 7

4, 5

0, 13

4, 5

4, 5

4, 5

4, 5

4, 5

5, 3

3, 7

5, 3

Game D

4.12 Find a game that has at least one equilibrium, but in which iterative elimination of
dominated strategies yields a game with no equilibria.

4.13 Prove directly that a strictly dominated strategy cannot be an element of a game’s
equilibrium (Corollary 4.36, page 109). In other words, show that in every strategy
vector in which there is a player using a strictly dominated strategy, that player can
deviate and increase his payoff.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 This is not true of equilibria that are not strict. See Example 4.16, where there are four nonstrict Nash equilibria
(T ,C), (M, L), (M, R), and (B, L).
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4.14 In a first-price auction, each buyer submits his bid in a sealed envelope. The winner
of the auction is the buyer who submits the highest bid, and the amount he pays is
equal to what he bid. If several buyers have submitted bids equal to the highest bid,
a fair lottery is conducted among them to choose one winner, who then pays his bid.

(a) In this situation, does the strategy β∗
i of buyer i, in which he bids his private

value for the item, weakly dominate all his other strategies?
(b) Find a strategy of buyer i that weakly dominates strategy β∗

i .

Does the strategy under which each buyer bids his private value weakly dominate
all the other strategies? Justify your answer.

4.15 Prove that the two definitions of the Nash equilibrium, presented in Definitions 4.17
and 4.19, are equivalent to each other.

4.16 Find all the equilibria in the following games.

Player I

Player II

α

β

γ

ba dc

6, 1

4, 2

7, 3

3, 8

5, 8

6, 3

2, 4

8, 6

5, 5

6, 9

5, 8

4, 7

Game A

Player I

Player II

α

β

γ

δ

ba dc

0, 5

8, 4

0, 3

5, 2

1, −2

7, 0

2, 2

3, 1

2, 2

6, −1

0, 1

2, 2

3, 4

5, 2

−1, 3

4, 5

Game B

Player I

Player II

α

β

γ

δ

ba dc

1, 1

−1, 1

0, 1

1, −1

0, 0

0, 0

0, −1

−1, −1

1, 0

−1, 1

−1, −1

−1, 1

1, 0

0, 1

1, 1

0, 0

0, 0

1, −1

0, 0

0, −1

Game C

4.17 In the following three-player game, Player I chooses a row (A or B), Player II
chooses a column (a or b), and Player III chooses a matrix (α, β, or γ ). Find all the
equilibria of this game.

B

A

ba

α

2, 0, 0

0, 0, 5

0, 0, 0

0, 0, 0

B

A

ba

β

0, 0, 0

1, 2, 3

1, 2, 3

0, 0, 0

B

A

ba

γ

0, 5, 0

0, 0, 0

0, 0, 4

0, 0, 0
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4.18 Find the equilibria of the following three-player game (Player I chooses row T , C,
or B, Player II a column L, M , or R, and Player III chooses matrix P or Q).

B

C

T

ML R

3, −5, 0

4, 7, 2

3, 10, 8

0, 3, 4

5, 5, 2

8, 14, 6

−3, 5, 0

2, 2, 8

4, 12, 7

P

B

C

T

ML R

9, 7, 2

3, 4, 5

4, 9, 3

20, 0, 13

17, 3, 12

7, 8, 10

0, 15, 0

3, 5, 2

5, 7, −1

Q

4.19 Prove that in the Centipede game (see Exercise 3.12 on page 61), at every Nash
equilibrium, Player I chooses S at the first move in the game.

4.20 A two-player game is symmetric if the two players have the same strategy set S1 = S2

and the payoff functions satisfy u1(s1, s2) = u2(s2, s1) for each s1, s2 ∈ S1. Prove
that the set of equilibria of a two-player symmetric game is a symmetric set: if
(s1, s2) is an equilibrium, then (s2, s1) is also an equilibrium.

4.21 Describe the following games in strategic form (in three-player games, let Player I
choose the row, Player II choose the column, and Player III choose the matrix). In
each game, find all the equilibria, if any exist.

I

I

II

II

T

B

t1

b1

t2

b2

(2, 5)

(5, 2)

(4, 8)

(8, 4)

Game A

I

II

0

0

(4, 7)

(5, 20)

(25, 10)

(8, 4)

(12, 16)

T

B

t

b

3
5

2
5

1
4

3
4

Game B

0

I

I

II

2
3

1
3

T1

B1

T2

B2

t

b

t

b

(6,9)

(3,15)

(0,3)

(0,0)

(3,12)

(9,6)

Game C

II

II

III

T

B

t1

b1

t2

b2

τ

β

τ

β

(1,2, 3)

(0,3, 6)

(6,3, 0)

(8,2, 5)

(5,8, 2)

(0,9, 20)

Game D

I

II

II

III

III

(2, 4,5)

(3, 8,2)

(1, 1,1)

(2, 4,8)

(27, 9,3)

(2,7, 3)

(4,0, 5)

T

M

B

t1

b1

t2

b2

τ1

β1

τ2

β2

Game E

I

0

II

II

II

(9, 5)

(7, 7)

(5, 9)

(12, 6)

(9, 3)

(0, 6)

(9, 3)

(6, 12)

T

B

2
3

1
3

t1

m1

b1

t2

m2

b2

t3

b3

Game F
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4.22 Let X and Y be two compact sets in Rm, and let f : X × Y → R be a continuous
function. Prove that the function x #→ miny∈Y f (x, y) is also a continuous function.

4.23 In each of the following two-player zero-sum games, implement a process of iterative
elimination of dominated strategies. For each game list the strategies you have
eliminated and find the maxmin strategy of Player I and the minmax strategy of
Player II.

Player I

Player II

α

β

γ

ba dc

6

2

8

1

5

4

4

3

8

5

8

4

Game A

Player I

Player II

α

β

γ

δ

ba dc

2

1

5

6

−3

0

3

4

2

5

3

2

3

4

0

1

Game B

Player I

Player II

α

β

γ

δ

ba dc

6

5

5

3

5

3

5

6

5

5

5

5

3

6

5

5

Game C

4.24 Prove that in Example 4.23 on page 99 (duopoly competition) the pair of strategies
(q∗

1 , q∗
2 ) defined by

q∗
1 = 2 − 2c1 + c2

3
, q∗

2 = 2 − 2c2 + c1

3
(4.97)

is an equilibrium.

4.25 Prove Theorem 4.26 (page 105): if player i has a (weakly) dominant strategy, then
it is his (not necessarily unique) maxmin strategy. Moreover, this strategy is his best
reply to every strategy vector of the other players.

4.26 Prove Theorem 4.28 (page 105): in a game in which every player i has a strategy
s∗i that strictly dominates all of his other strategies, the strategy vector (s∗1 , . . . , s∗n)
is the unique equilibrium point of the game as well as the unique vector of maxmin
strategies.

4.27 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, and let ŝi ∈ Si be an
arbitrary strategy of player i in this game. Let Ĝ be the game derived from G by
the elimination of strategy ŝi . Prove that for each player j , j �= i, the maxmin value
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of player j in the game Ĝ is greater than or equal to his maxmin value in G. Is the
maxmin value of player i in game Ĝ necessarily less than his maxmin value in G?
Prove this last statement, or find a counterexample.

4.28 Find an example of a game G = (N, (Si)i∈N, (ui)i∈N ) in strategic form such that the
game Ĝ derived from G by elimination of one strategy in one player’s strategy set
has an equilibrium that is not an equilibrium in the game G.

4.29 Prove Corollary 4.33 on page 108: let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic form
game and let Ĝ be the game derived from G by iterative elimination of dominated
strategies. Then every equilibrium s∗ in the game Ĝ is also an equilibrium in the
game G.

4.30 Find an example of a strategic form game G and of an equilibrium s∗ of that game
such that for each player i ∈ N the strategy s∗i is dominated.

4.31 The following questions relate to the following two-player zero-sum game.

I

II

II

12

15

8

10

T

B

t1

b1

t2

b2

(a) Find an optimal strategy for each player by applying backward induction.
(b) Describe this game in strategic form.
(c) Find all the optimal strategies of the two players.
(d) Explain why there are optimal strategies in addition to the one you identified by

backward induction.

4.32 (a) Let A = (aij ) be an n × m matrix representing a two-player zero-sum game,
where the row player is Ann and the column player is Bill. Let B = (bji) be a
new m × n matrix in which the row player is Bill and the column player is Ann.
What is the relation between the matrices A and B?

(b) Conduct a similar transformation of the names of the players in the following
matrix and write down the new matrix.

Player I

Player II

B

T

ML R

−2

3

8

−5

4

7
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4.33 The value of the two-player zero-sum game given by the matrix A is 0. Is it nec-
essarily true that the value of the two-player zero-sum game given by the matrix
−A is also 0? If your answer is yes, prove this. If your answer is no, provide a
counterexample.

4.34 Let A and B be two finite sets, and let u : A × B → R be an arbitrary function.11

Prove that

max
a∈A

min
b∈B

u(a, b) ≤ min
b∈B

max
a∈A

u(a, b). (4.98)

4.35 Show whether or not the value exists in each of the following games. If the value
exists, find it and find all the optimal strategies for each player. As usual, Player I is
the row player and Player II is the column player.

B

A

ba c

4

1

3

2

0

3

Game B

B

A

ba

1

2

3

2

Game A

C

B

A

ba dc

4

7

3 1
2

2

5

3

3

6

4

0

13

12

Game C

C

B

A

ba

0

2

3

3

2

0

Game D

4.36 Prove Theorem 4.48 (page 118): in a two-player zero-sum game, (s∗I , s∗II) is a saddle
point if and only if s∗I is an optimal strategy for Player I and s∗II is an optimal strategy
for Player II.

4.37 Let A and B be two finite-dimensional matrices with positive payoffs. Show that
the game

0

A

B

0

has no value. (Each 0 here represents a matrix of the proper dimensions, such that
all of its entries are 0.)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 The finiteness of A and B is needed to ensure the existence of a minimum and maximum in Equation (4.98). The
claim holds (using the same proof) for each pair of sets A and B and function u for which the min and the max
of the function in Equation (4.98) exist (for example, if A and B are compact sets and u is a continuous function;
see Exercise 4.22). Alternatively, we may remove all restrictions on A, B, and u and replace min by inf and max
by sup.
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4.38 Answer the following questions with reference to Game A and Game B that appear
in the diagram below.

(a) Find all equilibria obtained by backward induction.
(b) Describe the games in strategic form.
(c) Check whether there are other Nash equilibria in addition to those found by

backward induction.

I

I
IIa

b

c

d

e

f

3

3

3

2

Game A

I

II

II

0

II

a

b
c

d

1
3

2
3

e

f
g

h

4

5

12

− 9

− 6

6

Game B

4.39 Prove Theorem 4.49 (on page 118) using backward induction (a general outline for
the proof can be found in Remark 4.50 on page 121).

4.40 Find a Nash equilibrium in the following game using backward induction:

I

II

III

I

I

II

II

II

3, 1, 4

0, 0, 5

0, 0, 5

10, 1, 3

2, 5, 0

5, 4, 10

0, −1, 5

0, 0, 3

2, 3, 4

1, 2, 3

T1

B1

t1

b1

τ

µ

β

T2

B2

T3

B3

t2

b2

t3

b3

t4

b4

Find an additional Nash equilibrium of this game.

4.41 In a two-player zero-sum game on the unit square where Player I’s strategy set is
X = [0, 1] and Player II’s strategy set is Y = [0, 1], check whether or not the game
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associated with each of the following payoff functions has a value, and if so, find
the value and optimal strategies for the two players:

(a) u(x, y) = 1 + 4x + y − 5xy.
(b) u(x, y) = 4 + 2y − 4xy.

4.42 Consider a two-player non-zero-sum game on the unit square in which Player I’s
strategy set is X = [0, 1], Player II’s strategy set is Y = [0, 1], and the payoff
functions for the players are given below. Find the maxmin value and the maxmin
strategy (or strategies) of the players. Does this game have an equilibrium? If so,
find it.

uI(x, y) = 2x − xy,

uII(x, y) = 2 + 3x + 3y − 3xy.

4.43 Consider a two-player non-zero-sum game on the unit square in which Player I’s
strategy set is X = [0, 1], and Player II’s strategy set is Y = [0, 1], which has a
unique equilibrium (x∗, y∗), where x∗, y∗ ∈ (0, 1). Prove that the equilibrium payoff
to each player equals his maxmin value.

4.44 Fifty people are playing the following game. Each player writes down, on a separate
slip of paper, one integer in the set {0, 1, . . . , 100}, alongside his name. The game-
master then reads the numbers on each slip of paper, and calculates the average x

of all the numbers written by the players. The winner of the game is the player (or
players) who wrote down the number that is closest to 2

3x. The winners equally
divide the prize of $1,000 between them.

Describe this as a strategic-form game, and find all the Nash equilibria of the
game. What would be your strategy in this game? Why?

4.45 Peter, Andrew, and James are playing the following game in which the winner is
awarded M dollars. Each of the three players receives a coupon and is to decide
whether or not to bet on it. If a player chooses to bet, he or she loses the coupon
with probability 1

2 and wins an additional coupon with probability 1
2 (thus resulting

in two coupons in total). The success of each player in the bet is independent of the
results of the bets of the other players. The winner of the prize is the player with
the greatest number of coupons. If there is more than one such player, the winner is
selected from among them in a lottery where each has an equal chance of winning.
The goal of each player is to maximize the probability of winning the award.

(a) Describe this game as a game in strategic form and find all its Nash equilibria.
(b) Now assume that the wins and losses of the players are perfectly correlated: a

single coin flip determines whether all the players who decided to bid either all
win an additional coupon or all lose their coupons. Describe this new situation
as a game in strategic form and find all its Nash equilibria.

4.46 Partnership Game Lee (Player 1), and Julie (Player 2), are business partners.
Each of the partners has to determine the amount of effort he or she will put into
the business, which is denoted by ei , i = 1, 2, and may be any nonnegative real
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number. The cost of effort ei for Player i is cei , where c > 0 is equal for both
players. The success of the business depends on the amount of effort put in by the
players; the business’s profit is denoted by r(e1, e2) = e

α1
1 e

α2
2 , where α1, α2 ∈ (0, 1)

are fixed constants known by Lee and Julie, and the profit is shared equally between
the two partners. Each player’s utility is given by the difference between the share
of the profit received by that player and the cost of the effort he or she put into the
business. Answer the following questions:

(a) Describe this situation as a strategic-form game. Note that the set of strategies
of each player is the continuum.

(b) Find all the Nash equilibria of the game.

4.47 Braess Paradox There are two main roads connecting San Francisco and San Jose,
a northern road via Mountain View and a southern road via Cupertino. Travel time
on each of the roads depends on the number x of cars using the road per minute, as
indicated in the following diagram.

San Francisco San Jose

Mountain View

Cupertino

1 + x

1 + x

51 + 0 .1x

51 + 0 .1x

For example, the travel time between San Francisco and Mountain View is 1 + x,
where x is the number of cars per minute using the road connecting these cities, and
the travel time between Mountain View and San Jose is 51 + 0.1x, where x is the
number of cars per minute using the road connecting those two cities. Each driver
chooses which road to take in going from San Francisco to San Jose, with the goal
of reducing to a minimum the amount of travel time. Early in the morning, 60 cars
per minute get on the road from San Francisco to San Jose (where we assume the
travellers leave early enough in the morning so that they are the only ones on the
road at that hour).

(a) Describe this situation as a strategic-form game, in which each driver chooses
the route he will take.

(b) What are all the Nash equilibria of this game? At these equilibria, how much
time does the trip take at an early morning hour?

(c) The California Department of Transportation constructs a new road between
Mountain View and Cupertino, with travel time between these cities 10 + 0.1x

(see the diagram below). This road is one way, enabling travel solely from
Mountain View to Cupertino.

Find a Nash equilibrium in the new game. Under this equilibrium how much
time does it take to get to San Jose from San Francisco at an early morning hour?
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(d) Does the construction of the additional road improve travel time?

10 + 0 .1xSan Francisco San Jose

Mountain View

Cupertino

1 + x

1 + x

51 + 0 .1x

51 + 0 .1x

This phenomenon is “paradoxical” because, as you discovered in the answers
to (b) and (c), the construction of a new road increases the travel time for all
travellers. This is because when the new road is opened, travel along the San
Francisco–Mountain View–Cupertino–San Jose route takes less time than along the
San Francisco–Mountain View–San Jose route and the San Francisco–Cupertino–
San Jose route, causing drivers to take the new route. But that causes the total
number of cars along the two routes San Francisco–Mountain View–San Jose and
San Francisco–Cupertino–San Jose to increase: travel time along each stretch of
road increases.

Such a phenomenon was in fact noted in New York (where the closure of a
road for construction work had the effect of decreasing travel time) and in Stuttgart
(where the opening of a new road increased travel time).

4.48 The Davis Removal Company and its main rival, Roland Ltd, have fleets of ten
trucks each, which leave the companies’ headquarters for Chicago each morning at
5 am for their daily assignments. At that early hour, these trucks are the only vehicles
on the roads. Travel time along the road between the Davis Removal Company and
Chicago is 20 + 2

√
x, where x is the number of cars on the road, and it is similarly

20 + 2
√

x on the road connecting the headquarters of Roland Ltd with Chicago,
where x is the number of cars on the road.

The Illinois Department of Transportation paves a new two-way road between the
companies’ headquarters, where travel time on this new road is 0.2, independent of
the number of cars on the road. This situation is described in the following diagram.

Chicago

Davis

Roland

20 + 2√x

20 + 2√x

0.20.2

Answer the following questions:

(a) Before the new road is constructed, what is the travel time of each truck between
its headquarters and Chicago?
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(b) Describe the situation after the construction of the new road as a two-player
strategic-form game, in which the players are the managers of the removal
companies and each player must determine the number of trucks to send on
the road connecting his company with Chicago (with the rest traveling on the
newly opened road and the road connecting the other company’s headquarters
and Chicago), with the goal of keeping to a minimum the total travel time to
Chicago of all the trucks in its fleet. Note that if Davis, for example, instructs all
its drivers to go on the road between company headquarters and Chicago, and
Roland sends seven of its trucks directly to Chicago and three first to the Davis
headquarters and then to Chicago, the total time racked up by the fleet of Roland
Ltd is

7 × (20 + 2
√

7) + 3 × (0.2 + 20 + 2
√

13). (4.99)

(c) Is the strategy vector in which both Davis and Roland send their entire fleets
directly to Chicago, ignoring the new road, a Nash equilibrium?

(d) Show that the strategy vector in which both Davis and Roland send six drivers
directly to Chicago and four via the new road is an equilibrium. What is the
total travel time of the trucks of the two companies in this equilibrium? Did the
construction of a new road decrease or increase total travel time?

(e) Construct the payoff matrix of this game, with the aid of a spreadsheet program.
Are there any additional equilibria in this game?

4.49 Location games Two competing coffee house chains, Pete’s Coffee and Caribou
Coffee, are seeking locations for new branch stores in Cambridge. The town is
comprised of only one street, along which all the residents live. Each of the two
chains therefore needs to choose a single point within the interval [0, 1], which
represents the exact location of the branch store along the road. It is assumed that
each resident will go to the coffee house that is nearest to his place of residence.
If the two chains choose the exact same location, they will each attract an equal
number of customers. Each chain, of course, seeks to maximize its number of
customers.

To simplify the analysis required here, suppose that each point along the inter-
val [0, 1] represents a town resident, and that the fraction of residents who fre-
quent each coffee house is the fraction of points closer to one store than to the
other.

(a) Describe this situation as a two-player strategic-form game.
(b) Prove that the only equilibrium in this game is that given by both chains selecting

the location x = 1
2 .

(c) Prove that if three chains were to compete for a location in Cambridge, the
resulting game would have no equilibrium. (Under this scenario, if two or three
of the chains choose the same location, they will split the points closest to them
equally between them.)
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4.50 For each of the following two games, determine whether or not it can represent a
strategic-form game corresponding to an extensive-form game with perfect infor-
mation. If so, describe a corresponding extensive-form game; if not, justify your
answer.

Player I

Player II

D

C

B

A

ba

3, 0

1, 1

3, 0

1, 1

5, 3

0, 4

5, 3

5, 3

Game A

Player I

Player II

D

C

B

A

ba

3, 0

3, 0

3, 0

3, 0

5, 3

1, 1

0, 4

0, 4

Game B

4.51 Let � be a game in extensive form. The agent-form game derived from � is a
strategic-form game where each player i in � is split into several players: for each
information set Ui ∈ Ui of player i we define a player (i, Ui) in the agent-form game.
Thus, if each player i has ki information sets in �, then there are

∑
i∈N ki players

in the agent-form game. The set of strategies of player (i, Ui) is A(Ui). There is a
bijection between the set of strategy vectors in the game � and the set of strategy
vectors in the agent-form game: the strategy vector σ = (σi)i∈N in � corresponds to
the strategy vector (σi(Ui)){i∈N,Ui∈Ui} in the agent-form game. The payoff function
of player (i, Ui) in the agent-form game is the payoff function of player i in the
game �.

Prove that if σ = (σi)i∈N is a Nash equilibrium in the game �, then the strategy
vector (σi(Ui)){i∈N,Ui∈Ui} is a Nash equilibrium in the agent-form game derived
from �.
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Chapter summary
Given a game in strategic form we extend the strategy set of a player to the set of all
probability distributions over his strategies. The elements of the new set are called
mixed strategies, while the elements of the original strategy set are called pure
strategies. Thus, a mixed strategy is a probability distribution over pure strategies. For a
strategic-form game with finitely many pure strategies for each player we define the
mixed extension of the game, which is a game in strategic form in which the set of
strategies of each player is his set of mixed strategies, and his payoff function is the
multilinear extension of his payoff function in the original game.

The main result of the chapter is the Nash Theorem, which is one of the milestones of
game theory. It states that the mixed extension always has a Nash equilibrium; that is, a
Nash equilibrium in mixed strategies exists in every strategic-form game in which all
players have finitely many pure strategies. We prove the theorem and provide ways to
compute equilibria in special classes of games, although the problem of computing Nash
equilibrium in general games is computationally hard.

We generalize the Nash Theorem to mixed extensions in which the set of strategies of
each player is not the whole set of mixed strategies, but rather a polytope subset of this
set.

We investigate the relation between utility theory discussed in Chapter 2 and mixed
strategies, and define the maxmin value and the minmax value of a player (in mixed
strategies), which measure respectively the amount that the player can guarantee to
himself, and the lowest possible payoff that the other players can force on the player.

The concept of evolutionary stable strategy, which is the Nash equilibrium adapted to
Darwin’s Theory of Evolution, is presented in Section 5.8.

There are many examples of interactive situations (games) in which it is to a decision
maker’s advantage to be “unpredictable”:

� If a baseball pitcher throws a waist-high fastball on every pitch, the other team’s batters
will have an easy time hitting the ball.

� If a tennis player always serves the ball to the same side of the court, his opponent will
have an advantage in returning the serve.

� If a candidate for political office predictably issues announcements on particular dates,
his opponents can adjust their campaign messages ahead of time to pre-empt him and
gain valuable points at the polls.

144



145 5.1 The mixed extension of a strategic-form game

� If a traffic police car is placed at the same junction at the same time every day, its
effectiveness is reduced.

It is easy to add many more such examples, in a wide range of situations. How can we
integrate this very natural consideration into our mathematical model?

Example 5.1 Consider the two-player zero-sum game depicted in Figure 5.1.

Player I

Player II

B

T

RL

2

4

3

1

2

1

34 2, 3maxsI 
 u(sI, sII)

minsII 
 u(sI, sII)

Figure 5.1 A two-player zero-sum game; the security values of the players are circled

Player I’s security level is 2; if he plays B he guarantees himself a payoff of at least 2. Player
II’s security level is 3; if he plays R he guarantees himself a payoff of at most 3.

This is written as

v = max
sI∈{T ,B}

min
sII∈{L,R}

u(sI, sII) = 2, (5.1)

v̄ = min
sII∈{L,R}

max
sI∈{T ,B}

u(sI, sII) = 3. (5.2)

Since

v̄ = 3 > 2 = v, (5.3)

the game has no value.
Can one of the players, say Player I, guarantee a “better outcome” by playing “unpredictably”?

Suppose that Player I tosses a coin with parameter 1
4 , that is, a coin that comes up heads with

probability 1
4 and tails with probability 3

4 . Suppose furthermore that Player I plays T if the result of
the coin toss is heads and B if the result of the coin toss is tails. Such a strategy is called a mixed
strategy.

What would that lead to? First of all, the payoffs would no longer be definite, but instead would be
probabilistic payoffs. If Player II plays L the result is a lottery [ 1

4 (4), 3
4 (2)]; that is, with probability

1
4 Player II pays 4, and with probability 3

4 pays 2. If these payoffs are the utilities of a player whose
preference relation satisfies the von Neumann–Morgenstern axioms (see Chapter 2), then Player
I’s utility from this lottery is 1

4 × 4 + 3
4 × 2 = 2 1

2 . If, however, Player II plays R the result is the
lottery [ 1

4 (1), 3
4 (3)]. In this case, if the payoffs are utilities, Player I’s utility from this lottery is

1
4 × 1 + 3

4 × 3 = 2 1
2 . �

5.1 The mixed extension of a strategic-form game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the rest of this section, we will assume that the utilities of the players satisfy the von
Neumann–Morgenstern axioms; hence their utility functions are linear (in probabilities).
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In other words, the payoff (= utility) to a player from a lottery is the expected payoff of
that lottery. With this definition of what a payoff is, Player I can guarantee that no matter
what happens his expected payoff will be at least 2 1

2 , in contrast to a security level of 2 if
he does not base his strategy on the coin toss.

Definition 5.2 Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game in which the set of
strategies of each player is finite. A mixed strategy of player i is a probability distribution
over his set of strategies Si . Denote by

�i :=
⎧⎨⎩σi : Si → [0, 1] :

∑
si∈Si

σi(si) = 1

⎫⎬⎭ (5.4)

the set of mixed strategies of player i.

A mixed strategy of player i is, therefore, a probability distribution over Si : σi =
(σi(si))si∈Si

. The number σi(si) is the probability of playing the strategy si . To distinguish
between the mixed strategies �i and the strategies Si , the latter are called pure strategies.
Because all the results proved in previous chapters involved only pure strategies, the claims
in them should be qualified accordingly. For example, Kuhn’s Theorem (Theorem 4.49 on
page 118) should be read as saying: In every finite game with perfect information, there
is at least one equilibrium point in pure strategies.

We usually denote a mixed strategy using the notations for lotteries (see Chap-
ter 2). For example, if Player I’s set of pure strategies is SI = {A, B, C}, we denote
the mixed strategy σI under which he chooses each pure strategy with probability 1

3 by
σI = [ 1

3 (A), 1
3 (B), 1

3 (C)].
If SI = {H, T }, Player I’s set of mixed strategies is

�I = {[p1(H ), p2(T )] : p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1}. (5.5)

In this case, the set �I is equivalent to the interval in R2 connecting (1, 0) to (0, 1). We
can identify �I with the interval [0, 1] by identifying every real number x ∈ [0, 1] with
the probability distribution over {H, T } that satisfies p(H ) = x and p(T ) = 1 − x. If
SII = {L, M, R}, Player II’s set of mixed strategies is

�II = {[p1(L), p2(M), p2(R)] : p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p1 + p2 + p3 = 1}.
(5.6)

In this case, the set �II is equivalent to the triangle in R3 whose vertices are (1, 0, 0),
(0, 1, 0), and (0, 0, 1).

For any finite set A, denote by 
(A) the set of all probability distributions over A.
That is,


(A) :=
{

p : A → [0, 1] :
∑
a∈A

p(a) = 1

}
. (5.7)

The set 
(A) is termed a simplex in R|A|. The dimension of the simplex 
(A) is
|A| − 1 (this follows from the constraint that

∑
a∈A p(a) = 1). We denote the num-

ber of pure strategies of player i by mi , and we assume that his pure strategies have
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a particular ordering, with the denotation Si = {s1
i , s

2
i , . . . , s

mi

i }. It follows that the set of
mixed strategies �i = 
(Si) is a subset of Rmi of dimension mi − 1.

We identify a mixed strategy si with the pure strategy σi = [1(si)], in which the pure
strategy si is chosen with probability 1. This implies that every pure strategy can also be
considered a mixed strategy.

We now define the mixed extension of a game.

Definition 5.3 Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game in which for every
player i ∈ N , the set of pure strategies Si is nonempty and finite. Denote by S := S1 ×
S2 × · · · × Sn the set of pure strategy vectors. The mixed extension of G is the game

� = (N, (�i)i∈N, (Ui)i∈N ), (5.8)

in which, for each i ∈ N , player i’s set of strategies is �i = 
(Si), and his payoff function
is the function Ui : � → R, which associates each strategy vector σ = (σ1, . . . , σn) ∈
� = �1 × · · · × �n with the payoff

Ui(σ ) = Eσ [ui(σ )] =
∑

(s1,...,sn)∈S

ui(s1, . . . , sn)σ1(s1)σ2(s2) · · · σn(sn). (5.9)

Remark 5.4 Mixed strategies were defined above only for the case in which the sets of
pure strategies are finite. It follows that the mixed extension of a game is only defined
when the set of pure strategies of each player is finite. However, the concept of mixed
strategy, and hence the mixed extension of a game, can be defined when the set of pure
strategies of a player is a countable set (see Example 5.12 and Exercise 5.50). In that case
the set �i = 
(Si) is an infinite-dimensional set. It is possible to extend the definition of
mixed strategy further to the case in which the set of strategies is any set in a measurable
space, but that requires making use of concepts from measure theory that go beyond the
background in mathematics assumed for this book. �

Note that the fact that the mixed strategies of the players are statistically independent of
each other plays a role in Equation (5.9), because the probability of drawing a particular
vector of pure strategies (s1, s2, . . . , sn) is the product σ1(s1)σ2(s2) · · · σn(sn). In other
words, each player i conducts the lottery σi that chooses si independently of the lotteries
conducted by the other players.

The mixed extension � of a strategic-form game G is itself a strategic-form game, in
which the set of strategies of each player is of the cardinality of the continuum. It follows
that all the concepts we defined in Chapter 4, such as dominant strategy, security level,
and equilibrium, are also defined for �, and all the results we proved in Chapter 4 apply
to mixed extensions of games.

Definition 5.5 Let G be a game in strategic form, and � be its mixed extensions. Every
equilibrium of � is called an equilibrium in mixed strategies of G. If G is a two-player
zero-sum game, and if � has value v, then v is called the value of G in mixed strategies.
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Example 5.1 (Continued ) Consider the two-player zero-sum game in Figure 5.2.

Player I

Player II

B

T

RL

2

4

3

1

Figure 5.2 The game in strategic form

When Player I’s strategy set contains two actions, T and B, we identify the mixed strategy
[x(T ), (1 − x)(B)] with the probability x of selecting the pure strategy T . Similarly, when Player II’s
strategy set contains two actions, L and R, we identify the mixed strategy [y(L), (1 − y)(R)] with
the probability y of selecting the pure strategy L. For each pair of mixed strategies x, y ∈ [0, 1]
(with the identifications x ≈ [x(T ), (1 − x)(B)] and y ≈ [y(L), (1 − y)(R)]) the payoff is

U (x, y) = 4xy + 1x(1 − y) + 2(1 − x)y + 3(1 − x)(1 − y) (5.10)

= 3 − 2x − y + 4xy. (5.11)

This mixed extension is identical to the game over the unit square presented in Section 4.14.1. As
we showed there, the game has the value 2 1

2 , and its optimal strategies are x = 1
4 and y = 1

2 . It
follows that the value in mixed strategies of the game in Figure 5.2 is 2 1

2 , and the optimal strategies
of the players are x∗ = [ 1

4 (T ), 3
4 (B)] and y∗ = [ 1

2 (L), 1
2 (R)]. We conclude that this game has no

value in pure strategies, but it does have a value in mixed strategies. �

The payoff function defined in Equation (5.10) is a linear function over x for each fixed
y and, similarly, a linear function over y for each fixed x. Such a function is called a
bilinear function. The analysis we conducted in Example 5.1 can be generalized to all
two-player games where each player has two pure strategies. The extension to mixed
strategies of such a game is a game on the unit square with bilinear payoff functions. In
the converse direction, every zero-sum two-player game over the unit square with bilinear
payoff functions is the extension to mixed strategies of a two-player zero-sum game in
which each player has two pure strategies (Exercise 5.6).

The next theorem states that this property can be generalized to any number of players
and any number of actions, as long as we properly generalize the concept of bilinearity to
multilinearity.

Theorem 5.6 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form in which the set
of strategies Si of every player is finite, and let � = (N, (�i)i∈N, (Ui)i∈N ) be its mixed
extension. Then for each player i ∈ N , the function Ui is a multilinear function in the n

variables (σi)i∈N , i.e., for every player i, for every σi, σ
′
i ∈ �i , and for every λ ∈ [0, 1],

Ui(λσi + (1 − λ)σ ′
i , σ−i) = λUi(σi, σ−i) + (1 − λ)Ui(σ

′
i , σ−i), ∀σ−i ∈ �−i .

Proof: Recall that

Ui(σ ) =
∑

(s1,...,sn)∈S

ui(s1, . . . , sn)σ1(s1)σ2(s2) · · · σn(sn). (5.12)
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The function Ui is a function of
∑n

i=1 mi variables:

σ1
(
s1

1

)
, σ1

(
s2

1

)
, . . . , σ1

(
s
m1
1

)
, σ2

(
s1

2

)
, . . . , σ2

(
s
m2
2

)
, . . . , σn(s1

n), . . . , σn(smn
n ). (5.13)

For each i ∈ N , for all j , 1 ≤ j ≤ mi and for each s = (s1, . . . , sn) ∈ S, the function

σi

(
s
j
i

) #→ ui(s1, . . . , sn)σ1(s1)σ2(s2) · · · σn(sn) (5.14)

is a constant function if si �= s
j
i and a linear function of σi(s

j
i ) with slope

ui(s1, . . . , sn)σ1(s1)σ2(s2) · · · σ2(si−1)σ2(si+1) · · · σn(sn) (5.15)

if si = s
j
i . Thus, the function Ui , as the sum of linear functions in σi(s

j
i ), is also linear

in σi(s
j
i ). It follows that for every i ∈ N , the function Ui(·, σ−i) is linear in each of the

coordinates σi(s
j
i ) of σi , for all σ−i ∈ �−i :

Ui(λσi + (1 − λ)σ ′
i , σ−i) = λUi(σi, σ−i) + (1 − λ)Ui(σ

′
i , σ−i), (5.16)

for every λ ∈ [0, 1], and every σi, σ
′
i ∈ �i . �

Since a multilinear function over � is a continuous function (see Exercise 5.4), we have
the following corollary of Theorem 5.6.

Corollary 5.7 The payoff function Ui of player i is a continuous function in the extension
to mixed strategies of every finite strategic-form game G = (N, (Si)i∈N, (ui)i∈N ).

We can also derive a second corollary from Theorem 5.6, which can be used to determine
whether a particular mixed strategy vector is an equilibrium.

Corollary 5.8 Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game, and let � be its
mixed extension. A mixed strategy vector σ ∗ is an equilibrium in mixed strategies of � if
and only if for every player i ∈ N and every pure strategy si ∈ Si

Ui(σ
∗) ≥ Ui(si, σ

∗
−i). (5.17)

Proof: If σ ∗ is an equilibrium in mixed strategies of �, then Ui(σ ∗) ≥ Ui(σi, σ
∗
−i) for

every player i ∈ N and every mixed strategy σi ∈ �i . Since every pure strategy is in
particular a mixed strategy, Ui(σ ∗) ≥ Ui(si, σ

∗
−i) for every player i ∈ N and every pure

strategy si ∈ Si , and Equation (5.17) holds.
To show the converse implication, suppose that the mixed strategy vector σ ∗ satisfies

Equation (5.17) for every player i ∈ N and every pure strategy si ∈ Si . Then for each
mixed strategy σi of player i,

Ui(σi, σ
∗
−i) =

∑
si∈Si

σi(si)Ui(si, σ
∗
−i) (5.18)

≤
∑
si∈Si

σi(si)Ui(σ
∗) (5.19)

= Ui(σ
∗)

∑
si∈Si

σi(si) = Ui(σ
∗), (5.20)
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where Equation (5.18) follows from the fact that Ui is a multilinear function, and Equation
(5.19) follows from Equation (5.17). In particular, σ ∗ is an equilibrium in mixed strategies
of �. �

Example 5.9 A mixed extension of a two-player game that is not zero-sum Consider the two-player

non-zero-sum game given by the payoff matrix shown in Figure 5.3.

Player I

Player II

B

T

RL

0, 1

1, −1

2, 0

0, 2

Figure 5.3 A two-player, non-zero-sum game without an equilibrium

As we now show, this game has no equilibrium in pure strategies (you can follow the arrows in
Figure 5.3 to see why this is so).

� (T ,L) is not an equilibrium, since Player II can gain by deviating to R.
� (T ,R) is not an equilibrium, since Player I can gain by deviating to B.
� (B,L) is not an equilibrium, since Player I can gain by deviating to T .
� (B,R) is not an equilibrium, since Player II can gain by deviating to L.

Does this game have an equilibrium in mixed strategies? To answer this question, we first write out
the mixed extension of the game:

� The set of players is the same as the set of players in the original game: N = {I, II}.
� Player I’s set of strategies is �I = {[x(T ), (1 − x)(B)] : x ∈ [0, 1]}, which can be identified with

the interval [0, 1].
� Player II’s set of strategies is �II = {[y(L), (1 − y)(R)] : y ∈ [0, 1]}, which can be identified with

the interval [0, 1].
� Player I’s payoff function is

UI(x, y) = xy + 2(1 − x)(1 − y) = 3xy − 2x − 2y + 2. (5.21)

� Player II’s payoff function is

UII(x, y) = −xy + 2x(1 − y) + y(1 − x) = −4xy + 2x + y. (5.22)

This is the game on the unit square that we studied in Section 4.14.2 (page 123). We found a unique
equilibrium for this game: x∗ = 1

4 and y∗ = 2
3 . The unique equilibrium in mixed strategies of the

given game is therefore ([
1
4 (T ), 3

4 (B)
]
,
[

2
3 (L), 1

3 (R)
])

. (5.23)
�

We have seen in this section two examples of two-player games, one a zero-sum game
and the other a non-zero-sum game. Neither of them has an equilibrium in pure strategies,
but they both have equilibria in mixed strategies. Do all games have equilibria in mixed
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strategies? John Nash, who defined the concept of equilibrium, answered this question
affirmatively.

Theorem 5.10 (Nash [1950b, 1951]) Every game in strategic form G, with a finite
number of players and in which every player has a finite number of pure strategies, has
an equilibrium in mixed strategies.

The proof of Nash’s Theorem will be presented later in this chapter. As a corollary, along
with Theorem 4.45 on page 115, we have an analogous theorem for two-player zero-sum
games. This special case was proven by von Neumann twenty-two years before Nash
proved his theorem on the existence of the equilibrium that bears his name.

Theorem 5.11 (von Neumann’s Minmax Theorem [1928]) Every two-player zero-sum
game in which every player has a finite number of pure strategies has a value in mixed
strategies.

In other words, in every two-player zero-sum game the minmax value in mixed strate-
gies is equal to the maxmin value in mixed strategies. Nash regarded his result as a
generalization of the Minmax Theorem to n players. This is, in fact, a generalization of
the Minmax Theorem here to two-player games that may not be zero-sum, and to games
with any finite number of players. On the other hand, as we noted on page 117, this is
a generalization of only one aspect of the notion of the “value” of a game, namely, the
aspect of stability. The other aspect of the value of a game – the security level – which
characterizes the value in two-player zero-sum games, is not generalized by the Nash
equilibrium.

Recall that the value in mixed strategies of a two-player zero-sum game, if it exists, is
given by

v := max
σI∈�I

min
σII∈�II

U (σI, σII) = min
σII∈�II

max
σI∈�I

U (σI, σII). (5.24)

Since the payoff function is multilinear, for every strategy σI of Player I, the function
σII #→ U (σI, σII) is linear.

A point x in a set X ⊆ Rn is called an extreme point if it is not the linear combination
of two other points in the set (see Definition 23.2 on page 917). Every linear function
defined over a compact set attains its maximum and minimum at extreme points. The set
of extreme points of a collection of mixed strategies is the set of pure strategies (Exercise
5.5). It follows that for every strategy σI of Player I, it suffices to calculate the internal
maximum in the middle term in Equation (5.24) over pure strategies. Similarly, for every
strategy σII of Player II, it suffices to compute the internal maximum in the right-hand
term in Equation (5.24) over pure strategies. That is, if v is the value in mixed strategies
of the game, then

v = max
σI∈�I

min
sII∈SII

U (σI, sII) = min
σII∈�II

max
sI∈SI

U (sI, σII). (5.25)

As the next example shows, when the number of pure strategies is infinite, Nash’s
Theorem and the Minmax Theorem do not hold.
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Example 5.12 Choosing the largest number Consider the following two-player zero-sum game. Two

players simultaneously and independently choose a positive integer. The player who chooses the
smaller number pays a dollar to the player who chooses the largest number. If the two players
choose the same integer, no exchange of money occurs. We will model this as a game in strategic
form, and then show that it has no value in mixed strategies.

Both players have the same set of pure strategies:

SI = SII = N = {1, 2, 3, . . .}. (5.26)

This set is not finite; it is a countably infinite set. The payoff function is

u(sI, sII) =
⎧⎨⎩

1 when sI > sII,

0 when sI = sII,

−1 when sI < sII.

(5.27)

A mixed strategy in this game is a probability distribution over the set of nonnegative integers:

�I = �II =
{

(x1, x2, . . .) :
∞∑

k=1

xk = 1, xk ≥ 0 ∀k ∈ N

}
. (5.28)

We will show that

sup
σI∈�I

inf
σII∈�II

U (σI, σII) = −1 (5.29)

and

inf
σII∈�II

sup
σI∈�I

U (σI, σII) = 1. (5.30)

It will then follow from Equations (5.29) and (5.30) that the game has no value in mixed strategies.
Let σI be the strategy of Player I, and let ε ∈ (0, 1). Since σI is a distribution over N, there exists a
sufficiently large k ∈ N satisfying

σI({1, 2, . . . , k}) > 1 − ε. (5.31)

In words, the probability that Player I will choose a number that is less than or equal to k is greater
than 1 − ε. But then, if Player II chooses the pure strategy k + 1 we will have

U (σI, k + 1) < (1 − ε) × (−1) + ε × 1 = −1 + 2ε, (5.32)

because with probability greater than 1 − ε, Player I loses and the payoff is −1, and with probability
less than ε, he wins and the payoff is 1. Since this is true for any ε ∈ (0, 1), Equation (5.29) holds.
Equation (5.30) is proved in a similar manner. �

We defined extensive-form games with the use of finite games; in particular, in every
extensive-form game every player has a finite number of pure strategies. We therefore
have the following corollary of Theorem 5.10.

Theorem 5.13 Every extensive-form game has an equilibrium in mixed strategies.

5.2 Computing equilibria in mixed strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Before we proceed to the proof of Nash’s Theorem, we will consider the subject of
computing equilibria in mixed strategies. When the number of players is large, and
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similarly when the number of strategies is large, finding an equilibrium, to say nothing of
finding all the equilibria, is a very difficult problem, both theoretically and computationally.
We will present only a few examples of computing equilibria in simple games.

5.2.1 The direct approach
The direct approach to finding equilibria is to write down the mixed extension of the
strategic-form game and then to compute the equilibria in the mixed extension (assuming
we can do that). In the case of a two-player game where each player has two pure strategies,
the mixed extension is a game over the unit square with bilinear payoff functions, which
can be solved as we did in Section 4.14 (page 121). Although this approach works well
in two-player games where each player has two pure strategies, when there are more
strategies, or more players, it becomes quite complicated.

We present here a few examples of this sort of computation. We start with two-player
zero-sum games, where finding equilibria is equivalent to finding the value of the game, and
equilibrium strategies are optimal strategies. Using Equation (5.25) we can find the value
of the game by computing maxσI∈�I minsII∈SII U (σI, sII) or minσII∈�II maxsI∈SI U (sI, σII),
which also enables us to find the optimal strategies of the players: every strategy σI at
which the maximum of maxσI∈�I minsII∈SII U (σI, sII) is obtained is an optimal strategy of
Player I, and every strategy σII at which the minimum of minσII∈�II maxsI∈SI U (sI, σII) is
obtained is an optimal strategy of Player II.

The first game we consider is a game over the unit square. The computation presented
here differs slightly from the computation in Section 4.14 (page 121).

Example 5.14 A two-player zero-sum game, in which each player has two pure strategies Consider the

two-player zero-sum game in Figure 5.4.

Player I

Player II

B

T

RL

3

5

4

0

Figure 5.4 A two-player zero-sum game

We begin by computing maxσI∈�I minsII∈SII U (σI, sII) in this example. If Player I plays the mixed
strategy [x(T ), (1 − x)(B)], his payoff, as a function of x, depends on the strategy of Player II:

� If Player II plays L: U (x, L) = 5x + 3(1 − x) = 2x + 3.
� If Player II plays R: U (x,R) = 4(1 − x) = −4x + 4.

The graph in Figure 5.5 shows these two functions. The thick line plots the function representing
the minimum payoff that Player I can receive if he plays x: minsII∈SII U (x, sII). This minimum is
called the lower envelope of the payoffs of Player I.
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0 1
6

1
0

v
3

4

5

x

U(x, L )

U(x, R )

Figure 5.5 The payoff function of Player I and the lower envelope of those payoffs, in the game in
Figure 5.4

The value of the game in mixed strategies equals maxσI∈�I minsII∈SII U (σI, sII), which is the
maximum of the lower envelope. This maximum is attained at the intersection point of the two
corresponding lines appearing in Figure 5.5, i.e., at the point at which

2x + 3 = −4x + 4, (5.33)

whose solution is x = 1
6 . It follows that Player I’s optimal strategy is x∗ = [ 1

6 (T ), 5
6 (B)]. The value

of the game is the height of the intersection point, v = 2 × 1
6 + 3 = 3 1

3 .
We conduct a similar calculation for finding Player II’s optimal strategy, aimed at finding the

strategy σII at which the minimum of minσII∈�II maxsI∈SI U (sI, σII) is attained. For each one of the
pure strategies T and B of Player I, we compute the payoff as a function of the mixed strategy y of
Player II, and look at the upper envelope of these two lines (see Figure 5.6).

0 2
3

1
0

v
3

4

5

y

U(T, y) = 5y

U(B, y) = 4 − y

Figure 5.6 The payoff function of Player II and the upper envelope of those payoffs, in the game
in Figure 5.4

The minimum of the upper envelope is attained at the point of intersection of these two lines. It
is the solution of the equation 5y = 4 − y, which is y = 2

3 . It follows that the optimal strategy of
Player II is y∗ = [ 2

3 (L), 1
3 (R)]. The value of the game is the height of the intersection point,

U (B, y∗) = 4 − 2
3 = 3 1

3 . (5.34)
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This procedure can be used for finding the optimal strategies of every game in which the players
each have two pure strategies. Note that the value v, as computed in Figure 5.6 (the minmax
value), is identical to the value v computed in Figure 5.4 (the maxmin value): both are equal to
3 1

3 . This equality follows from Theorem 5.11, which states that the game has a value in mixed
strategies. �

The graphical procedure presented in Example 5.14 is very convenient. It can be
extended to games in which one of the players has two pure strategies and the other player
has any finite number of strategies. Suppose that Player I has two pure strategies. We can
plot (as a straight line) the payoffs for each pure strategy of Player II as a function of x,
the mixed strategy chosen by Player I. We can find the minimum of these lines (the lower
envelope), and then find the maximum of the lower envelope. This maximum is the value
of the game in mixed strategies.

Example 5.15 Consider the two-player zero-sum game in Figure 5.7.

Player I

Player II

B

T

ML R

1

2

−2

5

5

−1

Figure 5.7 The two-player zero-sum game in Example 5.15

If Player I plays the mixed strategy [x(T ), (1 − x)(B)], his payoff, as a function of x, depends
on the strategy chosen by Player II:

� If Player II plays L: U (x, L) = 2x + (1 − x) = 1 + x.
� If Player II plays M: U (x,M) = 5x − 2(1 − x) = 7x − 2.
� If Player II plays R: U (x,R) = −x + 5(1 − x) = −6x + 5.

Figure 5.8 shows these three functions. As before, the thick line represents the function
miny∈[0,1] U (x, y). The maximum of the lower envelope is attained at the point x in the intersection
of the lines U (x, L) and U (x,R), and it is therefore the solution of the equation 1 + x = −6x + 5,
which is x = 4

7 . It follows that the optimal strategy of Player I is x∗ = [ 4
7 (T ), 3

7 (B)]. The maximum
of the lower envelope is U ( 4

7 , L) = U ( 4
7 , R) = 1 4

7 ; hence the value of the game in mixed strategies
is 1 4

7 .
How can we find optimal strategies for Player II? For each mixed strategy σII of Player II, the

payoff U (x, σII), as a function of x, is a linear function. In fact, it is the average of the functions
U (x, L), U (x,M), and U (x,R). If σ ∗

II is an optimal strategy of Player II, then it guarantees that the
payoff will be at most the value of the game, regardless of the mixed strategy x chosen by Player I.
In other words, we must have

U (x, σ ∗
II) ≤ 1 4

7 , ∀x ∈ [0, 1]. (5.35)
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x ∗

1
1 4

7

2

3

4

5

0

−1

−2

−1

−2

2

0

5

4

3

2

U(x, R)

U(x, M )

U(x, L)

Figure 5.8 The graphs of the payoff functions of Player 1

Consider the graph in Figure 5.8. Since U ( 4
7 , σ ∗

II) is at most 1 4
7 , but U ( 4

7 , L) = U ( 4
7 , R) = 1 4

7 and
U ( 4

7 ,M) > 1 4
7 , the only mixed strategies for which U ( 4

7 , σII) ≤ 1 4
7 are mixed strategies in which

the probability of choosing the pure strategy M is 0, and in those mixed strategies U ( 4
7 , σI) = 1 4

7 .
Our task, therefore, is to find the appropriate weights for the pure strategies L and R that

guarantee that the weighted average of U (x, L) and U (x,R) is the constant function 1 4
7 . Since

every weighted average of these functions equals 1 4
7 at the point x = 4

7 , it suffices to find weights
that guarantee that the weighted average will be 1 4

7 at one additional point x, for example, at x = 0
(because a linear function that attains the same value at two distinct points is a constant function).
This means we need to consider the equation

1 4
7 = qU (0, L) + (1 − q)U (0, R) = q + 5(1 − q) = 5 − 4q. (5.36)

The solution to this equation is q = 6
7 , and therefore the unique optimal strategy of Player II is

σ ∗
II = [ 6

7 (L), 1
7 (R)]. �

The procedure used in the last example for finding an optimal strategy for Player II
is a general one: after finding the value of the game and the optimal strategy of Player
I, we need only look for pure strategies of Player II for which the intersection of the
lines corresponding to their payoffs comprises the maximum of the lower envelope. In
the above example, there were only two such pure strategies. In other cases, there may
be more than two pure strategies comprising the maximum of the lower envelope. In
such cases, we need only choose two such strategies: one for which the corresponding
line is nonincreasing, and one for which the corresponding line is nondecreasing (see,
for example, Figure 5.9(F)). After we have identified two such strategies, it remains to
solve one linear equation and find a weighted average of the lines that yields a horizontal
line.

Remark 5.16 The above discussion shows that in every two-player zero-sum game in
which Player I has two pure strategies and Player II has mII pure strategies, Player II
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x∗ x∗ x∗

x∗

x

Case A

x

Case B

x

Case C

x0
x

Case D

x0 x1
x

Case E

x

Case F

Figure 5.9 Possible graphs of payoffs as a function of x

has an optimal mixed strategy that chooses, with positive probability, at most two pure
strategies. This is a special case of a more general result: in every two-player zero-
sum game where Player I has mI pure strategies and Player II has mII pure strategies,
if mI < mII then Player II has an optimal mixed strategy that chooses, with positive
probability, at most mI pure strategies. �

To compute the value, we found the maximum of the lower envelope. In the example
above, there was a unique maximum, which was attained in the line segment [0, 1]. In
general there may not be a unique maximum, and the maximal value may be attained at
one of the extreme points, x = 0 or x = 1. Figure 5.9 depicts six distinct possible graphs
of payoff functions of (U (x, sII))sII∈SII .

In cases A and F, the optimal strategy of Player I is attained at an internal point x∗.
In case B, the maximum of the lower envelope is attained at x∗ = 1, and in case C the
maximum is attained at x∗ = 0. In case D, the maximum is attained in the interval [x0, 1];
hence every point in this interval is an optimal strategy of Player I. In case E, the maximum
is attained in the interval [x0, x1]; hence every point in this interval is an optimal strategy
of Player I.

As for Player II, his unique optimal strategy is at an internal point in case A (and
therefore is not a pure strategy). His unique optimal strategy is a pure strategy in cases B,
C, D, and E. In case F, Player II has a continuum of optimal strategies (see Exercise 5.11).

5.2.2 Computing equilibrium points
When dealing with a game that is not zero sum, the Nash equilibrium solution concept
is not equivalent to the maxmin value. The computational procedure above will therefore
not lead to Nash equilibrium points in that case, and we need other procedures.
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The most straightforward and natural way to develop such a procedure is to build on
the definition of the Nash equilibrium in terms of the “best reply.” We have already seen
such a procedure in Section 4.14.2 (page 123), when we looked at non-zero-sum games
on the unit square. We present another example here, in which there is more than one
equilibrium point.

Example 5.17 Battle of the Sexes The Battle of the Sexes game, which we saw in Example 4.21 (page 98),

appears in Figure 5.10.

Player I

Player II

C

F

CF

1, 2

0, 0

0, 0

2, 1

Figure 5.10 Battle of the Sexes

Recall that for each mixed strategy [x(F ), (1 − x)(C)] of Player I (which we will refer to as x

for short), we denoted the collection of best replies of Player II by:

brII(x) = argmaxy∈[0,1]uII(x, y) (5.37)

= {y ∈ [0, 1] : uII(x, y) ≥ uII(x, z) ∀z ∈ [0, 1]} . (5.38)

Similarly, for each mixed strategy [y(F ), (1 − y)(C)] of Player II (which we will refer to as y for
short), we denoted the collection of best replies of Player I by:

brI(y) = argmaxx∈[0,1]uI(x, y) (5.39)

= {x ∈ [0, 1] : uI(x, y) ≥ uI(z, y) ∀z ∈ [0, 1]} . (5.40)

In the Battle of the Sexes, these correspondences1are given by

brII(x) =

⎧⎪⎨⎪⎩
0 if x < 2

3 ,

[0, 1] if x = 2
3 ,

1 if x > 2
3 .

brI(y) =

⎧⎪⎨⎪⎩
0 if y < 1

3 ,

[0, 1] if y = 1
3 ,

1 if y > 1
3 .

Figure 5.11 depicts the graphs of these two set-valued functions, brI and brII. The graph of brII is
the lighter line, and the graph of brI is the darker line. The two graphs are shown on the same set of
axes, where the x-axis is the horizontal line, and the y-axis is the vertical line. For each x ∈ [0, 1],
brII(x) is a point or a line located above x. For each y ∈ [0, 1], brI(y) is a point or a line located to
the right of y.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 A set-valued function, or a correspondence, is a multivalued function that associates every point in the domain with
a set of values (as opposed to a single value, as is the case with an ordinary function).
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0 2
3

1
0

1
3

x

y brII

brI

Figure 5.11 The graphs of brI (black line) and of brII (grey line)

A point (x∗, y∗) is an equilibrium point if and only if x∗ ∈ brI(y∗) and y∗ ∈ brII(x∗). This is
equivalent to (x∗, y∗) being a point at which the two graphs brI and brII intersect (verify this for
yourself). As Figure 5.11 shows, these graphs intersect in three points:

� (x∗, y∗) = (0, 0): corresponding to the pure strategy equilibrium (C,C).
� (x∗, y∗) = (1, 1): corresponding to the pure strategy equilibrium (F,F ).
� (x∗, y∗) = ( 2

3 , 1
3 ): corresponding to the equilibrium in mixed strategies

x∗ = [
2
3 (F ), 1

3 (C)
]
, y∗ = [

1
3 (F ), 2

3 (C)
]
. (5.41)

Note two interesting points:

� The payoff at the mixed strategy equilibrium is ( 2
3 , 2

3 ). For each player, this payoff is worse than
the worst payoff he would receive if either of the pure strategy equilibria were chosen instead.

� The payoff 2
3 is also the security level (maxmin value) of each of the two players (verify this), but

the maxmin strategies guaranteeing this level are not equilibrium strategies; the maxmin strategy
of Player I is [ 1

3 (F ), 2
3 (C)], and the maxmin strategy of Player II is [ 2

3 (F ), 1
3 (C)]. �

This geometric procedure for computing equilibrium points, as intersection points of
the graphs of the best replies of the players, is not applicable if there are more than two
players or if each player has more than two pure strategies. But there are cases in which
this procedure can be mimicked by finding solutions of algebraic equations corresponding
to the intersections of best-response graphs.

5.2.3 The indifference principle
One effective tool for finding equilibria is the indifference principle. The indifference
principle says that if a mixed equilibrium calls for a player to use two distinct pure
strategies with positive probability, then the expected payoff to that player for using one
of those pure strategies equals the expected payoff to him for using the other pure strategy,
assuming that the other players are playing according to the equilibrium.
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Theorem 5.18 Let σ ∗ be an equilibrium in mixed strategies of a strategic-form game,
and let si and ŝi be two pure strategies of player i. If σ ∗

i (si) > 0 and σ ∗
i (̂si) > 0, then

Ui(si, σ
∗
−i) = Ui (̂si, σ

∗
−i). (5.42)

The reason this theorem holds is simple: if the expected payoff to player i when
he plays pure strategy si is higher than when he plays ŝi , then he can improve his
expected payoff by increasing the probability of playing si and decreasing the probability of
playing ŝi .

Proof: Suppose by contradiction that Equation (5.42) does not hold. Without loss of
generality, suppose that

Ui(si, σ
∗
−i) > Ui (̂si, σ

∗
−i). (5.43)

Let σi be the strategy of player i defined by

σ ′
i (ti) :=

⎧⎨⎩
σi(ti) if ti �∈ {si, ŝi},
0 if ti = ŝi ,

σ ∗
i (si) + σ ∗

i (̂si) if ti = si .

Then

Ui(σi, σ
∗
−i) =

∑
ti∈Si

σ (ti)Ui(ti , σ ∗
−i) (5.44)

=
∑

ti �∈{si ,̂si }
σ ∗(ti)Ui(ti , σ

∗
−i) + (σ ∗

i (si) + σi (̂si))Ui(si, σ
∗
−i) (5.45)

>
∑

ti �∈{si ,̂si }
σ ∗(ti)Ui(ti , σ

∗
−i) + σi(si)Ui(si, σ

∗
−i) + σ ∗

i (̂si)Ui (̂si, σ
∗
−i) (5.46)

=
∑
ti∈si

σ ∗
i (ti)Ui(ti , σ

∗
−i) (5.47)

= Ui(σ
∗). (5.48)

The equalities in Equation (5.45) and Equation (5.47) follow from the definition of σ , and
Equation (5.46) follows from Equation (5.43). But this contradicts the assumption that
σ ∗ is an equilibrium, because player i can increase his payoff by deviating to strategy
σ ′

i . This contradiction shows that the assumption that Equation (5.42) does not hold was
wrong, and the theorem therefore holds. �

We will show how the indifference principle can be used to find equilibria, by recon-
sidering the game in Example 5.9.
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Example 5.9 (Continued ) The payoff matrix in this game appears in Figure 5.12.

Player I

Player II

B

T

RL

0, 1

1, −1

2, 0

0, 2

Figure 5.12 The payoff matrix in Example 5.9

As we have already seen, the only equilibrium point in this game is([
1
4 (T ), 3

4 (B)
]
,
[

2
3 (L), 1

3 (R)
])

. (5.49)

Definition 5.19 A mixed strategy σi of player i is called a completely mixed strategy if σi (si) > 0 for
every pure strategy si ∈ Si . An equilibrium σ ∗ = (σ ∗

i )i∈N is called a completely mixed equilibrium
if for every player i ∈ N the strategy σ ∗

i is a completely mixed strategy.

In words, a player’s completely mixed strategy chooses each pure strategy with positive probability.
It follows that at every completely mixed equilibrium, every pure strategy vector is chosen with
positive probability.

We will now compute the equilibrium using the indifference principle. The first step is to
ascertain, by direct inspection, that the game has no pure strategy equilibria. We can also ascertain
that there is no Nash equilibrium of this game in which one of the two players plays a pure strategy.
By Nash’s Theorem (Theorem 5.10), the game has at least one equilibrium in mixed strategies, and
it follows that at every equilibrium of the game both players play completely mixed strategies. For
every pair of mixed strategies (x, y), we have that UII(x, L) = 1 − 2x, UII(x,R) − 2x, UI(T , y) =
y, and UI(B, y) = 2(1 − y). By the indifference principle, at equilibrium Player I is indifferent
between playing T and playing B, and Player II is indifferent between L and R. In other words, if
the equilibrium is (x∗, y∗), then:

� Player I is indifferent between T and B:

UI(T , y∗) = UI(B, y∗) =⇒ y∗ = 2(1 − y∗) =⇒ y∗ = 2
3 . (5.50)

� Player II is indifferent between L and R:

UII(x
∗, L) = UII(x

∗, R) =⇒ 1 − 2x∗ = 2x∗ =⇒ x∗ = 1
4 . (5.51)

We have, indeed, found the same equilibrium that we found above, using a different procedure.
Interestingly, in computing the mixed strategy equilibrium, each player’s strategy is determined by
the payoffs of the other player; each player plays in such a way that the other player is indifferent
between his two pure strategies (and therefore the other player has no incentive to deviate). This is
in marked contrast to the maxmin strategy of a player, which is determined solely by the player’s
own payoffs. This is yet another expression of the significant difference between the solution
concepts of Nash equilibrium and maxmin strategy, in games that are not two-player zero-sum
games. �
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5.2.4 Dominance and equilibrium
The concept of strict dominance (Definition 4.6 on page 86) is a useful tool for computing
equilibrium points. As we saw in Corollary 4.36 (page 109), in strategic-form games a
strictly dominated strategy is chosen with probability 0 in each equilibrium. The next
result, which is a generalization of that corollary, is useful for finding equilibria in mixed
strategies.

Theorem 5.20 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form in which the
sets (Si)i∈N are all finite sets. If a pure strategy si ∈ Si of player i is strictly dominated
by a mixed strategy σi ∈ �i , then in every equilibrium of the game, the pure strategy si is
chosen by player i with probability 0.

Proof: Let si be a pure strategy of player i that is strictly dominated by a mixed strategy
σi , and let σ̂ = (̂σi)i∈N be a strategy vector in which player i chooses strategy si with
positive probability: σ̂i(si) > 0. We will show that σ̂ is not an equilibrium by showing that
σ̂i is not a best reply of player i to σ̂−i .

Define a mixed strategy σ ′
i ∈ �i as follows:

σ ′
i (ti) =

{
σ̂i(si) · σi(si) ti = si,

σ̂i(ti) + σ̂i(si) · σi(t ′i ) ti �= si .
(5.52)

In words, player i, using strategy σ ′
i , chooses his pure strategy in two stages: first he

chooses a pure strategy using the probability distribution σ̂i . If this choice leads to a pure
strategy that differs from si , he plays that strategy. But if si is chosen, player i chooses
another pure strategy using the distribution σi , and plays whichever pure strategy that
leads to.

Finally, we show that σ ′
i yields player i a payoff that is higher than σ̂i , when played

against σ̂−i , and hence σ̂ cannot be an equilibrium. Since σi strictly dominates si , it follows
that, in particular,

Ui(si, σ̂−i) < Ui(σi, σ̂−i), (5.53)

and we have

Ui (̂σi, σ̂−i) =
∑
ti∈Si

σ̂i(ti)Ui(ti , σ̂−i) (5.54)

=
∑
ti �=si

σ̂i(ti)Ui(ti , σ̂−i) + σ̂i(si)Ui(si, σ̂−i) (5.55)

<
∑
ti �=si

σ̂i(ti)Ui(ti , σ̂−i) + σ̂i(si)Ui(σi, σ̂−i) (5.56)

=
∑
ti �=si

σ ′
i (ti)Ui(ti , σ̂−i) + σ̂i(si)

∑
ti∈Si

σ ′
i (ti)Ui(ti , σ̂−i) (5.57)

=
∑
ti∈Si

σ ′
i (ti)Ui(ti, σ̂−i) (5.58)

= Ui(σ
′
i , σ̂−i). (5.59)

�
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The next example shows how to use Theorem 5.20 to find equilibrium points in a game.

Example 5.21 Consider the following two-player game in which N = {I, II} (Figure 5.13).

Player I

Player II

B

M

T

CL R

0, 6

2, 12

6, 2

10, 0

4, 3

0, 6

2, 2

2, 5

4, 4

Figure 5.13 The strategic-form game in Example 5.21

In this game, no pure strategy is dominated by another pure strategy (verify this). However,
strategy M of Player I is strictly dominated by the mixed strategy [ 1

2 (T ), 1
2 (B)] (verify this). It

follows from Theorem 5.20 that the deletion of strategy M has no effect on the set of equilibria in
the game. Following the deletion of strategy M , we are left with the game shown in Figure 5.14.

Player I

Player II

B

T

CL R

0, 6

6, 2

10, 0

0, 6

2, 2

4, 4

Figure 5.14 The game after eliminating strategy M

In this game, strategy R of Player II is strictly dominated by the mixed strategy [ 5
12 (L), 7

12 (C)].
We then delete R, which leaves us with the game shown in Figure 5.15.

Player I

Player II

B

T

CL

0, 6

6, 2

10, 0

0, 6

Figure 5.15 The game after eliminating strategies M and R

The game shown in Figure 5.15 has no pure strategy equilibria (verify this). The only
mixed equilibrium of this game, which can be computed using the indifference principle, is
([ 3

5 (T ), 2
5 (B)], [ 5

8 (L), 3
8 (R)]), which yields payoff ( 15

4 , 18
5 ) (verify this, too).

Since the strategies that were deleted were all strictly dominated strategies, the above equilibrium
is also the only equilibrium of the original game. �
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5.2.5 Two-player zero-sum games and linear programming
Computing the value of two-player zero-sum games, where each player has a finite number
of strategies, and finding optimal strategies in such games, can be presented as a linear
programming problem. It follows that these computations can be accomplished using
known linear programming algorithms. In this section, we present linear programs that
correspond to finding the value and optimal strategies of a two-player game. A brief survey
of linear programming appears in Section 23.3 (page 945).

Let (N, (Si)i∈N, u) be a two-player zero-sum game, in which the set of players is
N = {I, II}. As usual, U denotes the multilinear extension of u.

Theorem 5.22 Denote by ZP the value of the following linear program in the variables
(xsI )sI∈SI .

Compute: ZP := max z

subject to:
∑

sI∈SI
x(sI)u(sI, sII) ≥ z, ∀sII ∈ SII;∑

sI∈SI
x(sI) = 1;

x(sI) ≥ 0, ∀sI ∈ SI.

Then ZP is the value in mixed strategies of the game.

Proof: Denote by v the value of the game (N, (Si)i∈N, u) in mixed strategies. We will
show that ZP = v by showing that ZP ≥ v and ZP ≤ v.

Step 1: ZP ≥ v.
If v is the value of the game, then Player I has an optimal strategy σ ∗

I that guarantees a
payoff of at least v, for every mixed strategy of Player II:

U (σ ∗
I , σII) ≥ v, ∀σII ∈ �II. (5.60)

Since this inequality holds, in particular, for each pure strategy sII ∈ SII, the vector (x, z) =
(σ ∗

I , v) satisfies the constraints. Since ZP is the largest real number z for which there exists
a mixed strategy for Player I at which the constraints are satisfied, we have ZP ≥ v.

Step 2: ZP ≤ v.
We first show that ZP < ∞. Suppose that (x, z) is a vector satisfying the constraints. Then∑

sI∈SI
x(sI)u(sI, sII) ≥ z and

∑
sI∈SI

x(sI) = 1. This leads to

z ≤
∑
sI∈SI

x(sI)u(sI, sII) ≤ max
sI∈SI

max
sII∈SII

|u(sI, sII)| ×
∑
sI∈SI

x(sI) (5.61)

= max
sI∈SI

max
sII∈SII

|u(sI, sII)| < ∞. (5.62)

The finiteness of the expression in (5.62) is due to the fact that each of the players has a
finite number of pure strategies. Since ZP is the value of the linear program, there exists
a vector x such that (x, ZP ) satisfies the constraints. These constraints require x to be a
mixed strategy of Player I. Similarly, the constraints imply that u(x, sII) ≥ ZP for every
pure strategy sII ∈ SII. The multilinearity of U implies that

U (x, σII) ≥ ZP , ∀σII ∈ �II. (5.63)
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It follows that Player I has a mixed strategy guaranteeing a payoff of at least ZP , and
hence v ≥ ZP . �

The fact that the value of a game in mixed strategies can be found using linear program-
ming is an expression of the strong connection that exists between the Minmax Theorem
and the Duality Theorem. These two theorems are actually equivalent to each other. Exer-
cise 5.65 presents a guided proof of the Minmax Theorem using the Duality Theorem.
For the proof of the Duality Theorem using the Minmax Theorem, see Luce and Raifa
[1957], Section A5.2.

5.2.6 Two-player games that are not zero sum
Computing the value of a two-player zero-sum game can be accomplished by solving a
linear program. Similarly, computing equilibria in a two-player game that is not zero sum
can be accomplished by solving a quadratic program. However, while there are efficient
algorithms for solving linear programs, there are no known efficient algorithms for solving
generic quadratic programs.

A straightforward method for finding equilibria in two-player games that are not zero
sum is based on the following idea. Let (σ ∗

I , σ ∗
II) be a Nash equilibrium in mixed strategies.

Denote

supp(σ ∗
I ) := {sI ∈ SI : σ ∗

I (sI) > 0}, (5.64)

supp(σ ∗
II) := {sII ∈ SII : σ ∗

II(sII) > 0}. (5.65)

The sets supp(σ ∗
I ) and supp(σ ∗

II) are called the support of the mixed strategies σ ∗
I

and σ ∗
II respectively, and they contain all the pure strategies that are chosen with positive

probability under σ ∗
I and σ ∗

II , respectively. By the indifference principle (see Theorem 5.18
on page 160), at equilibrium any two pure strategies that are played by a particular player
with positive probability yield the same payoff to that player. Choose s0

I ∈ supp(σI) and
s0

II ∈ supp(σ ∗
II). Then (σ ∗

I , σ ∗
II) satisfies the following constraints:

UI(s
0
I , σ ∗

II) = UI(sI, σ
∗
II), ∀sI ∈ supp(σ ∗

I ), (5.66)

UII(σ ∗
I , s0

II) = UII(σ ∗
I , sII), ∀sII ∈ supp(σ ∗

II). (5.67)

At equilibrium, neither player can profit from unilateral deviation; in particular,

UI(s
0
I , σ ∗

II) ≥ UI(sI, σ
∗
II), ∀sI ∈ SI \ supp(σI), (5.68)

UII(σ
∗
I , s0

II) ≥ UII(σ
∗
I , sII), ∀sII ∈ SII \ supp(σII). (5.69)

Since UI and UII are multilinear functions, this is a system of equations that are linear in σ ∗
I

and σ ∗
II . By taking into account the constraint that σ ∗

I and σ ∗
II are probability distributions,

we conclude that (σ ∗
I , σ ∗

II) is the solution of a system of linear equations. In addition, every
pair of mixed strategies (σ ∗

I , σ ∗
II) that solves Equations (5.66)–(5.69) is a Nash equilibrium.

This leads to the following direct algorithm for finding equilibria in a two-player game
that is not zero sum: For every nonempty subset YI of SI and every nonempty subset YII of
SII, determine whether there exists an equilibrium (σ ∗

I , σ ∗
II) satisfying YI = supp(σ ∗

I ) and
YII = supp(σ ∗

II). The set of equilibria whose support is YI and YII is the set of solutions of
the system of equations comprised of Equations (5.70)–(5.79), in which s0

I and s0
II are any
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two pure strategies in YI and YII, respectively (Exercise 5.54):

∑
sII∈SII

σII(sII)uI
(
s0

I , sII
) = ∑

sII∈SII

σII(sII)uI(sI, sII), ∀sI ∈ YI, (5.70)

∑
sI∈SI

σI(sI)uI
(
sI, s

0
II

) = ∑
sI∈SI

σI(sI)uI(sI, sII), ∀sII ∈ YII, (5.71)

∑
sII∈SII

σII(sII)uI
(
s0

I , sII
) ≥ ∑

sII∈SII

σII(sII)uI(sI, sII), ∀sI ∈ SI \ YI, (5.72)

∑
sI∈SI

σI(sI)uI
(
sI, s

0
II

) ≥ ∑
sI∈SI

σI(sI)uI(sI, sII), ∀sII ∈ SII \ YII, (5.73)

∑
sI∈SI

σI(sI) = 1, (5.74)

∑
sII∈SII

σII(sII) = 1, (5.75)

σI(sI) > 0, ∀sI ∈ YI, (5.76)

σII(sII) > 0, ∀sII ∈ YII, (5.77)

σI(sI) = 0, ∀sI ∈ SI \ YI, (5.78)

σII(sII) = 0, ∀sII ∈ SII \ YII. (5.79)

Determining whether this system of equations has a solution can be accomplished by
solving a linear program. Because the number of nonempty subsets of SI is 2mI − 1
and the number of empty subsets of SII is 2mII − 1, the complexity of this algorithm is
exponential in mI and mII, and hence this algorithm is computationally inefficient.

5.3 The proof of Nash’s Theorem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

This section is devoted to proving Nash’s Theorem (Theorem 5.10), which states that
every finite game has an equilibrium in mixed strategies. The proof of the theorem makes
use of the following result.

Theorem 5.23 (Brouwer’s Fixed Point Theorem) Let X be a convex and compact set
in a d-dimensional Euclidean space, and let f : X → X be a continuous function. Then
there exists a point x ∈ X such that f (x) = x. Such a point x is called a fixed point of f .

Brouwer’s Fixed Point Theorem states that every continuous function from a convex
and compact set to itself has a fixed point, that is, a point that the function maps to itself.

In one dimension, Brouwer’s Theorem takes an especially simple form. In one dimen-
sion, a convex and compact space is a closed line segment [a, b]. When f : [a, b] → [a, b]
is a continuous function, one of the following three alternatives must obtain:
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a b

a

b

x∗

x∗

Figure 5.16 Brouwer’s Theorem: a fixed point in the one-dimensional case

1. f (a) = a, hence a is a fixed point of f .
2. f (b) = b, hence b is a fixed point of f .
3. f (a) > a and f (b) < b. Consider the function g(x) = f (x) − x, which is continuous,

where g(a) > 0 and g(b) < 0. The Intermediate Value Theorem implies that there
exists x ∈ [a, b] satisfying g(x) = 0, that is to say, f (x) = x. Every such x is a fixed
point of f .

The graphical expression of the proof of Brouwer’s Fixed Point Theorem in one dimension
is as follows: every continuous function on the segment [a, b] must intersect the main
diagonal in at least one point (see Figure 5.16).

If the dimension is two or greater, the proof of Brouwer’s Fixed Point Theorem is not
simple. It can be proved in several different ways, with a variety of mathematical tools. A
proof of the theorem using Sperner’s Lemma appears in Section 23.1.2 (page 935).

We will now prove Nash’s Theorem using Brouwer’s Fixed Point Theorem. The proofs
of the following two claims are left to the reader (Exercises 5.1 and 5.2).

Theorem 5.24 If player i’s set of pure strategies Si is finite, then his set of mixed strategies
�i is convex and compact.

Theorem 5.25 If A ⊂ Rn and B ⊂ Rm are compact sets, then the set A × B is a compact
subset of Rn+m. If A and B are convex sets, then A × B is a convex subset of Rn+m.

Theorems 5.24 and 5.25 imply that the set � = �1 × �2 × · · ·�n is a convex and
compact subset of the Euclidean space Rm1+m2+···+mn . The proof of Nash’s Theorem then
proceeds as follows. We will define a function f : � → �, and prove that it satisfies the
following two properties:

� f is a continuous function.
� Every fixed point of f is an equilibrium of the game.

Since � is convex and compact, and f is continuous, it follows from Brouwer’s Fixed
Point Theorem that f has at least one fixed point. The second property above then implies
that the game has at least one equilibrium point.

The idea behind the definition of f is as follows. For each strategy vector σ , we define
f (σ ) = (fi(σ ))i∈N to be a vector of strategies, where fi(σ ) is a strategy of player i. fi(σ )



168 Mixed strategies

is defined in such a way that if σi is not a best reply to σ−i , then fi(σ ) is given by shifting
σi in the direction of a “better reply” to σ−i . It then follows that fi(σ ) = σi if and only if
σi is a best reply to σ−i .

To define f , we first define an auxiliary function g
j
i : � → [0,∞) for each player i

and each index j , where 1 ≤ j ≤ mi . That is, for each vector of mixed strategies σ we
define a nonnegative number g

j
i (σ ).

The payoff that player i receives under the vector of mixed strategies σ is Ui(σ ). The
payoff he receives when he plays the pure strategy s

j
i , but all the other players play σ , is

Ui(s
j
i , σ−i). We define the function g

j
i as follows:

g
j
i (σ ) := max

{
0, Ui

(
s
j
i , σ−i

)− Ui(σ )
}
. (5.80)

In words, g
j
i (σ ) equals 0 if player i cannot profit from deviating from σi to s

j
i . When

g
j
i (σ ) > 0, player i gains a higher payoff if he increases the probability of playing the pure

strategy s
j
i . Because a player has a profitable deviation if and only if he has a profitable

deviation to a pure strategy, we have the following result:

Claim 5.26 The strategy vector σ is an equilibrium if and only if g
j
i (σ ) = 0, for each

player i ∈ N and for all j = 1, 2, . . . , mi .

To proceed with the proof, we need the following claim.

Claim 5.27 For every player i ∈ N , and every j = 1, 2, . . . , mi , the function g
j
i is con-

tinuous.

Proof: Let i ∈ N be a player, and let j ∈ {1, 2, . . . , mi}. From Corollary 5.7 (page 149)
the function Ui is continuous. The function σ−i #→ Ui(s

j
i , σ−i), as a function of σ−1 is

therefore also continuous. In particular, the difference Ui(s
j
i , σ−i) − Ui(σ ) is a continuous

function. Since 0 is a continuous function, and since the maximum of continuous functions
is a continuous function, we have that the function g

j
i is continuous. �

We can now define the function f . The function f has to satisfy the property that every
one of its fixed points is an equilibrium of the game. It then follows that if σ is not an
equilibrium, it must be the case that σ �= f (σ ). How can we guarantee that? The main
idea is to consider, for every player i, the indices j such that g

j
i (σ ) > 0; these indices

correspond to pure strategies at which g
j
i (σ ) > 0, i.e., the strategies that will increase

player i’s payoff if he increases the probability that they will be played (and decreases the
probability of playing pure strategies that do not satisfy this inequality). This idea leads
to the following definition.

Because f (σ ) is an element in �, i.e., it is a vector of mixed strategies, f
j
i (σ ) is the

probability that player i will play the pure strategy s
j
i . Define:

f
j
i (σ ) := σi

(
s
j
i

)+ g
j
i (σ )

1 +∑mi

k=1 gk
i (σ )

. (5.81)

In words, if s
j
i is a better reply than σi to σ−i , we increase its probability by g

j
i (σ ), and

then normalize the resulting numbers so that we obtain a probability distribution. We now
turn our attention to the proof that f satisfies all its required properties.
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Claim 5.28 The range of f is �, i.e., f (�) ⊆ �.

Proof: We need to show that f (σ ) is a vector of mixed strategies, for every σ ∈ �, i.e.,

1. f
j
i (σ ) ≥ 0 for all i, and for all j ∈ {1, 2, . . . , mi}.

2.
∑mi

j=1 f
j
i (σ ) = 1 for all players i ∈ N.

The first condition holds because g
j
i (σ ) is nonnegative by definition, and hence the

denominator in Equation (5.81) is at least 1, and the numerator is nonnegative.
As for the second condition, because

∑mi

j=1 σi(s
j
i ) = 1, it follows that

mi∑
j=1

f
j
i (σ ) =

mi∑
j=1

σi

(
s
j
i

)+ g
j
i (σ )

1 +∑mi

k=1 gk
i (σ )

(5.82)

=
∑mi

j=1(σi

(
s
j
i

)+ g
j
i (σ ))

1 +∑mi

k=1 gk
i (σ )

(5.83)

=
∑mi

j=1 σi

(
s
j
i

)+∑mi

j=1 g
j
i (σ )

1 +∑mi

j=1 g
j
i (σ )

= 1. (5.84)

�

Claim 5.29 f is a continuous function.

Proof: Claim 5.27, implies that both the numerator and the denominator in the definition
of f

j
i are continuous functions. As mentioned in the proof of Claim 5.28, the denominator

in the definition of f
j
i is at least 1. Thus, f is the ratio of two continuous functions, where

the denominator is always positive, and therefore it is a continuous function. �

To complete the proof of the theorem, we need to show that every fixed point of f is
an equilibrium of the game. This is accomplished in several steps.

Claim 5.30 Let σ be a fixed point of f . Then

g
j
i (σ ) = σi

(
s
j
i

) mi∑
k=1

gk
i (σ ), ∀i ∈ N, j ∈ {1, 2, . . . , mi}. (5.85)

Proof: The strategy vector σ is a fixed point of f , and therefore f (σ ) = σ . This is an
equality between vectors; hence every coordinate in the vector on the left-hand side of the
equation equals the corresponding coordinate in the vector on the right-hand side, i.e.,

f
j
i (σ ) = σi

(
s
j
i

)
, ∀i ∈ N, j ∈ {1, 2, . . . , mi}. (5.86)

From the definition of f

σi

(
s
j
i

)+ g
j
i (σ )

1 +∑mi

k=1 gk
i (σ )

= σi

(
s
j
i

)
, ∀i ∈ N, j ∈ {1, 2, . . . , mi}. (5.87)
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The denominator on the left-hand side is positive; multiplying both sides of the equations
by the denominator yields

σi

(
s
j
i

)+ g
j
i (σ ) = σi

(
s
j
i

)+ σi

(
s
j
i

) mi∑
k=1

gk
i (σ ), ∀i ∈ N, j ∈ {1, 2, . . . , mi}. (5.88)

Cancelling the term σi(s
j
i ) from both sides of Equation (5.88) leads to Equation (5.85). �

We now turn to the proof of the last step.

Claim 5.31 Let σ be a fixed point of f . Then σ is a Nash equilibrium.

Proof: Suppose by contradiction that σ is not an equilibrium. Theorem 5.26 implies
that there exists a player i, and l ∈ {1, 2, . . . , mi}, such that gl

i (σ ) > 0. In particular,∑mi

k=1 gk
i (σ ) > 0; hence from Equation (5.85) we have

σi

(
s
j
i

)
> 0 ⇐⇒ g

j
i (σ ) > 0, ∀j ∈ {1, 2, . . . , mi}. (5.89)

Because gl
i (σ ) > 0, one has in particular that σi(sl

i ) > 0. Since the function Ui is multi-
linear, Ui(σ ) = ∑mi

j=1 σi(s
j
i )Ui(s

j
i , σ−i). This yields

0 =
mi∑

j=1

σi

(
s
j
i

)
(Ui

(
s
j
i , σ−i

)− Ui(σ )) (5.90)

=
∑

{j : σi

(
s
j
i

)
>0}

σi

(
s
j
i

)(
Ui

(
s
j
i , σ−i

)− Ui(σ )
)

(5.91)

=
∑

{j : σi

(
s
j
i

)
>0}

σi

(
s
j
i

)
g

j
i (σ ), (5.92)

where the last equality holds because from Equation (5.89), if σi(s
j
i ) > 0, then g

j
i (σ ) > 0,

and in this case g
j
i (σ ) = Ui(s

j
i , σ−i) − Ui(σ ). But the sum (Equation (5.92)) is posi-

tive: it contains at least one element (j = l), and by Equation (5.89) every summand in
the sum is positive. This contradiction leads to the conclusion that σ must be a Nash
equilibrium. �

5.4 Generalizing Nash’s Theorem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

There are situations in which, due to various constraints, a player cannot make use of some
mixed strategies. For example, there may be situations in which player i cannot choose
two pure strategies si and ŝi with different probability, and he is then forced to limit himself
to mixed strategies σi in which σi(si) = σi (̂si). A player may find himself in a situation in
which he must choose a particular pure strategy si with probability greater than or equal
to some given number pi(si), and he is then forced to limit himself to mixed strategies σi

in which σi(si) ≥ pi(si). In both of these examples, the constraints can be translated into
linear inequalities. A bounded set that is defined by the intersection of a finite number
of half-spaces is called a polytope. The number of extreme points of every polytope S

is finite, and every polytope is the convex hull of its extreme points: if x1, x2, . . . , xK
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are the extreme points of S, then S is the smallest convex set containing x1, x2, . . . , xK

(see Definition 23.1 on page 917). In other words, for each s ∈ S there exist nonnegative
numbers (αl)Kl=1 whose sum is 1, such that s = ∑K

l=1 αlxl; conversely, for each vector of
nonnegative numbers (αl)Kl=1 whose sum is 1, the vector

∑K
l=1 αlxl is in S.

The space of mixed strategies �i is a simplex, which is a polytope whose extreme points
are unit vectors e1, e2, . . . , emi , where ek = (0, . . . , 0, 1, 0, . . . , 0) is an mi-dimensional
vector whose k-th coordinate is 1, and all the other coordinates of ek are 0. We will
now show that Nash’s Theorem still holds when the space of strategies of a player is a
polytope, and not necessarily a simplex. We note that Nash’s Theorem holds under even
more generalized conditions, but we will not present those generalizations in this book.

Theorem 5.32 Let G = (N, (Xi)i∈N, (Ui)i∈N ) be a strategic-form game in which, for
each player i,

� The set Xi is a polytope in Rdi .
� The function Ui is a multilinear function over the variables (si)i∈N .

Then G has an equilibrium.

Nash’s Theorem (Theorem 5.10 on page 151) is a special case of Theorem 5.32, where
Xi = �i for every player i ∈ N .

Proof: The set of strategies Xi of player i in the game G is a polytope. Denote the
extreme points of this set by {x1

i , x
2
i , . . . , x

Ki

i }. Define an auxiliary strategic-form game
Ĝ in which:

� The set of players is N .
� The set of pure strategies of player i ∈ N is Li := {1, 2, . . . , Ki}. Denote L := ×i∈NLi .
� For each vector of pure strategies l = (l1, l2, . . . , ln) ∈ L, the payoff to player i is

vi(l) := Ui

(
x

l1
1 , x

l2
2 , . . . , xln

n

)
. (5.93)

It follows that in the auxiliary game every player i chooses an extreme point in his set of
strategies Xi , and his payoff in the auxiliary game is given by Ui . For each i ∈ N , denote
by Vi the multilinear extension of vi . Since Ui is a multilinear function, player i’s payoff
function in the extension of Ĝ to mixed strategies is

Vi(α) =
k1∑

l1=1

k2∑
l2=1

· · ·
kn∑

ln=1

α
l1
1 α

l2
2 · · ·αln

n vi(l1, l2, . . . , ln) (5.94)

=
k1∑

l1=1

k2∑
l2=1

· · ·
kn∑

ln=1

α
l1
1 α

l2
2 · · ·αln

n Ui

(
x

l1
1 , x

l2
2 , . . . , xln

n

)
(5.95)

= Ui

⎛⎝ k1∑
l1=1

α
l1
1 x

l1
1 , . . . ,

kn∑
ln=1

αln
n xln

n

⎞⎠ . (5.96)

The auxiliary game Ĝ satisfies the conditions of Nash’s Theorem (Theorem 5.10 on
page 151), and it therefore has a Nash equilibrium in mixed strategies α∗. It follows that
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for every player i,

Vi(α
∗) ≥ Vi(αi, α

∗
−i), ∀i ∈ N, ∀αi ∈ 
(Li). (5.97)

Denote by α∗
i = (α∗,li

i )Ki

li=1 player i’s strategy in the equilibrium α∗. Since Xi is a convex
set, the weighted average

s∗i :=
Ki∑

li=1

α
∗,li
i x

li
i (5.98)

is a point in Xi . We will now show that s∗ = (s∗i )i∈N is an equilibrium of the game G. Let
i ∈ N be a player, and let si be any strategy of player i. Since {x1

i , x
2
i , . . . , x

Ki

i } are extreme
points of Si there exists a distribution αi = (αli

i )Ki

li=1 over Li such that si =
∑Ki

li=1 αix
li
i .

Equations (5.98), (5.94), and (5.97) imply that, for each player i ∈ N ,

Ui(s
∗) = Vi(

∗α) ≥ Vi(αi, α−i) = Ui(si, s
∗
−i). (5.99)

That is, if player i deviates to si , he cannot profit. Since this is true for every player i ∈ N

and every strategy si ∈ Si , the strategy vector s∗ is an equilibrium of the game G. �

5.5 Utility theory and mixed strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In defining the mixed extension of a game, we defined the payoff that a vector of mixed
strategies yields as the expected payoff when every player chooses a pure strategy accord-
ing to the probability given by his mixed strategy. But how is this definition justified? In
this section we will show that if the preferences of the players satisfy the von Neumann–
Morgenstern axioms of utility theory (see Chapter 2), we can interpret the numerical
values in each cell of the payoff matrix as the utility the players receive when the outcome
of the game is that cell (see Figure 5.17).

Suppose that we are considering a two-player game, such as the game in Figure 5.17.
In this game there are six possible outcomes, O = {A1, A2, . . . , A6}. Each player has a
preference relation over the set of lotteries over O. Suppose that the two players have
linear utility functions, u1 and u2 respectively, over the set of lotteries. Every pair of mixed
strategies x = (x1, x2) and y = (y1, y2, y3) induces a lottery over the possible outcomes.
The probability of reaching each one of the possible outcomes is indicated in Figure 5.18.

In other words, every pair of mixed strategies (x, y) induces the following lottery Lx,y

over the outcomes:

L = Lx,y = [x1y1(A1), x1y2(A2), x1y3(A3), x2y1(A4), x2y2(A5), x2y3(A6)].

Since the utility function of the two players is linear, player i’s utility from this lottery
is

ui(Lx,y) = x1y1ui(A1) + x1y2ui(A2) + x1y3ui(A3) + x2y1ui(A4)

+ x2y2ui(A5) + x2y3ui(A6). (5.100)
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Player I

Player II

A1x1

y1 y2 y3

x2

A2 A3

A4 A5 A6

Figure 5.17 A two-player game in terms of outcomes

Outcome A1 A2 A3 A4 A5 A6

Probability x1y1 x 1y2 x1y3 x2y1 x2y2 x2y3

Figure 5.18 The probability of reaching each of the outcomes

Player I

Player II

x2

x1

y1 y2 y3

u1(A4), u2(A4)

u1(A1), u2(A1)

u1(A5), u2(A5)

u1(A2), u2(A2)

u1(A6), u2(A6)

u1(A3), u2(A3)

Figure 5.19 The game in Figure 5.17 in terms of utilities

Player i’s utility from this lottery is therefore equal to his expected payoff in the strategic-
form game in which in each cell of the payoff matrix we write the utilities of the players
from the outcome obtained at that cell (Figure 5.19).

If, therefore, we assume that each player’s goal is to maximize his utility, what we are
seeking is the equilibria of the game in Figure 5.19. If (x, y) is an equilibrium of this game,
then any player who unilaterally deviates from his equilibrium strategy cannot increase
his utility.

Note that because, in general, the utility functions of the players differ from each other,
the game in terms of utilities (Figure 5.19) is not a zero-sum game, even if the original
game is a zero-sum game in which the outcome is a sum of money that Player II pays to
Player I.

Recall that a player’s utility function is determined up to a positive affine transfor-
mation (Corollary 2.23, on page 23). How does the presentation of a game change if a
different choice of players’ utility functions is made? Let v1 and v2 be two positive affine
transformations of u1 and u2 respectively; i.e., ui and vi are equivalent representations of
the utilities of player i that satisfy vi(L) = αiui(L) + βi for every lottery L where αi > 0
and βi ∈ R for i = 1, 2. The game in Figure 5.17 in terms of the utility functions v1 and
v2 will be analogous to the matrix that appears in Figure 5.19, with u1 and u2 replaced by
v1 and v2 respectively.



174 Mixed strategies

Example 5.33 Consider the two games depicted in Figure 5.20. Game B in Figure 5.20 is derived from

Game A by adding a constant value of 6 to the payoff of Player II in every cell, whereby we have
implemented a positive affine transformation (where α = 1, β = 6) on the payoffs of Player II.

Player I

Player II

B

T

ML

5, −5

3, −3

1, −1

−2, 2

Game A

Player I

Player II

B

T

ML

5, 1

3, 3

1, 5

−2, 8

Game B
Figure 5.20 Adding a constant value to the payoffs of one of the players

While Game A is a zero-sum game, Game B is not a zero-sum game, because the sum of the
utilities in each cell of the matrix is 6. Such a game is called a constant-sum game. Every constant-
sum game can be transformed to a zero-sum game by adding a constant value to the payoffs of one
of the players, whereby the concepts constant-sum game and zero-sum game are equivalent. As
we will argue in Theorem 5.35 below, the equilibria of a game are unchanged by adding constant
values to the payoffs. For example, in the two games in Figure 5.20, strategy B strictly dominates
T for Player I, and strategy M strictly dominates L for Player II. It follows that in both of these
games, the only equilibrium point is (B,M).

If we implement a positive affine transformation in which α �= 1 on the payoffs of the players,
we will still end up with a game in which the only thing that has changed is the units in which we
are measuring the utilities of the players. For example, the following game is derived from Game
A in Figure 5.20 by implementing the affine transformation x #→ 5x + 7 on the payoffs of Player I
(see Figure 5.21).

Player I

Player II

B

T

ML

32, −5

22, −3

12, −1

−3, 2

Figure 5.21 The utilities in Game A in Figure 5.20 after implementing the affine transformation
x #→ 5x + 7 on the payoffs to Player I �

Games that differ only in the utility representations of the players are considered to be
equivalent games.

Definition 5.34 Two games in strategic form (N, (Si)i∈N, (ui)i∈N ) and (N, (Si)i∈N,

(vi)i∈N ) with the same set of players and the same sets of pure strategies are strategi-
cally equivalent if for each player i ∈ N the function vi is a positive affine transformation
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of the function ui . In other words, there exist αi > 0 and βi ∈ R such that

vi(s) = αiui(s) + βi, ∀s ∈ S. (5.101)

The name “strategic equivalence” comes from the next theorem, whose proof we leave
as an exercise (Exercise 5.58).

Theorem 5.35 Let G and Ĝ be two strategically equivalent strategic-form games. Every
equilibrium σ = (σ1, . . . , σn) in mixed strategies of the game G is an equilibrium in mixed
strategies of the game Ĝ.

In other words, each equilibrium in the original game remains an equilibrium after chang-
ing the utility functions of the players by positive affine transformations. Note, however,
that the equilibrium payoffs do change from one strategically equivalent game to another,
in accordance with the positive affine transformation that has been implemented.

Corollary 5.36 If the preferences of every player over lotteries over the outcomes of the
game satisfy the von Neumann–Morgenstern axioms, then the set of equilibria of the game
is independent of the particular utility functions used to represent the preferences.

Given the payoff matrix in Figure 5.21 and asked whether or not this game is strategically
equivalent to a zero-sum game, what should we do? If the game is strategically equivalent
to a zero-sum game, then there exist two positive affine transformations f1 and f2 such
that f2(u2(s)) = −f1(u1(s)) for every strategy vector s ∈ S. Since the inverse of a positive
affine transformation is also a positive affine transformation (Exercise 2.19 on page 35),
and the concatenation of two positive affine transformations is also a positive affine
transformation (Exercise 2.20 on page 35), in this case the positive affine transformation
f3 = −((f1)−1 ◦ (−f2)) satisfies the property that f3(u2(s)) = −u1(s) for every strategy
vector s ∈ S. In other words, if the game is strategically equivalent to a zero-sum game,
there exists a positive affine transformation that when applied to the utilities of Player II,
yields the negative of the utilities of Player I. Denote such a transformation, assuming it
exists, by αu + β. Then we need to check whether there exist α > 0 and β ∈ R such that

−5α + β = −32, (5.102)

−3α + β = −22, (5.103)

−1α + β = −12, (5.104)

2α + β = 3. (5.105)

In order to ascertain whether this system of equations has a solution, we can find α and
β that solve two of the above equations, and check whether they satisfy the rest of the
equations. For example, if we solve Equations (5.102) and (5.103), we get α = 5 and
β = −7, and we can then check that these values do indeed also solve the Equations
(5.104) and (5.105). Since we have found α and β solving the system of equations, we
deduce that this game is strategically equivalent to a zero-sum game.

Remark 5.37 Given the above, some people define a zero-sum game to be a game strate-
gically equivalent to a game (N, (Si)i∈N, (vi)i∈N ) in which v1 + v2 = 0. �
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The connection presented in this section between utility theory and game theory under-
scores the significance of utility theory. Representing the utilities of players by linear
functions enables us to compute Nash equilibria with relative ease. Had we represented
the players’ preferences/indifferences by nonlinear utility functions, calculating equilibria
would be far more complicated. This is similar to the way we select measurement scales
in various fields. Many physical laws are expressed using the Celsius scale, because they
can be given a simple expression. For example, consider the physical law that states that
the change in the length of a metal rod is proportional to the change in its temperature. If
temperature is measured in Fahrenheit, that law remains unchanged, since the Fahrenheit
scale is a positive affine transformation of the Celsius scale. In contrast, if we were to
measure temperature using, say, the log of the Celsius scale, many physical laws would
have much more complicated formulations. Using linear utilities enables us to compute
the utilities of simple lotteries using expected-value calculations, which simplifies the
analysis of strategic-form games. This, of course, depends on the assumption that the
preferences of the players can be represented by linear utility functions, i.e., that their
preferences satisfy the von Neumann–Morgenstern axioms.

Another important point that has emerged from this discussion is that most daily
situations do not correspond to two-player zero-sum games, even if the outcomes are
in fact sums of money one person pays to another. This is because the utility of one
player from receiving an amount of money x is usually not diametrically opposite to the
utility of the other from paying this amount. That is, there are amounts x ∈ R for which
u1(x) + u2(−x) �= 0. On the other hand, as far as equilibria are concerned, the particular
representation of the utilities of the players does not affect the set of equilibria of a game.
If there exists a representation that leads to a zero-sum game, we are free to choose that
representation, and if we do so, we can find equilibria by solving a linear program (see
Section 5.2.5 on page 164).

One family of games that is always amenable to such a representation, which can be
found easily, is the family of two-person games with two outcomes, where the preferences
of the two players for the two alternative outcomes are diametrically opposed in these
games. In such games we can always define the utilities of one of the players over the
outcomes to be 1 or 0, and define the utilities of the other player over the outcomes to be
−1 or 0. In contrast, zero-sum games are rare in the general family of two-player games.
Nevertheless, two-player zero-sum games are very important in the study of game theory,
as explained on pages 111–112.

5.6 The maxmin and the minmax in n-player games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 4.10 (page 102), we defined the maxmin to be the best outcome that a player
can guarantee for himself under his most pessimistic assumption regarding the behavior
of the other players.

Definition 5.38 The maxmin in mixed strategies of player i is defined as follows:

vi := max
σi∈�i

min
σ−i∈�−i

Ui(σi, σ−i). (5.106)
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In two-player zero-sum games we also defined the concept of the minmax value, which
is interpreted as the least payoff that the other players can guarantee that a player will
get. In two-player zero-sum games, minimizing the payoff of one player is equivalent
to maximizing the payoff of his opponent, and hence in two-player zero-sum games the
maxmin of Player I is equal to the minmax of Player II. This is not true, however, in
two-player games that are not zero-sum games, and in games with more than two players.

Analogously to the definition of the maxmin in Equation (5.106), the minmax value of
a player is defined as follows.

Definition 5.39 Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game. The minmax
value in mixed strategies of player i is

vi := min
σ−i∈�−i

max
σi∈�i

Ui(σi, σ−i). (5.107)

vi is the lowest possible payoff that the other players can force on player i.
A player’s maxmin and minmax values depend solely on his payoff function, which

is why different players in the same game may well have different maxmin and minmax
values. One of the basic characteristics of these values is that a player’s minmax value in
mixed strategies is greater than or equal to his maxmin value in mixed strategies.

Theorem 5.40 In every strategic-form game G = (N, (Si)i∈N, (ui)i∈N ), for each player
i ∈ N ,

vi ≥ vi. (5.108)

Equation (5.108) is expected: if the other players can guarantee that player i will not
receive more than vi , and player i can guarantee himself at least vi , then vi ≥ vi .

Proof: Let σ̂−i ∈ �−i be a strategy vector in which the minimum in Equation (5.107) is
attained;, i.e.,

vi = max
σi∈�i

Ui(σi, σ̂−i) ≤ max
σi∈�i

Ui(σi, σ−i), ∀σ−i ∈ �−i . (5.109)

On the other hand,

Ui(σi, σ̂−i) ≥ min
σ−i∈�−i

Ui(σi, σ−i), ∀σi ∈ �i. (5.110)

Taking the maximum over all mixed strategies σi ∈ �i on both sides of the equation sign
(5.110) yields

vi = max
σi∈�i

Ui(σi, σ̂−i) ≥ max
σi∈�i

min
σ−i∈�−i

Ui(σi, σ−i) = vi. (5.111)

We conclude that vi ≥ vi , which is what we needed to show. �
In a two-player game G = (N, (Si)i∈N, (ui)i∈N ) where N = {I, II}, the maxmin value

in mixed strategies of each player is always equal to his minmax value in mixed strategies.
For Player I, for example, these two values equal the value of the second two-player zero-
sum game G = (N, (Si)i∈N, (vi)i∈N ), in which vI = uI and vII = −uI (Exercise 5.64). As
the next example shows, in a game with more than two players the maxmin value may be
less than the minmax value.
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Example 5.41 Consider the three-player game in which the set of players is N = {I, II, III}, and every player

has two pure strategies; Player I chooses a row (T or B), Player II chooses a column (L or R), and
Player III chooses the matrix (W or E). The payoff function u1 of Player I is shown in Figure 5.22.

B

T

RL

1

0

1

1

B

T

RL

1

1

0

1

EW
Figure 5.22 Player I’s payoff function in the game in Example 5.41

We compute the maxmin value in mixed strategies of player i. If Player I uses the mixed strategy
[x(T ), (1 − x)(B)], Player II uses the mixed strategy [y(L), (1 − y)(R)], and Player III uses the
mixed strategy [z(W ), (1 − z)(E)], then Player I’s payoff is

UI(x, y, z) = 1 − xyz − (1 − x)(1 − y)(1 − z). (5.112)

We first find

vI = max
x

min
y,z

UI(x, y, z) = 1
2 . (5.113)

To see this, note that UI(x, 1, 1) = x ≤ 1
2 for every x ≤ 1

2 , and UI(x, 0, 0) = 1 − x ≤ 1
2 for every

x ≥ 1
2 , and hence miny,z UI(x, y, z) ≤ 1

2 for every x. On the other hand, UI( 1
2 , y, z) ≥ 1

2 for each y

and z and hence maxx miny,z UI(x, y, z) = 1
2 , which is what we claimed.

We next turn to calculating the minmax value of Player I.

vI = min
y,z

max
x

UI(x, y, z) (5.114)

= min
y,z

max
x

(1 − xyz − (1 − x)(1 − y)(1 − z)) (5.115)

= min
y,z

max
x

(1 − (1 − y)(1 − z) + x(1 − y − z)). (5.116)

For every fixed y and z the function x #→ (1 − (1 − y)(1 − z) + x(1 − y − z)) is linear; hence the
maximum of Equation (5.116) is attained at the extreme point x = 1 if 1 − y − z ≥ 0, and at the
extreme point x = 0 if 1 − y − z ≤ 0. This yields

max
x

(1 − (1 − y)(1 − z) + x(1 − y − z)) =
{

1 − (1 − y)(1 − z) if y + z ≥ 1,

1 − yz if y + z ≤ 1.

The minimum of the function 1 − (1 − y)(1 − z) over the domain y + z ≥ 1 is 3
4 , and is attained

at y = z = 1
2 . The minimum of the function 1 − yz over the domain y + z ≤ 1 is also 3

4 , and is
attained at y = z = 1

2 . We therefore deduce that

vI = 3
4 . (5.117)

In other words, in this example

vI = 1
2 < 3

4 = vI. (5.118)
�
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Why can the minmax value in mixed strategies of player i in a game with more than
two players be greater than his maxmin value in mixed strategies? Note that since Ui is a
function that is linear in σ−i , the minimum in Equation (5.106) is attained at an extreme
point of �−i , i.e., at a point in S−i . It follows that

vi = max
σi∈�i

min
s−i∈S−i

Ui(σi, s−i). (5.119)

Consider the following two-player zero-sum auxiliary game Ĝ:

� The set of players is {I, II}.
� Player I’s set of pure strategies is Si .
� Player II’s set of pure strategies is S−i = ×j �=iSj : Player II chooses a pure strategy for

every player who is not player i.
� The payoff function is ui , the payoff function of player i in the original game.

Player I’s set of mixed strategies in the auxiliary game Ĝ is 
(Si) = �i , which is player
i’s set of mixed strategies in the original game. Player II’s set of mixed strategies in
the auxiliary game Ĝ is 
(S−i); i.e., a mixed strategy of Player II in Ĝ is a probability
distribution over the set of pure strategy vectors of the players who are not player i. The
Minmax Theorem (Theorem 5.11 on page 151) then implies that the game Ĝ has a value
in mixed strategies, which is equal to

v̂ = max
σi∈�i

min
σ−i∈
(S−i )

Ui(σi, σ−i) = min
σ−i∈
(S−i )

max
σi∈�i

Ui(σi, σ−i). (5.120)

Since for every mixed strategy σi of player i the function σ−i #→ Ui(σi, σ−i) is linear in
the variables σ−i , the minimum in the expression in the middle term of Equation (5.120)
equals the minimum over the extreme points of 
(S−i), which is the set S−i . Therefore,

v̂ = max
σi∈�i

min
σ−i∈
(S−i )

Ui(σi, σ−i) = max
σi∈�i

min
s−i∈S−i

Ui(σi, s−i) = vi, (5.121)

where the last equality follows from Equation (5.119). Combining Equations (5.120) and
(5.121) and substituting S−i = ×j �=iSj yields

vi = min
σ−i∈
(×j �=iSj )

max
σi∈�i

Ui(σi, σ−i), (5.122)

and using Equation (5.107), and substituting �−i = ×j �=i
(Sj ), yields

vi = min
σ−i∈×j �=i
(Sj )

max
σi∈�i

Ui(σi, σ−i). (5.123)

With the help of the last two equations, we can see that the difference between vi

(the value of the auxiliary game) and vi is in the set over which the minimization is
implemented, or more precisely, the order in which the 
 operator (the set of distributions
over ...) and ×j �=i (the Cartesian product over ...) are implemented. ×j �=i
(Sj ) appears in
the calculation of the minmax value vi , and 
(×j �=iSj ) appears in the calculation of the
maxmin value vi . The relationship between these two sets is given by


(×j �=iSj ) ⊇ ×j �=i
(Sj ). (5.124)

The two sets in Equation (5.124) have the same extreme points, namely, the elements of
the set S−i . This fact was used in the derivation of Equation (5.122). Despite this, the
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inclusion in Equation (5.124) is a proper inclusion when the number of players is greater
than 2. In this case vi may be less than vi , since the minimization in Equation (5.122) is
over a set larger than the set over which the minimization in Equation (5.123) is conducted.

In summary, in the auxiliary game, Player II represents all the players who are not i,
and his mixed strategy is not necessarily the product distribution over the set ×j �=iSj : for
instance, in Example 5.41, for i = 1, the mixed strategy [1

2 (L, W ), 1
2 (R, E)] is a possible

strategy for Player II in the auxiliary game; i.e., it is in the set 
(S2 × S3), but it is not an
element in 
(S2) × 
(S3). It follows that in the auxiliary game Player II can choose the
vector of pure strategies for the players who are not i in a correlated manner, while in the
original game, in which the players choose mixed strategies independently of each other,
such correlation is impossible.

Theorem 4.29 (page 105) states that player i’s payoff in any equilibrium is at least his
maxmin value. As we now show, this payoff is also at least the player’s minmax value.

Theorem 5.42 For every Nash equilibrium σ ∗ in a strategic-form game and every player i

we have ui(σ ∗) ≥ vi .

Proof: The result holds since

ui(s
∗) = max

si∈Si

ui(si, s
∗
−i) ≥ min

s−i∈S−i

max
si∈Si

ui(si, s−i) = vi, (5.125)

�

5.7 Imperfect information: the value of information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Recall that every extensive-form game is also a strategic-form game. In this section we
study extensive-form games with information sets, and look into how their maxmin and
minmax values in mixed strategies change when we add information for one of the players.
Adding information to a player is expressed by splitting one or more of his information
sets into subsets. Note that this gives the player pure strategies that were previously
unavailable to him, while he does not lose any strategies that were available to him before
he received the new information. The intuitive reason for this is that the player can always
ignore the additional information he has received, and play the way he would have played
before.

In this section only we denote the multilinear extension of player i’s payoff function
by ui rather than Ui , which will denote an information set of player i.

Example 5.43 Consider Game A in Figure 5.23. In this game, every player has one information set. The set

of pure strategies of Player I is {L,M,R}, and that of Player II is {l, r}. This game is equivalent to
a strategic-form game, in which Player II, in choosing his action, does not know what action was
chosen by Player I (Game A in Figure 5.24, where Player I is the row player and Player II is the
column player).
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Game B in Figure 5.23 is similar to Game A, except that we have split the information set of Player
II into two information sets. In other words, Player II, in choosing his action, knows whether or not
Player I has chosen L, and hence we have increased Player II’s information.
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Figure 5.23 Adding information to Player II

With this additional information, the set of pure strategies of Player II is {l1l2, l1r2, r1l2, r1r2}, and
the strategic description of this game is Game B in Figure 5.24.
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Figure 5.24 Splitting an information set: the games in strategic form

Note that Game B in Figure 5.24, restricted only to the strategies l1l2 and r1r2, is equivalent,
from the perspective of its outcomes, to Game A. In other words, the strategies l1l2 and r1r2 are
identical to the strategies l and r , respectively, in Game A. In summary, adding information to a
player enlarges his set of pure strategies. �

The phenomenon that we just saw in Example 5.43 can be generalized to every game
in extensive form: if we split an information set of player i into two information sets,
then every strategy in the original game is equivalent to a strategy in the new game, in
which the player takes the same action in each of the two information sets split from the
original information set. If we identify these two strategies, in the original game and the
new game, we see that as a result of splitting an information set of player i, his set of pure
strategies in the new game includes his set of strategies in the original game. Since every
addition of information to a player is equivalent to splitting one of his information sets
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into a finite number of subsets, we can conclude that adding information to a player leads
to a game with “more” pure strategies available to that player.

What effect does adding information to a player have on the outcome of a game? Does
the additional information lead to a better or worse outcome for him? As we will now
show, in a two-player zero-sum game, adding information to a player can never be to his
detriment, and may well be to his advantage. In contrast, in a game that is not zero-sum,
adding information to a player may sometimes be to his advantage, and sometimes to his
detriment.

Theorem 5.44 Let � be an extensive-form game, and let �′ be the game derived from
� by splitting several of player i’s information sets. Then the maxmin value in mixed
strategies of player i in the game �′ is greater than or equal to his maxmin value in mixed
strategies in �, and his minmax value in mixed strategies in �′ is greater than or equal to
his minmax value in mixed strategies in �.

Proof: We will first prove the theorem’s claim with respect to the maxmin value in mixed
strategies. Denote by vi the maxmin value of player i in �, and by v′

i the maxmin value
of �′. For every player j , let Sj be the set of j ’s pure strategies in �, and S ′

j be his set of
pure strategies in �′. Denote by �j player j ’s set of mixed strategies in �, and by �′

j his
set of mixed strategies in �′. In going from � to �′, the set of information sets of player j ,
for j �= i, remains unchanged, and the set of pure strategies of each of these players also
remains unchanged: Sj = S ′

j , and therefore �j = �′
j . In contrast, in going from � to �′,

some of player i’s information sets have been split. In particular, every information set
U ′

i of player i in �′ is contained in a single information set Ui of player i in �. It follows
that every pure strategy in Si can be regarded as a pure strategy in S ′

i . Indeed, let si ∈ Si

be a strategy of player i in �. Define a strategy s′i ∈ S ′
i of player i in �′ as follows: in

each information set U ′
i , the strategy s ′i chooses the action that si chooses in the unique

information set Ui in � that contains U ′
i . The strategies si and s ′i are effectively identical.

Consequently, every mixed strategy σi of player i in � can be regarded as a mixed
strategy of player i in �′: for every mixed strategy σi of player i in � there exists a mixed
strategy σ ′

i of player i in �′ satisfying

ui(σi, σ−i) = ui(σ
′
i , σ−i), ∀σ−i ∈ �−i . (5.126)

Therefore,

vi = max
σi∈�i

min
σ−i∈�−i

ui(σi, σ−i) ≤ max
σi∈�′

i

min
σ−i∈�−i

ui(σi, σ−i) = v′
i . (5.127)

In words, player i’s maxmin value in mixed strategies, as a result of having additional
information, is no less than his maxmin value in mixed strategies without this information.
The proof for the analogous claim for the minmax value follows similarly by the same
argument. Denote by vi player i’s minmax value in �, and by v′

i his minmax value in �′.
Since we can regard every mixed strategy of player i in � as a mixed strategy in �′, then,
for all σ−i ∈ �−i ,

max
σi∈�i

Ui(σi, σ−i) ≤ max
σi∈�′

i

Ui(σi, σ−i). (5.128)
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Therefore, when we take the minimum over all mixed strategy vectors of the players in
N \ {i} we get

vi = min
σ−i∈�−i

max
σi∈�i

Ui(σi, σ−i) ≤ min
σ−i∈�−i

max
σi∈�′

i

Ui(σi, σ−i) = v′
i . (5.129)

Thus, the minmax value in mixed strategies of player i does not decrease when additional
information is received. �

For two-player zero-sum games for which a value in mixed strategies always exists, we
have the following corollary (see Exercise 5.61).

Theorem 5.45 Let � be a two-player zero-sum game in extensive form and let �′ be the
game derived from � by splitting several information sets of Player I. Then the value of the
game �′ in mixed strategies is greater than or equal to the value of � in mixed strategies.

The theorem is depicted in the following example.

Example 5.46 Consider the two-player zero-sum game comprised of the following two stages. In the first

stage, one of the two matrices in Figure 5.25 is chosen by a coin toss (each of the matrices is chosen
with probability 1

2 ). The players are not informed which matrix has been chosen. In stage two, the
two players play the game whose payoffs are given by the chosen matrix (the payoffs represent
payments made by Player II to Player I).

Player I

Player II

B

T

RL

0

0

1

1
2

Matrix G1

Player I

Player II

B

T

RL

0

0

1
2

1

Matrix G2

Figure 5.25 The matrices in Example 5.46

Figure 5.26 shows the game in extensive form and in strategic form.

0 I II

G2

G1

0
1
2

0

1
1

0
1
2

0

1
2

1
2

T

B

T

B

L

R
L

R L

R
L

R

Player I

Player II

B

T

RL

1
4

1
2

1
2

1
4

Figure 5.26 The game in Example 5.46, shown in extensive form and in strategic form
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Since the two players do not know which matrix has been chosen, each player has two pure
strategies. Since the probability that each of the payoff matrices G1 and G2 will be chosen is
1
2 , the payoff matrix in this figure is the average of the payoff matrices G1 and G2: the payoff
corresponding to each pure strategy vector is the average of the payoffs in the entries corresponding
to that strategy vector in the two payoff matrices G1 and G2 (see page 79).

The value in mixed strategies of the game in Figure 5.26 is 3
8 . Player I’s optimal strategy is

[ 1
2 (T ), 1

2 (B)], and Player II’s optimal strategy is [ 1
2 (L), 1

2 (R)].
Consider now what happens if Player I is informed which matrix was chosen, but Player II

remains ignorant of the choice. In that case, in the extensive form of the game Player I’s information
set in Figure 5.26 splits into two information sets, yielding the extensive-form game shown in
Figure 5.27.

0

I

I

II

0
1
2

0

1
1

0
1
2

0

1
2

1
2

T1

B1

T2

B2

L

R
L

R L

R
L

R

G2

G1

Figure 5.27 The game derived from the game in Figure 5.26 if Player I knows which matrix is
chosen

In this game, Player I has four pure strategies (T1T2, T1B2, B1T2, B1B2), while Player II has two
strategies (L and R). The corresponding strategic-form game appears in Figure 5.28.

Player I

Player II

B1B 2

B1T2

T1B 2

T1T2

RL

1
4

1
2

1
4

1
2

1
2

1
2

1
4

1
4

Figure 5.28 The game in Figure 5.27 in strategic form

The value in mixed strategies of this game is 1
2 , and B1T2 is Player I’s optimal strategy. Since

1
2 > 3

8 , the added information is advantageous to Player I, in accordance with Theorem 5.45. �

In games that are not zero-sum, however, the situation is completely different. In the
following example, Player I receives additional information, but this leads him to lose at
the equilibrium point.
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Example 5.47 Detrimental addition of information Consider Game A in Figure 5.29.

II

I

(10, 0)

(0, 10)

(0, 10)

(10, 0)

(1, 1)

M

R

L
r

l

l

r

Game A

II I

I
(10, 0)

(0, 10)

(0, 10)

(10, 0)

(1, 1)

M

R

L

r1

l1

l2

r2

Game B
Figure 5.29 The games in Example 5.47

The only equilibrium point of this game is the following pair of mixed strategies:

� Player I plays [ 1
2 (l), 1

2 (r)].
� Player II plays [ 1

2 (L), 1
2 (R), 0(M)].

To see this, note that strategy M is strictly dominated by strategy [ 1
2 (L), 1

2 (R), 0(M)], and it
follows from Theorem 4.35 (page 109) that it may be eliminated. After the elimination of this
strategy, the resulting game is equivalent to Matching Pennies (Example 3.20 on page 52), whose
sole equilibrium point is the mixed strategy under which both players choose each of their pure
strategies with probability 1

2 (verify that this is true). The equilibrium payoff is therefore (5, 5).
When Player I receives additional information and can distinguish between the two vertices (see
Game B in Figure 5.29), an equilibrium in the game is:

� Player I plays the pure strategy (l1, r2).
� Player II plays [0(L), 0(R), 1(M)].

To see this, note that the pure strategy (l1, r2) of Player I is his best reply to Player II’s strategy, and
strategy [0(L), 0(R), 1(M)] is Player II’s best reply to (l1, r2). The equilibrium payoff is therefore
(1, 1). This is not the only equilibrium of this game; there are more equilibria, but they all yield
an equilibrium payoff of (1, 1) (Exercise 5.67). Adding information in this game is to Player I’s
detriment, because his payoff drops from 5 to 1. In this particular example, the additional information
has also impacted Player II’s payoff negatively, but this is not always the case (see Exercise 5.62).

The reason that additional information is to Player I’s detriment is that he cannot ignore the
new information: if the play of the game reaches one of the vertices that Player I controls, it is to
his advantage to exploit the information he has, since ignoring it lowers his expected payoff. As a
rational player, he must make use of the information. Player II knows this, and adapts his strategy
to this new situation. It would be to Player I’s advantage to commit to not using his additional
information, but without such a binding commitment, Player II may not believe any “promise” that
Player I makes to disregard his information. Careful consideration of this example brings out the
source of this phenomenon: it is not the addition of information, per se, that is the cause of Player
I’s loss, but the fact that Player II knows that Player I has additional information, which leads Player
II to change his behavior. �



186 Mixed strategies

A question naturally arises from the material in this section: why does the addition of
information always (weakly) help a player in two-player zero-sum games, while in games
that are not zero-sum, it may be advantageous or detrimental? The answer lies in the fact
that there is a distinction between the concepts of the maxmin value and the equilibrium
in games that are not zero sum, while in two-player zero-sum games the two concepts
coincide. Additional information to a player (weakly) increases his maxmin value in every
game, whether or not it is a two-player zero-sum game (Theorem 5.44). In a two-player
zero-sum game, the unique equilibrium payoff is the value of the game (which is also the
maxmin value), which is why adding information to a player always (weakly) increases
his payoff. If the game is not a two-player zero-sum game, equilibrium payoffs, which
can rise or fall with the addition of information, need not equal a player’s maxmin value.
The statement “adding information can be detrimental” specifically relates to situations in
which a player’s equilibrium payoff, after he gains information, can fall. But this is only
relevant if we are expecting the outcome of a game to be an equilibrium, both before and
after the addition of new information (we may perhaps expect this if the game has a unique
equilibrium, or strictly dominant strategies, as in Exercise 5.63). In contrast, in situations
in which we expect the players to play their maxmin strategies, adding information cannot
be detrimental.

5.8 Evolutionarily stable strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Darwin’s Theory of Evolution is based on the principle of the survival of the fittest,
according to which new generations of the world’s flora and fauna bear mutations.2 An
individual who has undergone a mutation will pass it on to his descendants. Only those
individuals most adapted to their environment succeed in the struggle for survival.

It follows from this principle that, in the context of the process of evolution, every
organism acts as if it were a rational creature, by which we mean a creature whose
behavior is directed toward one goal: to maximize the expected number of its reproducing
descendants. We say that it acts “as if” it were rational in order to stress that the individual
organism is not a strategically planning creature. If an organism’s inherited properties are
not adapted to the struggle for survival, however, it will simply not have descendants.

For example, suppose that the expected number of surviving offspring per individual
in a given population is three in every generation. If a mutation raising the number
of expected offspring to four occurs in only one individual, eventually there will be
essentially no individuals in the population carrying genes yielding the expected number
of three offspring, because the ratio of individuals carrying the gene for an expected
number of four descendants to individuals carrying the gene for an expected number of
three descendants will grow exponentially over the generations.

If we relate to an organism’s number of offspring as a payoff, we have described a
process that is propelled by the maximization of payoffs. Since the concept of equilibrium
in a game is also predicated on the idea that only strategies that maximize expected payoffs

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 A mutation is a change in a characteristic that an individual has that is brought on by a change in genetic material.
In this section, we will use the term mutation to mean an individual in a population whose behavior has changed,
and who passes on that change in behavior to his descendants.
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(against the strategies used by the other players) will be chosen, we have a motivation
for using ideas from game theory in order to explain evolutionary phenomena. Maynard
Smith and Price [1973] showed that, in fact, it is possible to use the Nash equilibrium
concept to shed new light on Darwin’s theory. This section presents the basic ideas behind
the application of game theory to the study of evolutionary biology. The interested reader
can find descriptions of many phenomena in biology that are explicable using the theory
developed in this section in Richard Dawkins’s popular book, The Selfish Gene (Dawkins
[1976]).

The next example, taken from Maynard Smith and Price [1973], introduces the main
idea, and the general approach, used in this theory.

Example 5.48 Suppose that a particular animal can exhibit one of two possible behaviors: aggressive

behavior or peaceful behavior. We will describe this by saying that there are two types of animals:
hawks (who are aggressive), and doves (who are peaceful). The different types of behavior are
expressed when an animal invades the territory of another animal of the same species. A hawk will
aggressively repel the invader. A dove, in contrast, will yield to the aggressor and be driven out of
its territory. If one of the two animals is a hawk and the other a dove, the outcome of this struggle
is that the hawk ends up in the territory, while the dove is driven out, exposed to predators and
other dangers. If both animals are doves, one of them will end up leaving the territory. Suppose
that each of them leaves the territory in that situation with a probability of 1

2 . If both animals are
hawks, a fight ensues, during which both of them are injured, perhaps fatally, and at most one of
them will remain in the territory and produce offspring. Figure 5.30 presents an example of a matrix
describing the expected number of offspring of each type of animal in this situation.

Note that the game in Figure 5.30 is symmetric; that is, both players have the same set of
strategies S1 = S2, and their payoff functions satisfy u1(s1, s2) = u2(s2, s1) for each s1, s2 ∈ S.
This is an example of a “single-species” population, i.e., a population comprised of only one
species of animal, where each individual can exhibit one of several possible behaviors.

Invader

Defender
Hawk

Dove

Dove Hawk

8, 2

4, 4

1, 1

2, 8

Figure 5.30 The expected number of offspring following an encounter between two individuals in
the population

Our focus here is on the dynamic process that develops under conditions of many random
encounters between individuals in the population, along with the appearance of random mutations.
A mutation is an individual in the population characterized by a particular behavior: it may be of
type dove, or type hawk. More generally, a mutation can be of type x (0 ≤ x ≤ 1); that is, the
individual3 will behave as a dove with probability x, and as a hawk with probability 1 − x.

The expected number of offspring of an individual who randomly encounters another individual
in the population depends on both its type and the type of the individual it has encountered; to be
more precise, the expected number depends on the probability y that the encountered individual is a

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 For convenience, we will use the same symbol x to stand both for the real number between 0 and 1 specifying the
probability of being of type “dove,” and for the lottery [x(dove), (1 − x)(hawk)].
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dove (or the probability 1 − y that the encountered individual is a hawk). This probability depends
on the composition of the population, that is, on how many individuals there are of a given type
in the population, and whether those types are “pure” doves or hawks, or mixed types x. Every
population composition determines a unique real number y (0 ≤ y ≤ 1), which is the probability
that a randomly chosen individual in the population will behave as a dove (in its next encounter).

Suppose now that a mutation, before it is born, can “decide” what type it will be (dove, hawk,
or x between 0 and 1). This “decision” and the subsequent interactions the mutation will have with
the population can be described by the matrix in Figure 5.31.

Population

Mutation
Hawk

Dove

y 1 − y
Dove Hawk

8, 2

4, 4

1, 1

2, 8

Figure 5.31 The Mutation–Population game

In this matrix, the columns and the rows represent behavioral types. If we treat the matrix
as a game, the column player is the “population,” which is implementing a fixed mixed strategy
[y(Dove), (1 − y)(Hawk)]; i.e., with probability y the column player will behave as a dove and
with probability 1 − y he will behave as a hawk. The row player, who is the mutation, in contrast
chooses its type.

The expected payoff of a mutation from a random encounter is 4y + 2(1 − y) if it is a dove,
8y + (1 − y) if it is a hawk, and x(4y + 2(1 − y)) + (1 − x)(8y + (1 − y)) if it is of type x.
For example, if the population is comprised of 80% doves (y = 0.8) and 20% hawks, and a
new mutation is called upon to choose its type when it is born, what “should” the mutation
choose? If the mutation chooses to be born a dove (x = 1), its expected number of offspring is
0.8 × 4 + 0.2 × 2 = 3.6, while if it chooses to be born a hawk (x = 0), its expected number of
offspring is 0.8 × 8 + 0.2 × 1 = 6.6. It is therefore to the mutation’s advantage to be born a hawk.
No mutation, of course, has the capacity to decide whether it will be a hawk or a dove, because
these characteristics are either inherited, or the result of a random change in genetic composition.
What happens in practice is that individuals who have the characteristics of a hawk will reproduce
more than individuals who have the characteristics of a dove. Over the generations, the number of
hawks will rise, and the ratio of doves to hawks will not be 80% : 20% (because the percentage
of hawks will be increasing). A population in which the ratio of doves to hawks is 80% : 20% is
therefore evolutionarily unstable. Similarly, if the population is comprised of 10% doves (y = 0.1)
and 90% hawks, we have an evolutionarily unstable situation (because the percentage of doves will
increase). It can be shown that only if the population is comprised of 20% doves and 80% hawks
will the expected number of offspring of each type be equal. When y∗ = 0.2

0.2 × 4 + 0.8 × 2 = 2.4 = 0.2 × 8 + 0.8 × 1. (5.130)

We therefore have u1(x, y∗) = 2.4 for all x ∈ [0, 1]. Note that y∗ = 0.2 is the symmetric equilibrium
of the game in Figure 5.31, even when the player represented by the “population” can choose any
mixed strategy. In other words, u1(x, y∗) ≤ u1(y∗, y∗) for each x, and u2(y∗, x) ≤ u2(y∗, y∗) for
each x (in fact, the expressions on both sides of the inequality sign in all these cases is 2.4).
Can we conclude that when the distribution of the population corresponds to the symmetric Nash
equilibrium of the associated game, the population will be evolutionarily stable? The following
example shows that to attain evolutionary stability, we need to impose a stronger condition that
takes into account encounters between two mutations. �
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Example 5.49 Consider the situation shown in Figure 5.32, in which the payoffs in each encounter are

different from the ones above.

Population

Mutation
Hawk

Dove

y 1 − y
Dove Hawk

2, 2

4, 4

2, 2

2, 2

Figure 5.32 The payoff matrix in a symmetric game

This game has two Nash equilibria, (Dove, Dove) and (Hawk, Hawk). The former corresponds
to a population comprised solely of doves, and the second to a population comprised solely of
hawks. When the population is entirely doves (y = 1), the expected number of offspring of type
dove is 4, and the expected number of offspring of type hawk is 2, and therefore hawk mutations
disappear over the generations, and the dove population remains stable. When the population is
entirely hawks (y = 0), the expected number of offspring, of either type, is 2. But in this case, as
long as the percentage of doves born is greater than 0, it is to a mutation’s advantage to be born
a dove. This is because the expected number of offspring of a mutation that is born a hawk is 2,
but the expected number of offspring of a mutation that is born a dove is 2(1 − ε) + 4ε = 2 + 2ε,
where ε is the percentage of doves in the population (including mutations). In other words, when
there are random changes in the composition of the population, it is to a mutation’s advantage to
be born a dove, because its expected number of offspring will be slightly higher than the expected
number of offspring of a hawk. After a large number of generations have passed, the doves will
form a majority of the population. This shows that a population comprised solely of hawks is not
evolutionarily stable.

What happens if the population is comprised of doves, but many mutations occur, and the
percentage of hawks in the population becomes ε? By a calculation similar to the one above, the
expected number of offspring of a hawk is 2, while the expected number of offspring of a dove
is 4 − 2ε. As long as ε < 1, the expected number of offspring of a dove will be greater than that
of a hawk, and hence the percentage of hawks in the population will decrease. This shows that a
population comprised entirely of doves is evolutionarily stable.

If the population is comprised solely of hawks, where can a dove mutation come from? Such a
mutation can arise randomly, as the result of a genetic change that occurs in an individual in the
population. In general, even when a particular type is entirely absent from a population, in order to
check whether the population is evolutionarily stable it is necessary to check what would happen if
the absent type were to appear “ab initio.” �

We will limit our focus in this section to two-player symmetric games. We will also
assume that payoffs are nonnegative, since the payoffs in these games represent the
expected number of offspring, which cannot be a negative number. Examples 5.48 and 5.49
lead to the following definition of evolutionarily stable strategy.

Definition 5.50 A mixed strategy x∗ in a two-player symmetric game is an evolutionarily
stable strategy (ESS) if for every mixed strategy x that differs from x∗ there exists ε0 =
ε0(x) > 0 such that, for all ε ∈ (0, ε0),

(1 − ε)u1(x, x∗) + εu1(x, x) < (1 − ε)u1(x∗, x∗) + εu1(x∗, x). (5.131)
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The biological interpretation of this definition is as follows. Since mutations occur in
nature on a regular basis, we are dealing with populations mostly composed of “normal”
individuals, with a minority of mutations. We will interpret x∗ as the distribution of types
among the normal individuals. Consider a mutation making use of strategy x, and assume
that the proportion of this mutation in the population is ε. Every individual of type x will
encounter a normal individual of type x∗ with probability 1 − ε, receiving in that case the
payoff u1(x, x∗), and will encounter a mutation of type x with probability ε, receiving in
that case the payoff u1(x, x). Equation (5.131) therefore says that in a population in which
the proportion of mutations is ε, the expected payoff of a mutation (the left-hand side of the
equal sign in Equation (5.131)) is smaller than the expected payoff of a normal individual
(the right-hand side of the equal sign in Equation (5.131)), and hence the proportion
of mutations will decrease and eventually disappear over time, with the composition of
the population returning to being mostly x∗. An “evolutionarily stable equilibrium” is
therefore a mixed strategy of the column player that corresponds to a population that is
immune to being overtaken by mutations.

In Example 5.49, Equation (5.131) holds for the dove strategy (x∗ = 1) for every ε < 1
and it is therefore an evolutionarily stable strategy. In contrast, Equation (5.131) does not
hold for the hawk strategy (x∗ = 0), and the hawk strategy is therefore not evolutionarily
stable. As we saw in that example, for each x �= 0 (where x denotes the proportion of
doves in the population),

(1 − ε)u1(x, x∗) + εu1(x, x) = 2 + 2(1 − x)2 > 2 = (1 − ε)u1(x∗, x∗) + εu1(x∗, x).

By continuity, Equation (5.131) holds as a weak inequality for ε = 0. From this we deduce
that every evolutionarily stable strategy defines a symmetric Nash equilibrium in the game.
In particular, the concept of an evolutionarily stable equilibrium constitutes a refinement
of the concept of Nash equilibrium.

Theorem 5.51 If x∗ is an evolutionarily stable strategy in a two-player symmetric game,
then (x∗, x∗) is a symmetric Nash equilibrium in the game.

As Example 5.49 shows, the opposite direction does not hold: if (x∗, x∗) is a symmetric
Nash equilibrium, x∗ is not necessarily an evolutionarily stable strategy. In this example,
the strategy vector (Hawk, Hawk) is a symmetric Nash equilibrium, but the Hawk strategy
is not an evolutionarily stable strategy.

The next theorem characterizes evolutionarily stable strategies.

Theorem 5.52 A strategy x∗ is evolutionarily stable if and only if for each x �= x∗ only
one of the following two conditions obtains:

u1(x, x∗) < u1(x∗, x∗), (5.132)

or
u1(x, x∗) = u1(x∗, x∗) and u1(x, x) < u1(x∗, x). (5.133)

The first condition states that if a mutation deviates from x∗, it will lose in its encounters
with the normal population. The second condition says that if the payoff a mutation
receives from encountering a normal individual is equal to that received by a normal
individual encountering a normal individual, that mutation will receive a smaller payoff
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when it encounters the same mutation than a normal individual would in encountering the
mutation. In both cases the population of normal individuals will increase faster than the
population of mutations.

Proof: We will first prove that if x∗ is an evolutionarily stable strategy then for each
x �= x∗ one of the conditions (5.132) or (5.133) holds. From Theorem 5.51, (x∗, x∗) is a
Nash equilibrium, and therefore u1(x, x∗) ≤ u1(x∗, x∗) for each x �= x∗. If for a particular
x neither of the conditions (5.132) or (5.133) holds, then u1(x, x∗) = u1(x∗, x∗) and
u1(x, x) ≥ u1(x∗, x), but then Equation (5.131) does not hold for this x for any ε > 0,
contradicting the fact that x∗ is an evolutionarily stable strategy. It follows that for each x

at least one of the two conditions (5.132) or (5.133) obtains.
Suppose next that for any mixed strategy x �= x∗, at least one of the two conditions

(5.132) or (5.133) obtains. We will prove that x∗ is an evolutionarily stable strategy. If con-
dition (5.132) obtains, then Equation (5.131) obtains for all ε < u1(x∗,x∗)−u1(x,x∗)

4M
, where M

is the upper bound of the payoffs: M = maxs1∈S1 maxs2∈S2 u1(s1, s2) (verify!). If condition
(5.133) obtains then Equation (5.131) obtains for all ε ∈ (0, 1]. It follows that Equation
(5.131) obtains in both cases, and therefore x∗ is an evolutionarily stable strategy. �

If condition (5.132) obtains, then for each x �= x∗, the equilibrium (x∗, x∗) is called a
strict equilibrium. The next corollary follows from Theorem 5.52.

Corollary 5.53 In a symmetric game, if (x∗, x∗) is a strict symmetric equilibrium then
x∗ is an evolutionarily stable equilibrium.

Indeed, if (x∗, x∗) is a strict symmetric equilibrium, then condition (5.132) holds for
every x �= x∗. Theorem 5.52 and Corollary 5.53 yield a method for finding evolutionarily
stable strategies: find all symmetric equilibria in the game, and for each one of them,
determine whether or not it is a strict equilibrium. Every strict symmetric equilibrium
defines an evolutionarily stable strategy. For every Nash equilibrium that is not strict,
check whether condition (5.133) obtains for each x different from x∗ for which condition
(5.132) does not obtain (hence necessarily u1(x, x∗) = u1(x∗, x∗)).

Example 5.48 (Continued) Recall that the payoff function in this example is as shown in Figure 5.33.

Population

Mutation
Hawk

Dove

Dove Hawk

8, 2

4, 4

1, 1

2, 8

Figure 5.33 The expected number of offspring from encounters between two individuals in
Example 5.48

The symmetric mixed equilibrium is ([ 1
5 (Dove), 4

5 (Hawk)], [ 1
5 (Dove), 4

5 (Hawk)]). The propor-
tion of doves at equilibrium is x∗ = 1

5 . Denote by x the proportion of doves in a mutation. Since the
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equilibrium is completely mixed, each of the two pure strategies yields the same expected payoff,
and therefore u1(x, x∗) = u1(x∗, x∗) for all x �= x∗. To check whether [ 1

5 (Dove), 4
5 (Hawk)] is an

evolutionarily stable strategy, we need to check whether condition (5.133) obtains; that is, we need
to check whether u1(x, x) < u1(x∗, x) for every x �= x∗.

This inequality can be written as

4x2 + 2x(1 − x) + 8(1 − x)x + (1 − x)2 < 1
5 4x + 1

5 2(1 − x) + 4
5 8x + 4

5 (1 − x),

which can be simplified to

(5x − 1)2 > 0, (5.134)

and this inequality obtains for each x different from 1
5 . We have thus proved that [ 1

5 (Dove), 4
5 (Hawk)]

is an evolutionarily stable strategy.
This game has two additional asymmetric Nash equilibria: (Dove, Hawk) and (Hawk, Dove).

These equilibria do not contribute to the search for evolutionarily stable equilibria, since
Theorem 5.51 relates evolutionarily stable equilibria solely to symmetric equilibria. �

Example 5.54 Consider another version of the Hawk–Dove game, in which the payoffs are as shown

in Figure 5.34. This game has three symmetric equilibria: two pure equilibria, (Dove, Dove),
(Hawk, Hawk), and one mixed, ([ 1

2 (Dove), 1
2 (Hawk)], [ 1

2 (Dove), 1
2 (Hawk)]).

The pure equilibria (Dove, Dove) and (Hawk, Hawk) are strict equilibria, and hence the two pure
strategies Dove and Hawk are evolutionarily stable strategies (Corollary 5.53) (see Figure 5.34).

Population

Mutation
Hawk

Dove

Dove Hawk

3, 1

4, 4

2, 2

1, 3

Figure 5.34 The expected number of offspring in encounters between two individuals in
Example 5.54

The strategy x∗ = [ 1
2 (Dove), 1

2 (Hawk)] is not evolutionarily stable. To see this, denote x =
[1(Dove), 0(Hawk)]. Then u1(x∗, x∗) = 2 1

2 = u1(x, x∗), and u1(x, x) = 4 > 2 1
2 = u1(x∗, x). From

Theorem 5.52 it follows that the strategy [ 1
2 (Dove), 1

2 (Hawk)] is not evolutionarily stable.
We can conclude from this that the population would be stable against mutations if the population

were comprised entirely of doves or entirely of hawks. Any other composition of the population
would not be stable against mutations. In addition, if the percentage of doves is greater than 50%,
doves will reproduce faster than hawks and take over the population. On the other hand, if the
percentage of doves is less than 50%, doves will reproduce more slowly than hawks, and eventually
disappear from the population. If the percentage of doves is exactly 50%, as a result of mutations
or random changes in the population stemming from variability in the number of offspring, the
percentage of doves will differ from 50% in one of the subsequent generations, and then one of the
two types will take over the population.

Although in this example a population composed entirely of doves reproduces at twice the rate
of a population composed entirely of hawks, both populations are evolutionarily stable. �
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Since Nash’s Theorem (Theorem 5.10, page 151) guarantees the existence of a Nash
equilibrium, an interesting question arises: does an evolutionarily stable strategy always
exist? The answer is negative. It may well happen that an evolutionary process has
no evolutionarily stable strategies. The next example, which is similar to Rock, Paper,
Scissors, is taken from Maynard Smith [1982].

Example 5.55 Consider the symmetric game in which each player has the three pure strategies appearing in

Figure 5.35.

Player I

Player II

Scissors

Paper

Rock

Rock Paper Scissors

0, 1

1, 0

2
3 , 2

3

1, 0

2
3 , 2

3

0, 1

2
3 , 2

3

0, 1

1, 0

Figure 5.35 A game without an evolutionarily stable strategy

This game has only one Nash equilibrium (Exercise 5.70), which is symmetric, in which the
players play the mixed strategy:

x∗ = [
1
3 (Rock), 1

3 (Paper), 1
3 (Scissors)

]
. (5.135)

The corresponding equilibrium payoff is u1(x∗, x∗) = 5
9 . We want to show that there is no evolu-

tionarily stable strategy in this game. Since every evolutionarily stable strategy defines a symmetric
Nash equilibrium, to ascertain that there is no evolutionarily stable strategy it suffices to check
that the strategy x∗ is not an evolutionarily stable strategy. The strategy x∗ is completely mixed,
and hence it leads to an identical payoff against any pure strategy: u1(x, x∗) = u1(x∗, x∗) for all
x �= x∗.

Consider a mutation x = [
1(Rock), 0(Paper), 0(Scissors)

]
; condition (5.133) does not obtain

for this mutation. To see this, note that u1(x, x) = 2
3 , while u1(x∗, x) = 2

9 + 1
3 = 5

9 , and hence
u1(x, x) > u1(x∗, x).

It is interesting to note that a biological system in which the number of offspring is given by the
table in Figure 5.35 and the initial distribution of the population is

[
1
3 (Rock), 1

3 (Paper), 1
3 (Scissors)

]
will never attain population stability, and instead will endlessly cycle through population config-
urations (see Hofbauer and Sigmund [2003] or Zeeman [1980]). If, for example, through muta-
tion the proportion of Rocks in the population were to increase slightly, their relative numbers
would keep rising, up to a certain point. At that point, the proportion of Papers would rise, until
that process too stopped, with the proportion of Scissors then rising. But at a certain point the
rise in the relative numbers of Scissors would stop, with Rocks then increasing, and the cycle
would repeat endlessly. Analyzing the evolution of such systems is accomplished using tools
from the theory of dynamic processes. The interested reader is directed to Hofbauer and Sigmund
[2003]. �
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5.9 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Exercise 5.13 is based on Alon, Brightwell, Kierstead, Kostochka, and Winkler [2006].
Exercise 5.27 is based on a discovery due to Lloyd Shapley, which indicates that the
equilibrium concept has disadvantages (in addition to its advantages). A generalization
of this result appears in Shapley [1994]. The Inspector Game in Exercise 5.28 is a spe-
cial case of an example in Maschler [1966b], in which r on-site inspection teams may
be sent, and there are n possible dates on which the Partial Test Ban Treaty can be
abrogated. For a generalization of this model to the case in which there are several
detectors, with varying probabilities of detecting what they are looking for, see Maschler
[1967]. The interested reader can find a survey of several alternative models for the
Inspector Game in Avenhaus, von Stengel, and Zamir [2002]. Exercise 5.29 is based on
Biran and Tauman [2007]. Exercise 5.33 is based on an example in Diekmann [1985].
Exercise 5.34 is a variation of a popular lottery game conducted in Sweden by the
Talpa Corporation. Exercise 5.44 is taken from Lehrer, Solan, and Viossat [2007]. Exer-
cise 5.51 is from Peleg [1969]. Parts of Exercise 5.60 are taken from Altman and Solan
[2006].

The authors thank Uzi Motro for reading and commenting on Section 5.8 and for sug-
gesting Exercise 5.71. We also thank Avi Shmida, who provided us with the presentation
of Exercise 5.72.

5.10 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5.1 Prove that if S is a finite set then 
(S) is a convex and compact set.

5.2 Let A ⊆ Rn and B ⊆ Rm be two compact sets. Prove that the product set A × B ⊆
Rn+m is a compact set.

5.3 Let A ⊆ Rn and B ⊆ Rm be two convex sets. Prove that the product set
A × B ⊆ Rn+m is a convex set.

5.4 Show that every multilinear function f : � → R is continuous.

5.5 Prove that for every player i the set of extreme points of player i’s collection of
mixed strategies is his set of pure strategies.

5.6 Prove that every two-player zero-sum game over the unit square with bilinear payoff
functions is the extension to mixed strategies of a two-player game in which each
player has two pure strategies.

5.7 Show that for every vector σ−i of mixed strategies of the other players, player i has
a best reply that is a pure strategy.

5.8 Answer the following questions for each of the following games, which are all
two-player zero-sum games. As is usually the case in this book, Player I is the row
player and Player II is the column player.
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(a) Write out the mixed extension of each game.
(b) Find the value in mixed strategies, and all the optimal mixed strategies of each

of the two players.

B

T

RL

−3

−1

3

− 4

Game A

B

T

RL

5

5

1

8

Game B

B

T

RL

2

5

3

4

Game C

B

T

RL

2

4

9

2

Game D

B

T

RL

5

5

6

4

Game E

B

T

RL

3

7

10

7

Game F

5.9 Find the value of the game in mixed strategies and all the optimal strategies of both
players in each of the following two-player zero-sum games, where Player I is the
row player and Player II is the column player.

B

M

T

RL

7

5

2

4

5

6

Game A

a

b

c

d

RL

−3

5

10

15

8

−2

−4

−8

Game B

B

T

ba dc

−3

5

2

3

−5

4

6

0

Game C

B

T

L M R

3

6

7

4

9

3

Game D

B

T

L M R

3

6

7

4

9

3

Game E

5.10 In each of the following items, find a two-player game in strategic form in which
each player has two pure strategies, such that in the mixed extension of the game
the payoff functions of the players are the specified functions. (Note that the games
in parts (a) and (b) are zero-sum, but that the games in parts (c) and (d) are not
zero-sum.)

(a) U (x, y) = 5xy − 2x + 6y − 2.
(b) U (x, y) = −2xy + 4x − 7y.
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(c) U1(x, y) = 3xy − 4x + 5, U2(x, y) = 7xy + 7x − 8y + 12.
(d) U1(x, y) = 3xy − 3x + 3y − 5, U2(x, y) = 7x − 8y + 12.

5.11 For each of the graphs appearing in Figure 5.9 (page 157) find a two-player zero-sum
game such that the graph of the functions (U (x, sII))sII∈SII is the same as the graph
in the figure. For each of these games, compute the value in mixed strategies, and
all the optimal strategies of Player I.

5.12 A (finite) square matrix A = (ai,j )i,j is called anti-symmetric if ai,j = −aj,i for
all i and j . Prove that if the payoff matrix of a two-player zero-sum game is anti-
symmetric, then the value of the game in mixed strategies is 0. In addition, Player
I’s set of optimal strategies is identical to that of Player II, when we identify Player
I’s pure strategy given by row k with Player II’s pure strategy given by column k.

5.13 Let G = (V, E) be a directed graph, where V is a set of vertices, and E is a set of
edges. A directed edge from vertex x to vertex y is denoted by (x, y). Suppose that
the graph is complete, i.e., for every pair of edges x, y ∈ V , either (x, y) ∈ E or
(y, x) ∈ E, but not both. In particular, (x, x) ∈ E for all x ∈ E. In this exercise, we
will prove that there exists a distribution q ∈ 
(V ) satisfying∑

{y∈V : (y,x)∈E}
q(y) ≥ 1

2 , ∀x ∈ V. (5.136)

(a) Define a two-player zero-sum game in which the set of pure strategies of the two
players is V , and the payoff function is defined as follows:

u(x, y) =
⎧⎨⎩

0 x = y,

1 x �= y, (x, y) ∈ E,

−1 x �= y, (x, y) �∈ E.

(5.137)

Prove that the payoff matrix of this game is an anti-symmetric matrix, and, using
Exercise 5.12, deduce that its value in mixed strategies is 0.

(b) Show that every optimal strategy q of Player II in this game satisfies Equation
(5.136).

5.14 A mixed strategy σi of player i is called weakly dominated (by a mixed strategy)
if it is weakly dominated in the mixed extension of the game: there exists a mixed
strategy σ̂i of player i satisfying

(a) For each strategy s−i ∈ S−i of the other players:

Ui(σi, s−i) ≤ Ui (̂σi, s−i). (5.138)

(b) There exists a strategy t−i ∈ S−i of the other players for which

Ui(σi, t−i) < Ui (̂σi, t−i). (5.139)

Prove that the set of weakly dominated mixed strategies is a convex set.

5.15 Suppose that a mixed strategy σi of player i strictly dominates another of his mixed
strategies, σ̂i . Prove or disprove each of the following claims:
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(a) Player i has a pure strategy si ∈ Si satisfying: (i) σ̂i(si) > 0 and (ii) strategy si

is not chosen by player i in any equilibrium.
(b) For each equilibrium σ ∗ = (σ ∗

i )i∈N player i has a pure strategy si ∈ Si satisfying
(a) σ̂i(si) > 0 and (b) σ ∗

i (si) = 0.

5.16 Suppose player i has a pure strategy si that is chosen with positive probability in
each of his maxmin strategies. Prove that si is not weakly dominated by any other
strategy (pure or mixed).

5.17 Suppose player i has a pure strategy si that is chosen with positive probability in
one of his maxmin strategies. Is si chosen with positive probability in each of player
i’s maxmin strategies? Prove this claim, or provide a counterexample.

5.18 Suppose player i has a pure strategy si that is not weakly dominated by any of
his other pure strategies. Is si chosen with positive probability in one of player i’s
maxmin strategies? Prove this claim, or provide a counterexample.

5.19 Let (ai,j )1≤i,j≤n be nonnegative numbers satisfying
∑

j �=i ai,j = ai,i for all i. Julie
and Sam are playing the following game. Julie writes down a natural number i,
1 ≤ i ≤ n, on a slip of paper. Sam does not see the number that Julie has written.
Sam then guesses what number Julie has chosen, and writes his guess, which is a
natural number j , 1 ≤ j ≤ n, on a slip of paper. The two players simultaneously
show each other the numbers they have written down. If Sam has guessed correctly,
Julie pays him ai,i dollars, where i is the number that Julie chose (and that Sam
correctly guesses). If Sam was wrong in his guess (i �= j ), Sam pays Julie ai,j

dollars.
Depict this game as a two-player zero-sum game in strategic form, and prove that

the value in mixed strategies of the game is 0.

5.20 Consider the following two-player zero-sum game.

Player I

Player II

B

M

T

CL R

2

2

3

5

6

−3

6

4

0

(a) Find a mixed strategy of Player I that guarantees him the same payoff against
any pure strategy of Player II.

(b) Find a mixed strategy of Player II that guarantees him the same payoff against
any pure strategy of Player I.

(c) Prove that the two strategies you found in (a) and (b) are the optimal strategies
of the two players.
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(d) Generalize this result: Suppose a two-player zero-sum game is represented by
an n × m matrix.4 Suppose each player has an equalizing strategy, meaning a
strategy guaranteeing him the same payoff against any pure strategy his opponent
may play. Prove that any equalizing strategy is an optimal strategy.

(e) Give an example of a two-player zero-sum game in which one of the players has
an equalizing strategy that is not optimal. Why is this not a contradiction to (d)?

5.21 In the following payoff matrix of a two-person zero-sum game, no player has an
optimal pure strategy.

Player I

Player II

B

T

RL

c

a

d

b

What inequalities must the numbers a, b, c, d satisfy? Find the value in mixed
strategies of this game.

5.22 Prove that in any n-person game, at Nash equilibrium, each player’s payoff is greater
than or equal to his maxmin value.

5.23 The goal of this exercise is to prove that in a two-player zero-sum game, each
player’s set of optimal strategies is a convex set. Let G = (N, (Si)i∈N, (ui)i∈N ) be a
two-player zero-sum game in which N = {I, II}. For each pair of mixed strategies
σI = [p1

I (s1
I ), . . . , pmI

I (smI
I )] and σ̂I = [p̂1

I (s1
I ), . . . , p̂mI

I (smI
I )], and each real number

in the unit line interval α ∈ [0, 1], define a vector qI = (qj
I )mI

j=1 as follows:

q
j
I = αp

j
I + (1 − α)p̂j

I . (5.140)

(a) Prove that q = (qj
I )mI

j=1 is a probability distribution.
(b) Define a mixed strategy τI of Player I as follows:

τI =
[
q1

I

(
s1

I

)
, . . . , q

mI
I

(
s
mI
I

)]
. (5.141)

Prove that for every mixed strategy σII of Player II:

U (τI, σII) = αU (σI, σII) + (1 − α)U (̂σI, σII). (5.142)

(c) We say that a strategy σI of Player I guarantees payoff v if U (σI, σII) ≥ v for
every strategy σII of Player II. Prove that if σI and σ̂I guarantee Player I payoff
v, then τI also guarantees Player I payoff v.

(d) Deduce that if σI and σ̂I are optimal strategies of Player I, then τI is also an
optimal strategy of Player I.

(e) Deduce that Player I’s set of optimal strategies is a convex set in 
(SI).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 This means that the matrix has n rows (pure strategies of Player I) and m columns (pure strategies of Player II).
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5.24 The goal of this exercise is to prove that in a two-player zero-sum game, each
player’s set of optimal strategies, which we proved is a convex set in Exercise 5.23,
is also a compact set. Let (σ k

I )k∈N be a sequence of optimal strategies of Player I,
and for each k ∈ N denote σk

I = [pk,1
I (s1

I ), . . . , pk,mI
I (smI

I )]. Suppose that for each
j = 1, 2, . . . , mI, the limit p

∗,j
I = limk→∞ p

k,j
I exists. Prove the following claims:

(a) The vector (p∗,j
I )mI

j=1 is a probability distribution over SI.
(b) Define a mixed strategy σ ∗

I as follows:

σ ∗
I = [

p
∗,1
I

(
s1

I

)
, . . . , p

∗,mI
I

(
s
mI
I

)]
. (5.143)

Prove that σ ∗
I is also an optimal strategy of Player I.

(c) Deduce from this that Player I’s set of optimal strategies is a compact subset of
the set of mixed strategies 
(SI).

5.25 For each of the following games, where Player I is the row player and Player II is
the column player:

(a) Write out the mixed extension of the game.
(b) Compute all the equilibria in mixed strategies.

B

T

RL

2, 10

1, 1

3, 5

4, 0

Game A

B

T

RL

0, 3

1, 2

1, 1

2, 2

Game B

B

T

ML R

0, 0

1, 1

1, 0

0, 2

−1, 3

2, 0

Game C

5.26 For each of the following games, where Player I is the row player and Player II is
the column player:

(a) Find all the equilibria in mixed strategies, and all the equilibrium payoffs.
(b) Find each player’s maxmin strategy.
(c) What strategy would you advise each player to use in the game?

B

T

RL

8, 0

5, 5

1, 1

0, 8

Game A

B

T

RL

8, 4

9, 5

15, 6

10, 4

Game B

B

T

RL

16, 7

5, 16

8, 15

15, 8

Game C

B

T

RL

6, −6

8, 3

3, 5

10, 1

Game D

B

T

RL

3, 16

4, 12

6, 22

5, 10

Game E

B

T

RL

4, 0

2, 2

2, −2

3, 3

Game F

B

T

RL

15, 4

15, 3

15, 7

15, 10

Game G
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5.27 Consider the two-player game in the figure below, in which each player has three
pure strategies.

Player I

Player II

B

M

T

CL R

7, 6

6, 7

0, 0

6, 7

0, 0

7, 6

0, 0

7, 6

6, 7

(a) Prove that ([ 1
3 (T ), 1

3 (M), 1
3 (B)]; [ 1

3 (L), 1
3 (C), 1

3 (R)]) is the game’s unique equi-
librium.

(b) Check that if Player I deviates to T , then Player II has a reply that leads both
players to a higher payoff, relative to the equilibrium payoff. Why, then, will
Player II not play that strategy?

5.28 The Inspector Game During the 1960s, within the framework of negotiations
between the United States (US) and the Union of Soviet Socialist Republics (USSR)
over nuclear arms limitations, a suggestion was raised that both countries commit
to a moratorium on nuclear testing. One of the objections to this suggestion was
the difficulty in supervising compliance with such a commitment. Detecting above-
ground nuclear tests posed no problem, because it was easy to detect the radioactive
fallout from a nuclear explosion conducted in the open. This was not true, however,
with respect to underground tests, because it was difficult at the time to distinguish
seismographically between an underground nuclear explosion and an earthquake.
The US therefore suggested that in every case of suspicion that a nuclear test had
been conducted, an inspection team be sent to perform on-site inspection. The USSR
initially objected, regarding any inspection team sent by the US as a potential spy
operation. At later stages in the negotiations, Soviet negotiators expressed readiness
to accept three on-site inspections annually, while American negotiators demanded
at least eight on-site inspections. The expected number of seismic events per year
considered sufficiently strong to arouse suspicion was 300.

The model presented in this exercise assumes the following:

� The USSR can potentially conduct underground nuclear tests on one of two
possible distinct dates, labeled A and B, where B is the later date.

� The USSR gains nothing from choosing one of these dates over the other for
conducting an underground nuclear test, and the US loses nothing if one date is
chosen over another.

� The USSR gains nothing from conducting nuclear tests on both of these dates
over its utility from conducting a test on only one date, and the US loses nothing
if tests are conducted on both dates over its utility from conducting a test on only
one date.
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� The US may send an inspection team on only one of the two dates, A or B, but
not on both.

� The utilities of the two countries from the possible outcomes are:
� If the Partial Test Ban Treaty (PTBT) is violated by the USSR and the US does

not send an inspection team: the US receives 0 and the USSR receives 0.
� If the PTBT is violated by the USSR and the US sends an inspection team: the

US receives 1 and the USSR receives 1.
� If the PTBT is not violated, the US receives α and the USSR receives β, where
α > 1 and 0 < β < 1 (whether or not the US sends an inspection team).

Answer the following questions:

(a) Explain why the above conditions are imposed on the values of α and β.
(b) Plot, in the space of the utilities of the players, the convex hull of the points

(0, 1), (1, 0), and (α, β). The convex hull includes all the results of all possible
lotteries conducted on pairs of actions undertaken by the players.

(c) List the pure strategies available to each of the two countries.
(d) Write down the matrix of the game in which the pure strategies permitted to the

US (the row player) are:
� A: Send an inspection team on date A
� B: Send an inspection team on date B
and the pure strategies permitted to the USSR (the column player) are:
� L: Conduct a nuclear test on date A
� R: Do not conduct a nuclear test on date A. Conduct a nuclear test on date B,

only if the US sent an inspection team on date A.
(e) Explain why the other pure strategies you wrote down in part (c) are either

dominated by the strategies in paragraph (d), or equivalent to them.
(f) Show that the game you wrote down in paragraph (d) has only one equilibrium.

Compute that equilibrium. Denote by (v∗
I , v

∗
II) the equilibrium payoff, and by

[x∗(A), (1 − x∗)(B)] the equilibrium strategy of the US.
(g) Add to the graph you sketched in paragraph (b) the equilibrium payoff, and

the payoff U ([x∗(A), (1 − x∗)(B)], R) (where U = (UI, UII) is the vector of the
utilities of the two players). Show that the point U ([x∗(A), (1 − x∗)(B)], R) is
located on the line segment connecting (0, 1) with (α, β).

(h) Consider the following possible strategy of the US: play [(x∗ + ε)(A), (1 − x∗ −
ε)(B)], where ε > 0 is small, and commit to playing this mixed strategy.5 Show
that the best reply of the USSR to this mixed strategy is to play strategy R. What
is the payoff to the two players from the strategy vector ([(x∗ + ε)(A), (1 −
x∗ − ε)(B)], R)? Which of the two countries gains from this, relative to the
equilibrium payoff?

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 This model in effect extends the model of a strategic game by assuming that one of the players has the option to
commit to implementing a particular strategy. One way of implementing this would be to conduct a public spin of
a roulette wheel in the United Nations building, and to commit to letting the result of the roulette spin determine
whether an inspection team will be sent: if the result indicates that the US should send an inspection team on date
A, the USSR will be free to deny entry to a US inspection team on date B, without penalty.
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(i) Prove that the USSR can guarantee itself a payoff of v∗
II, regardless of the mixed

strategy used by the US, when it plays its maxmin strategy.
(j) Deduce from the last two paragraphs that, up to an order of ε, the US cannot

expect to receive a payoff higher than the payoff it would receive from com-
mitting to play the strategy [(x∗ + ε)(A), (1 − x∗ − ε)(B)], assuming that the
USSR makes no errors in choosing its strategy.

5.29 Suppose Country A constructs facilities for the development of nuclear weapons.
Country B sends a spy ring to Country A to ascertain whether it is developing nuclear
weapons, and is considering bombing the new facilities. The spy ring sent by Country
B is of quality α: if Country A is developing nuclear weapons, Country B’s spy ring
will correctly report this with probability α, and with probability 1 − α it will report
a false negative. If Country A is not developing nuclear weapons, Country B’s spy
ring will correctly report this with probability α, and with probability 1 − α it will
report a false positive. Country A must decide whether or not to develop nuclear
weapons, and Country B, after receiving its spy reports, must decide whether or not
to bomb Country A’s new facilities. The payoffs to the two countries appear in the
following table.

Country B

Country A
Develop

Don’t Develop

Bomb Don’t Bomb

0, 3
4

1
2 , 1

2

1,0

3
4 ,1

(a) Depict this situation as a strategic-form game. Are there any dominating strate-
gies in the game?

(b) Verbally describe what it means to say that the quality of Country B’s spy ring
is α = 1

2 . What if α = 1?
(c) For each α ∈ [ 1

2 , 1], find the game’s set of equilibria.
(d) What is the set of equilibrium payoffs as a function of α? What is the α at which

Country A’s maximal equilibrium payoff is obtained? What is the α at which
Country B’s maximal equilibrium payoff is obtained?

(e) Assuming both countries play their equilibrium strategy, what is the probability
that Country A will manage to develop nuclear weapons without being bombed?

5.30 Prove that in any two-player game,

max
σI∈�I

min
σII∈�II

uI(σI, σII) = max
σI∈�I

min
sII∈SII

uI(σI, sII). (5.144)

That is, given a mixed strategy of Player I, Player II can guarantee that Player I will
receive the minimal possible payoff by playing a pure strategy, without needing to
resort to a mixed strategy.
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5.31 Let σ−i be a vector of mixed strategies of all players except for player i, in a
strategic-form game. Let σi be a best reply of player i to σ−i . The support of σi is
the set of all pure strategies given positive probability in σi (see Equation (5.64) on
page 165). Answer the following questions.

(a) Prove that for any pure strategy si of player i in the support of σi

Ui(si, σ−i) = U (σi, σ−i). (5.145)

(b) Prove that for any mixed strategy σ̂i of player i whose support is contained in
the support of σi

Ui (̂σi, σ−i) = U (σi, σ−i). (5.146)

(c) Deduce that player i’s set of best replies to every mixed strategy of the other
players σ−i is the convex hull of the pure strategies that give him a maximal
payoff against σ−i .

Recall that the convex hull of a set of points in a Euclidean space is the
smallest convex set containing all of those points.

5.32 A game G = (N, (Si)i∈N, (ui)i∈N ) is called symmetric if (a) each player has the
same set of strategies: Si = Sj for each i, j ∈ N , and (b) the payoff functions satisfy

ui(s1, s2, . . . , sn) = uj (s1, . . . , si−1, sj , si+1, . . . , sj−1, si, sj+1, . . . , sn) (5.147)

for any vector of pure strategies s = (s1, s2, . . . , sn) ∈ S and for each pair of players
i, j satisfying i < j .

Prove that in every symmetric game there exists a symmetric equilibrium in
mixed strategies: an equilibrium σ = (σi)i∈N satisfying σi = σj for each i, j ∈ N .

5.33 The Volunteer’s Dilemma Ten people are arrested after committing a crime.
The police lack sufficient resources to investigate the crime thoroughly. The chief
investigator therefore presents the suspects with the following proposal: if at least
one of them confesses, every suspect who has confessed will serve a one-year jail
sentence, and all the rest will be released. If no one confesses to the crime, the police
will continue their investigation, at the end of which each one of them will receive
a ten-year jail sentence.

(a) Write down this situation as a strategic-form game, where the set of players is
the set of people arrested, and the utility of each player (suspect) is 10 minus the
number of years he spends in jail.

(b) Find all the equilibrium points in pure strategies. What is the intuitive meaning
of such an equilibrium, and under what conditions is it reasonable for such an
equilibrium to be attained?

(c) Find a symmetric equilibrium in mixed strategies. What is the probability that
at this equilibrium no one volunteers to confess?

(d) Suppose the number of suspects is not 10, but n. Find a symmetric equilibrium
in mixed strategies. What is the limit, as n goes to infinity, of the probability that
in a symmetric equilibrium no one volunteers ? What can we conclude from this
analysis for the topic of volunteering in large groups?



204 Mixed strategies

5.34 Consider the following lottery game, with n participants competing for a prize worth
$M (M > 1). Every player may purchase as many numbers as he wishes in the range
{1, 2, . . . , K}, at a cost of $1 per number. The set of all the numbers that have been
purchased by only one of the players is then identified, and the winning number is
the smallest number in that set. The (necessarily only) player who purchased that
number is the lottery winner, receiving the full prize. If no number is purchased by
only one player, no player receives a prize.

(a) Write down every player’s set of pure strategies and payoff function.
(b) Show that a symmetric equilibrium exists, i.e., there exists an equilibrium in

which every player uses the same mixed strategy.
(c) For p1 ∈ (0, 1), consider the following mixed strategy σi(p1) of player i: with

probability p1 purchase only the number 1, and with probability 1 − p1 do not
purchase any number. What conditions must M , n, and p1 satisfy for the strategy
vector in which player i plays strategy σi(p1) to be a symmetric equilibrium?

(d) Show that if at equilibrium there is a positive probability that player i will not
purchase any number, then his expected payoff is 0.

(e) Show that if M < n, meaning that the number of participants is greater than the
value of the prize at equilibrium, there is a positive probability that no player
purchases a number. Conclude from this that at every symmetric equilibrium the
expected payoff of every player is 0. (Hint: Show that if with probability 1 every
player purchases at least one number, the expected number of natural numbers
purchased by all the players together is greater than the value of the prize M ,
and hence there is a player whose expected payoff is negative.)

5.35 The set of equilibria is a subset of the product space 
(S1) × 
(S2) × · · · × 
(Sn).
Prove that it is a compact set. Is it also a convex set? If you answer yes, provide a
proof; if you answer no, provide a counterexample.

5.36 Let Mn,m be the space of matrices of order n × m representing two-player zero-sum
games in which Player I has n pure strategies and Player II has m pure strategies.
Prove that the function that associates with every matrix A = (aij ) ∈ Mn,m the value
in mixed strategies of the game that it represents is continuous in (aij ).

Remark: The sequence of matrices (Ak)k∈N in Mn,m, where Ak = (ak
ij ), converges

to A = (aij ), if

aij = lim
k→∞

ak
ij , ∀i, j. (5.148)

5.37 Let A = (aij ) and B = (bij ) be two n × m matrices representing two-player zero-
sum games in strategic form. Prove that the difference between the value of A and
the value of B is less than or equal to

maxn
i=1maxm

j=1|aij − bij |. (5.149)

5.38 Find matrices A and B of order n × m representing two-player zero-sum games,
such that the value of the matrix C := 1

2A + 1
2B is less than the value of A and less

than the value of B.
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5.39 Let � = (N, (Si)i∈N, (ui)i∈N ) and �̂ = (N, (Si)i∈N, (̂ui)i∈N ) be two strategic-form
games with the same sets of pure strategies. Denote the maximal difference between
the payoff functions of the two games by

c = max
s∈S1×···×Sn

max
i∈N

|ui(s) − ûi(s)|. (5.150)

We say that the set of equilibria of G is close to the set of equilibria of Ĝ if for every
equilibrium x∗ of G there is an equilibrium x̂∗ of Ĝ such that

|ui(x
∗) − ûi (̂x

∗)| ≤ c, ∀i ∈ N. (5.151)

Find two games � = (N, (Si)i∈N, (ui)i∈N ) and �̂ = (N, (Si)i∈N, (̂ui)i∈N ) such that
the set of equilibria of G is not close to the set of equilibria of Ĝ. Can such a
phenomenon exist in two-player zero-sum games? (See Exercise 5.37.)

5.40 Let � = (N, (Si)i∈N, (ui)i∈N ) and �̂ = (N, (Si)i∈N, (̂ui)i∈N ) be two strategic-form
games with the same sets of players, and the same sets of pure strategies such that
ui(s) ≥ ûi(s) for each strategy vector s ∈ S. Denote the multilinear extension of
ûi by Ûi . Is it necessarily true that for each equilibrium σ of � there exists an
equilibrium σ̂ of �̂ such that Ui(σ ) ≥ Ûi (̂σ ) for each player i ∈ N? In other words,
when the payoffs increase, do the equilibrium payoffs also increase? Prove this
claim, or find a counterexample.

5.41 Prove that in a two-player strategic-form game, the minmax value in mixed strategies
of a player equals his maxmin value in mixed strategies.

5.42 Suppose that the following game has a unique equilibrium, given by a completely
mixed strategy.

Player I

Player II

B

T

RL

c, d

a, b

g, h

e, f

Answer the following questions:

(a) Prove that the payoff of each player at this equilibrium equals his maxmin value
in mixed strategies.

(b) Compute the equilibria in mixed strategies and the maxmin strategies in mixed
strategies of the two players. Did you find the same strategies in both cases?

5.43 Prove that the only equilibrium in the following three-player game, where Player I
chooses a row (T or B), Player II chooses a column (L or R), and Player III chooses
a matrix (W or E), is (T , L, W ).



206 Mixed strategies

B

T

B

T

RL RL
EW

1, 3, 0

1, 1, 1

1, 0, 1

0, 1, 3

0, 1, 1

3, 0, 1

0, 0, 0

1, 1, 0

Guidance: First check whether there are equilibria in pure strategies. Then check
whether there are equilibria in which two players play pure strategies, while the
third plays a completely mixed strategy (meaning a strategy in which each one of
his two pure strategies is chosen with positive probability). After that, check whether
there are equilibria in which one player plays a pure strategy, and the other two play
completely mixed strategies. Finally, check whether there are equilibria in which
all the players play completely mixed strategies. Note the symmetry between the
players; making use of the symmetry will reduce the amount of work you need
to do.

5.44 In this exercise we will prove the following theorem:

Theorem 5.56 A set E ⊆ R2 is the set of Nash equilibrium payoffs in a two-player
game in strategic form if and only if E is the union of a finite number of rectangles of
the form [a, b] × [c, d] (the rectangles are not necessarily disjoint from each other,
and we do not rule out the possibility that in some of them a = b and/or c = d).

For every distribution x over a finite set S, the support of x, which is denoted
supp(x), is the set of all elements of S that have positive probability under x:

supp(x) := {s ∈ S : x(s) > 0}. (5.152)

(a) Let (x1, y1) and (x2, y2) be two equilibria of a two-player strategic-form game
with payoffs (a, c) and (b, d) satisfying supp(x1) = supp(x2) and supp(y1) =
supp(y2). Prove that for every 0 ≤ α, β ≤ 1 the strategy vector (αx1 + (1 −
α)x2, βy1 + (1 − β)y2) is a Nash equilibrium with the same support, and with
payoff (αa + (1 − α)c, βb + (1 − β)d).

(b) Deduce that for any subset S′
I of Player I’s pure strategies, and any subset S ′

II of
Player II’s pure strategies, the set of Nash equilibria payoffs yielded by strategy
vectors (x, y) satisfying supp(x) = S ′

I and supp(y) = S ′
II is a rectangle.

(c) Since the number of possible supports is finite, deduce that the set of equilibrium
payoffs of every two-player game in strategic form is a union of a finite number
of rectangles of the form [a, b] × [c, d].

(d) In this part, we will prove the converse of Theorem 5.56. Let K be a positive
integer, and let (ak, bk, ck, dk)Kk=1 be positive numbers satisfying ak ≤ bk and
ck ≤ dk for all k. Define the set A = ⋃K

k=1([ak, bk] × [ck, dk]), which is the
union of a finite number of rectangles (if ak = bk and/or ck = dk, the rectangle
is degenerate). Prove that the set of equilibrium payoffs in the following game
in strategic form in which each player has 2K actions is A.
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. . . . . . . . .

0, 0

0, 0

0, 0

0, 0

0, 0

0, 0

c2, 0a2, 0

a2, 0

a2, d2

a2, b2

c1, b1a1, b1

a1, d1

a1, 0 c1, 0

c1, 0a1, 0

c1, d1

c2, 0

. . .

c2, d2

c2, b2

0, 0

0, 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0, b1 0, b1

0, d1 0, d1

0, b2 0, b2

0, d2 0, d2

. . .

aK, bK

aK, dK

cK, bK

cK, dK

5.45 In this exercise, we will show that Theorem 5.56 (page 206) only holds true in
two-player games: when there are more than two players, the set of equilibrium
payoffs is not necessarily a union of polytopes. Consider the following three-player
game, in which Player I chooses a row (T or B), Player II chooses a column (L or
R), and Player III chooses a matrix (W or E).

B

T

RL

1, 1, 1

1, 0, 3

0, 1, 1

0, 0, 1

B

T

RL

1, 1, 0

0, 1, 4

1, 0, 0

0, 0, 0

EW

Show that the set of equilibria is{
([x(T ), (1 − x)(B)], [y(L), (1 − y)(R)], W ) : 0 ≤ x, y ≤ 1, xy ≤ 1

2

}
.

(5.153)

Deduce that the set of equilibrium payoffs is{
(y, x, 1 + 2xy) : 0 ≤ x, y ≤ 1, xy ≤ 1

2

}
. (5.154)

and hence it is not the union of polytopes in R3.
Guidance: First show that at every equilibrium, Player III plays his pure strategy

W with probability 1, by ascertaining what the best replies of Players I and II are if
he does not do so, and what Player III’s best reply is to these best replies.

5.46 Find all the equilibria in the following three-player game, in which Player I chooses
a row (T or B), Player II chooses a column (L or R), and Player III chooses a matrix
(W or E).
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W

B

T

RL

0, 0, 1

0, 0, 0

0, 1, 0

1, 0, 0

E

B

T

RL

1, 0, 0

0, 1, 0

0, 0, 0

0, 0, 1

5.47 Tom, Dick, and Harry play the following game. At the first stage, Dick or Harry is
chosen, each with probability 1

2 . If Dick has been chosen, he plays the Game A in
Figure 5.36, with Tom as his opponent. If Harry has been chosen, he plays the Game
B in Figure 5.36, with Tom as his opponent. Tom, however, does not know who his
opponent is (and which of the two games is being played). The payoff to the player
who is not chosen is 0.

B

T

RL

0, 0

2, 5

1, 1

0, 0

Dick

Game A

Tom
B

T

RL

0, 0

2, 5

1, 1

0, 0

Harry

Game B

Tom

Figure 5.36 The payoff matrices of the game in Exercise 5.47

Do the following:

(a) Draw the extensive form of the game.
(b) Write down strategic form of the game.
(c) Find two equilibria in pure strategies.
(d) Find an additional equilibrium in mixed strategies.

5.48 In this exercise, Tom, Dick, and Harry are in a situation similar to the one described
in Exercise 5.47, but this time the payoff matrices are those shown in Figure 5.37.

B

T

RL

0, 0

1,  −1

3,  −3

0, 0

Dick

Game A

Tom
B

T

RL

0, 0

5,  −5

1, −1

0, 0

Harry

Game B

Tom

Figure 5.37 The payoff matrices of the game in Exercise 5.48
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(a) Depict the game in extensive form.
(b) Depict the game in strategic form.
(c) Find all the equilibria of this game.

5.49 Prove that in every two-player game on the unit square that is not zero sum, and
in which the payoff functions of the two players are bilinear (see Section 4.14.2 on
page 123), there exists an equilibrium in pure strategies.

5.50 In this exercise, we generalize Theorem 5.11 (page 151) to the case in which the set
of pure strategies of one of the players is countable. Let � be a two-player zero-sum
game in which Player I’s set of pure strategies SI, is finite, Player II’s set of pure
strategies SII = {1, 2, 3, . . .} is a countable set, and the payoff function u is bounded.

Let �n be a two-player zero-sum game in which Player I’s set of pure strategies
is SI, Player II’s set of pure strategies is Sn

II = {1, 2, . . . , n}, and the payoff functions
are identical to those of �. Let vn be the value of the game �n, and let σn

I ∈ 
(SI) and
σn

II ∈ 
(SII) be the optimal strategies of the two players in this game, respectively.

(a) Prove that (vn)n∈N is a sequence of nonincreasing real numbers. Deduce that
v := limn→∞ vn exists.

(b) Prove that each accumulation point σI of the sequence (σn
I )n∈N satisfies6

inf
σII∈
(SII)

U (σI, σII) ≥ v. (5.155)

(c) Prove that for each n ∈ N, the mixed strategy σn
II satisfies

sup
σI∈
(SI)

U (σ1, σ
n
II ) ≤ vn. (5.156)

(d) Deduce that

sup
σI∈
(SI)

inf
σII∈
(SII)

U (σI, σII) = inf
σII∈
(SII)

sup
σI∈
(SI)

U (σI, σII) = v.

(e) Find an example of a game � in which the sequence (σn
II )n∈N has no accumulation

point.
(f) Show by a counterexample that (d) above does not necessarily hold when SI is

also countably infinite.

5.51 In this exercise we will present an example of a game with an infinite set of players
that has no equilibrium in mixed strategies. Let (N, (Si)i∈N, (ui)i∈N ) be a game
in strategic form in which the set of players is the set of natural numbers N =
{1, 2, 3, . . .}, each player i ∈ N has two pure strategies Si = {0, 1}, and player i’s
payoff function is

ui(s1, s2, . . .) =
{

si if
∑

j∈N sj < ∞,

−si if
∑

j∈N sj = ∞.
(5.157)

(a) Prove that this game has no equilibrium in pure strategies.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Recall that σI is an accumulation point of a sequence (σn
I )n∈N if there exists a subsequence (σnk

I )k∈N converging
to σ I.
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(b) Using Kolmogorov’s 0-1 Law,7 prove that the game has no equilibrium in mixed
strategies.

5.52 Let f : Rn+m → R be a homogeneous function, i.e., f (cx, y) = cf (x, y) =
f (x, cy), for every x ∈ Rn, every y ∈ Rm, and every c ∈ R.

Prove that the value v̂ of the two-player zero-sum game Ĝ = ({I, II}, Rn
+, Rm

+, f )
exists;8 that is, there exists v̂ ∈ R ∪ {−∞,∞} such that

v̂ = sup
x∈Rn+

inf
y∈Rm+

f (x, y) = inf
y∈Rm+

sup
Rn+

f (x, y). (5.158)

In addition, prove that the value of the game equals either 0, ∞, or −∞.
Guidance: Consider first the game G = ({I, II}, X, Y, f ), where

X :=
{

x ∈ Rn :
n∑

i=1

xi ≤ 1, xi ≥ 0 ∀i = 1, 2, . . . , n

}
, (5.159)

Y :=
⎧⎨⎩y ∈ Rm :

m∑
j=1

xj ≤ 1, yj ≥ 0 ∀j = 1, 2, . . . , m

⎫⎬⎭ . (5.160)

Show that the game G has a value v; then show that: if v = 0 then v̂ = 0; if v > 0
then v̂ = ∞; and if v < 0 then v̂ = −∞.

5.53 Show that every two-player constant-sum game is strategically equivalent to a
zero-sum game. For the definition of strategic equivalence, see Definition 5.34
(page 174).

5.54 Prove that if (σI, σII) is the solution of the system of linear equations (5.70)–(5.79)
(page 166), then (σI, σII) is a Nash equilibrium.

5.55 Suppose that the preferences of two players satisfy the von Neumann–Morgenstern
axioms. Player I is indifferent between receiving $600 with certainty and partici-
pating in a lottery in which he receives $300 with probability 1

4 and $1,500 with
probability 3

4 . He is also indifferent between receiving $800 with certainty and par-
ticipating in a lottery in which he receives $600 with probability 1

2 and $1,500 with
probability 1

2 .
Player II is indifferent between losing $600 with certainty and participating in a

lottery in which he loses $300 with probability 1
7 and $800 with probability 6

7 . He is
also indifferent between losing $800 with certainty and participating in a lottery in
which he loses $300 with probability 1

8 and $1,500 with probability 7
8 . The players

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Let (Xi )i∈N be a sequence of independent random numbers defined over a probability space (�,F , p). An event
A is called a tail event if it depends only on (Xi )i≥n, for each n ∈ N. In other words, for any n ∈ N, to ascertain
whether ω ∈ A it suffices to know the values (Xi (ω))i≥n, which means that we can ignore a finite number of the
initial variables X1, X2, . . . , Xn (for any n). Kolmogorov’s 0-1 law says that the probability of a tail event is either
0 or 1.

8 For every natural number n the set Rn+ is the nonnegative quadrant of Rn:

Rn
+ := {x ∈ Rn : xi ≥ 0, ∀i = 1, 2, . . . , n}.
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play the game whose payoff matrix is as follows, where the payoffs are dollars that
Player II pays to Player I.

(a) Find linear utility functions for the two players representing the preference
relations of the players over the possible outcomes.

The players play a game whose outcomes, in dollars paid by Player II to Player
I, are given by the following matrix.

Player I

Player II

B

T

ML R

$1,500

$300

$600

$800

$300

$1,500

(b) Determine whether the game is zero sum.
(c) If you answered yes to the last question, find optimal strategies for each of the

players. If not, find an equilibrium.

5.56 Which of the following games, where Player I is the row player and Player II is the
column player, are strategically equivalent to two-player zero-sum games? For each
game that is equivalent to a two-player zero-sum game, write explicitly the positive
affine transformation that proves your answer.

B

T

L R

−7, 8

11, 2

17, 0

5, 4

Game A

B

T

L R

6, 3

2, 7

−3, 12

4, 5

Game B

B

T

L C R

8, 9

0, 12

2, 10

5, 16

7, 11

4, 22

Game C

B

T

CL R

−7, 8

11, 2

17, 0

5, 4

−1, 6

−16, 11

Game D

B

T

CL R

−9, 11

9, 5

15, 3

3, 7

−4, 9

−18, 14

Game E

B

T

CL R

9, 8

9, 2

1, 10

5, 6

7, 4

12, −1

Game F

5.57 (a) Find the value in mixed strategies and all the optimal strategies of each of the
two players in the following two-player zero-sum game.
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Player I

Player II

B

T

RL

4

12

16

8

(b) Increase the utility of Player II by 18, to get

Player I

Player II

B

T

RL

4, 14

12, 6

16, 2

8, 10

What are all the equilibria of this game? Justify your answer.
(c) Multiply the utility of the first player in the original game by 2, and add 3, to get

the following game.

Player I

Player II

B

T

RL

11, −4

27, −12

35, −16

19, −8

What are the equilibrium strategies and equilibrium payoffs in this game?

5.58 Prove Theorem 5.35 on page 175: let G and Ĝ be two strategically equivalent
strategic-form games. Every equilibrium in mixed strategies σ of G is an equilibrium
in mixed strategies of Ĝ.

5.59 (a) Consider the following two-player game.

Player I

Player II

B

T

RL

0, 1

1, 0

0, 0

−1, 1

Show that the only equilibrium in the game is [ 1
2 (T ), 1

2 (B)], [ 1
2 (L), 1

2 (R)].
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(b) Consider next the two-player zero-sum game derived from the above game in
which these payoffs are Player I’s payoffs. Compute the value in mixed strategies
of this game and all the optimal strategies of Player I.

(c) Suppose that Player I knows that Player II is implementing strategy [ 1
2 (L), 1

2 (R)],
and he needs to decide whether to implement the mixed strategy [ 1

2 (T ), 1
2 (B)],

which is his part in the equilibrium, or whether to implement instead the pure
strategy B, which guarantees him a payoff of 0. Explain in what sense the
mixed strategy [ 1

2 (T ), 1
2 (B)] is equivalent to the pure strategy B, from Player I’s

perspective.

5.60 A strategic-form game with constraints is a quintuple (N, (Si, ui)i∈N, c, γ ) where
N is the set of players, Si is player i’s set of pure strategies, ui : S → R is player i’s
payoff function, where S = ×i∈NSi , c : S → R is a constraint function, and γ ∈ R

is a bound. Extend c to mixed strategies in the following way:

C(σ ) =
∑
s∈S

σ1(s1)σ2(s2) · · · σn(sn)c(s). (5.161)

In a game with constraints, the vectors of mixed strategies that the players can
play are limited to those vectors of mixed strategies satisfying the constraints.
Formally, a vector of mixed strategies σ = (σi)i∈N is called permissible if C(σ ) ≤ γ .
Games with constraints occur naturally when there is a resource whose use is
limited.

(a) Consider the following two-player zero-sum game, with the payoffs and con-
straints appearing in the accompanying figure. The bound is γ = 1.

Player I

Player II

B

T

RL

−1

0

0

1

Payoffs

Player I

Player II

B

T

RL

0

2

0

0

Constraints

Compute

max
σI∈�I

min
{σII∈�II : C(σI,σII)≤γ }

U (σI, σII)

and

min
σII∈�II

max
{σI∈�I : C(σI,σII)≤γ }

U (σI, σII).

(b) How many equilibria can you find in this game?

The following condition in games with constraints is called the Slater condition.
For each player i and every vector of mixed strategies of the other players σ−i
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there exists a mixed strategy σi of player i such that C(σi, σ−i) < γ (note the strict
inequality). The following items refer to games with constraints satisfying the Slater
condition.

(c) Prove that in a two-player zero-sum game with constraints

max
σI∈�I

min
{σII∈�II : C(σI,σII)≤γ }

U (σI, σII) ≥ min
σII∈�II

max
{σI∈�I : C(σI,σII)≤γ }

U (σI, σII).

Does this result contradict Theorem 5.40 on page 177? Explain.
(d) Go back to the n-player case. Using the compactness of �i and �−i , prove that

for every player i,

sup
σ−i∈�−i

inf
{σi∈�i : C(σi ,σ−i )≤γ }

C(σi, σ−i) < γ. (5.162)

(e) Prove that for each strategy vector σ satisfying the constraints (i.e., C(σ ) ≤ γ ),
for each player i, and each sequence of strategy vectors (σ k

−i)
∞
k=1 converging to

σ−i , there exists a sequence (σ k
i )∞k=1 converging to σi such that C(σk

i , σ k
−i) ≤ γ

for every k.
(f) Using Kakutani’s Fixed Point Theorem (Theorem 23.32 on page 939), show

that in every strategic-form game with constraints there exists an equilibrium.
In other words, show that there exists a permissible vector σ ∗ satisfying the
condition that for each player i ∈ N and each strategy σ ∗

i of player i, if (σi, σ
∗
−i)

is a permissible strategy vector, then Ui(σi, σ
∗
−i) ≤ Ui(σ ∗).

Hint: To prove part (c), denote by v the value of the game without constraints, and
prove that the left-hand side of the inequality is greater than or equal to v, and the
right-hand side of the inequality is less than or equal to v.

5.61 Prove Theorem 5.45 on page 183: if information is added to Player I in a two-player
zero-sum game, the value of the game in mixed strategies does not decrease.

5.62 Compute the (unique) equilibrium payoff in each of the following two-player
extensive-form games. Which player gains, and which player loses, from the addi-
tion of information to Player I, i.e., when moving from Game A to Game B? Is the
result of adding information here identical to the result of adding information in
Example 5.47 (page 185)? Why?

II

I

(10, 0)

(0, 10)

(0, 10)

(10, 0)

(20, 1)

M

R

L
r

l

l

r

Game A

II I

I
(10, 0)

(0, 10)

(0, 10)

(10, 0)

(20, 1)

M

R

L

r1

l1

l2

r2

Game B
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5.63 Consider the following two-player game composed of two stages. In the first stage,
one of the two following matrices is chosen by a coin toss (with each matrix chosen
with probability 1

2 ). In the second stage, the two players play the strategic-form
game whose payoff matrix is given by the matrix that has been chosen.

Player I

Player II

B

T

L C R

−2, −2

0, 0

−2, −2

1, −1

−3, −12

−1, 10
Player I

Player II

B

T

L C R

−1, 0

−2, −1

1, 1
2

−1, 1

−1, 10

−2, −11

For each of the following cases, depict the game as an extensive-form game, and
find the unique equilibrium:

(a) No player knows which matrix was chosen.
(b) Player I knows which matrix was chosen, but Player II does not know which

matrix was chosen.

What effect does adding information to Player I have on the payoffs to the players
at equilibrium?

5.64 Prove that in a two-player game, the maxmin value in mixed strategies of a player
equals his minmax value in mixed strategies.

5.65 In this exercise we will prove von Neumann’s Minmax Theorem (Exercise 5.11 on
page 151), using the Duality Theorem from the theory of linear programming (see
Section 23.3 on page 945 for a brief review of linear programming).

Let G be a two-player zero-sum game in which Player I has n pure strategies,
Player II has m pure strategies, and the payoff matrix is A. Consider the following
linear program, in the variables y = (yj )mj=1, in which c is a real number, and �c is
an n-dimensional vector, all of whose coordinates equal c:

Compute: ZP := min c,

subject to: Ay� ≤ �c,∑m
j=1 yj = 1,

y ≥ �0.

(a) Write down the dual program.
(b) Show that the set of all y satisfying the constraints of the primal program is a

compact set, and conclude that ZP is finite.
(c) Show that the optimal solution to the primal program defines a mixed strategy

for Player II that guarantees him an expected payoff of at most ZP .
(d) Show that the optimal solution to the dual program defines a mixed strategy for

Player I that guarantees an expected payoff of at least ZD.
(e) Explain why the Duality Theorem is applicable here. Since the Duality Theorem

implies that ZP = ZD, deduce that ZP is the value of the game.
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5.66 Prove the following claims for n-player extensive-form games:

(a) Adding information to one of the players does not increase the maxmin or the
minmax value of the other players.

(b) Adding information to one of the players does not increase the minmax value of
the other players.

(c) Adding information to one of the players may have no effect on his maxmin
value.

(d) Adding information to one of the players may decrease the maxmin value of the
other players.

5.67 Find all the equilibria of Game B in Figure 5.29 (page 185). What are the equilibria
payoffs corresponding to these equilibria?

5.68 Find all the equilibrium points of the following games, and ascertain which of them
defines an evolutionarily stable strategy.

Population

Mutation
Hawk

Dove

Dove Hawk

3, 8

2, 2

7, 7

8, 3

Game A

Population

Mutation
Hawk

Dove

Dove Hawk

3, 1

2, 2

7, 7

1, 3

Game B

Mutation
Hawk

Dove

Dove Hawk

1, 0

2, 2

7, 7

0, 1

Game C

Population

Mutation
Hawk

Dove

Dove Hawk

1, 1

1, 1

1, 1

1, 1

Game D

Population

Mutation
Hawk

Dove

Dove Hawk

8, 8

2, 2

7, 7

8, 8

Game E

Population

Mutation
Hawk

Dove

Dove Hawk

1, 1

1, 1

2, 2

1, 1

Game F

Population

5.69 Suppose that a symmetric two-player game, in which each player has two pure
strategies and all payoffs are nonnegative, is given by the following figure.
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Player I

Player II

B

T

RL

c, d

a, a

b,b

d, c

What conditions on a, b, c, d guarantee the existence of an ESS?

5.70 Prove that the unique Nash equilibrium of Rock, Paper, Scissors (Example 4.3, on
page 78) is([

1
3 (Rock), 1

3 (Paper), 1
3 (Scissors)

]
;
[

1
3 (Rock), 1

3 (Paper), 1
3 (Scissors)

])
.

5.71 Suppose that the males and females of a particular animal species have two types of
behavior: care for offspring, or abandonment of offspring. The expected number of
offspring are presented in the following matrix.

Mother

Father
Abandon

Care

Care Abandon

V − c, V − c

0, 0

αV − c, αV

αV, αV − c

Explanation: V is the expected number of surviving offspring if they are cared for
by both parents. If only one parent cares for the offspring, the expected number of
surviving offspring is reduced to αV , 0 < α < 1. In addition, a parent who cares
for his or her offspring invests energy and time into that care, which reduces the
number of surviving offspring he or she has by c (because he or she has fewer mating
encounters with other animals).

Prove the following claims:

(a) If V − c > αV and αV − c > 0 (which results in a relatively smaller investment,
since c < αV and c < (1 − α)V ), then the only evolutionarily stable strategy is
Care, meaning that both parents care for their offspring.

(b) If V − c < αV and αV − c < 0 (which results in a high cost for caring for
offspring), the only evolutionarily stable strategy is Abandon, and hence both
parents abandon their offspring.

(c) If α < 1
2 (in this case (1 − α)V > αV , and investment in caring for offspring

satisfies (1 − α)V > c > αV ), there are two evolutionarily stable equilibria,
Care and Abandon, showing that both Care and Abandon are evolutionarily stable
strategies. Which equilibrium emerges in practice in the population depends on
the initial conditions.
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(d) If α > 1
2 (in this case αV > (1 − α)V , and investment in caring for offspring

satisfies αV > c > (1 − α)V ), the only evolutionarily stable equilibrium is the
mixed strategy in which Care is chosen with probability αV−c

(2α−1)V .

Remark: The significance of α < 1
2 is that “two together are better than two sep-

arately.” The significance of α > 1
2 is that “two together are worse than two sepa-

rately.”

5.72 A single male leopard can mate with all the female leopards on the savanna. Why,
then, is every generation of leopards composed of 50% males and 50% females?
Does this not constitute a waste of resources? Explain, using ideas presented in
Section 5.8 (page 186), why the evolutionarily stable strategy is that at which the
number of male leopards born equals the number of females born.9

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 In actual fact, the ratio of the males to females in most species is close to 50%, but not exactly 50%. We will not
present here various explanations that have been suggested for this phenomenon.
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Chapter summary
In strategic-form games, a mixed strategy extends the player’s possibilities by allowing
him to choose a pure strategy randomly. In extensive-form games random choices can be
executed in two ways. The player can randomly choose a pure strategy for the whole
play at the outset of the game; this type of randomization yields in fact the concept of
mixed strategy in an extensive-form game. Alternatively, at every one of his information
sets, the player can randomly choose one of his available actions; this type of
randomization yields the concept of behavior strategy, which is the subject of this
chapter.

We study the relationship between behavior strategies and mixed strategies in
extensive-form games. To this end we define an equivalence relation between strategies
and we show by examples that there are games in which some mixed strategies do not
have equivalent behavior strategies, and there are games in which some behavior
strategies do not have equivalent mixed strategies. We then introduce the concept of
perfect recall: a player has perfect recall in an extensive-form game if along the play of
the game he does not forget any information that he knew in the past (regarding his
moves, the other players’ moves, or chance moves). We prove Kuhn’s Theorem, which
states that if a player has perfect recall, then any one of his behavior strategies is
equivalent to a mixed strategy, and vice versa. It follows that a game in which all players
have perfect recall possesses an equilibrium in behavior strategies.

As noted in previous chapters, extensive-form games and strategic-form games are not
related in a one-to-one manner. In general, the extensive form is richer in detail, and
incorporates “dynamic aspects” of the game that are not expressed in strategic form.
Strategic-form games focus exclusively on strategies and outcomes. Given this, it is
worthwhile to take a closer look at the concepts developed for the two forms of games and
detect differences between them, if there are any, due to the different representations of
the game. We have already seen that the concept of pure strategy, which is a fundamental
element of strategic-form games, is also well defined in extensive-form games, where a
pure strategy of a player is a function that maps each of his information sets to an action
that is feasible at that information set.

In this chapter (only), we will denote the multilinear extension (expectation) of player i’s
payoff function by ui , rather than Ui , because Ui will denote an information set of
player i.

219
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Example 6.1 Consider the two-player extensive-form game given in Figure 6.1.

I

II I

O1

O2

O3

O4

O5

T1

B1

t

b

T2

B2

T2

B2

U1

U2

U1

Figure 6.1 The game in Example 6.1

In this game, Player I has two information sets, U 1
I and U 2

I , and four pure strategies:

SI = {T1T2, T1B2, B1T2, B1B2}. (6.1)

Player II has one information set, U 1
II, and two pure strategies:

SII = {t, b}. (6.2)

Mixed strategies are defined as probability distributions over sets of pure strategies. The concept of
mixed strategy is therefore well defined in every game in which the set of pure strategies is a finite
or countable set, whether the game is an extensive-form game or a strategic-form game. The sets
of mixed strategies are1

�I = 
(SI), �II = 
(SII). (6.3)

One of the interpretations of the concept of mixed strategy is that it is a random choice of how to
play the game. But there may be different ways of attaining such randomness. Clearly, if a player
has only one move (only one information set), such as Player II in the game in Figure 6.1, there is
only one way to implement a random choice of an action: to pick t with probability α, and b with
probability 1 − α. That does indeed define a mixed strategy.

What about Player I, who has two information sets in the game in Figure 6.1? Suppose that
he implements a mixed strategy, such as, for example, σI = [ 1

3 (T1T2), 0(T1B2), 1
3 (B1T2), 1

3 (B1B2)].
Then he is essentially conducting a lottery at the start of the game, and then implementing the pure
strategy that has been chosen by lottery.

However, Player I has another, equally natural, alternative way to attain randomness: he can
choose randomly between T1 and B1 when the play of the game arrives at his information set
U 1

I , and then choose randomly between T2 and B2 when the play of the game arrives at his
information set U 2

I . Such a strategy is described by two lotteries: [α(T1), (1 − α)(B1)] at U 1
I , and

[β(T2), (1 − β)(B2)] at U 2
I . In other words, instead of randomly choosing a grand plan (a pure

strategy) that determines his actions at each of his information sets, the player randomly chooses
his action every time he is at a particular information set. Such a strategy is called a behavior
strategy. �

Is there an essential difference between these two strategies? Can a player attain a
higher payoff by using a behavior strategy instead of a mixed strategy? Alternatively, can
he attain a higher payoff by using a mixed strategy instead of a behavior strategy? We

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Recall that for every finite set S, 
(S) is the set of all probability distributions over S, (Definition 5.1, page 146).



221 6.1 Behavior strategies

will answer these questions in this chapter, and find conditions under which it makes no
difference which of these alternative strategy concepts is used.

6.1 Behavior strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 6.2 A behavior strategy of a player in an extensive-form game is a function
mapping each of his information sets to a probability distribution over the set of possible
actions at that information set.

Recall that we denote by Ui the collection of information sets of player i, and for every
information set Ui ∈ Ui , we denote by A(Ui) the set of possible actions at Ui . A behavior
strategy of player i in an extensive-form game is a function bi : Ui → ∪Ui∈Ui


(A(Ui))
such that bi(Ui) ∈ 
(A(Ui)) for all Ui ∈ Ui . Equivalently, a behavior strategy is a vector
of probability distributions (lotteries), one per information set. This is in contrast with the
single probability distribution (single lottery) defining a mixed strategy. The probability
that a behavior strategy bi will choose an action ai ∈ A(Ui) at an information set Ui is
denoted by bi(ai ; Ui).

Recall that �i is player i’s set of mixed strategies; player i’s set of behavior strategies
is denoted by Bi . What is the relationship between Bi and �i? Note first that in every case
in which player i has at least two information sets at which he has at least two possible
actions, the sets Bi and �i are different mathematical structures – two sets in different
spaces. This is illustrated in Example 6.1.

Example 6.1 (Continued) As noted above, in this example Player I’s behavior strategy is described by

two lotteries: bI = ([α(T1), (1 − α)(B1)], [β(T2), (1 − β)(B2)]). Equivalently, we can describe this
behavior strategy by a pair of real numbers α, β in the unit interval. The set BI is thus equivalent to
the set

{(α, β) : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1}, (6.4)

while �I is equivalent to the set⎧⎨⎩(x1, x2, x3, x4) : xj ≥ 0,

4∑
j=1

xj = 1

⎫⎬⎭ . (6.5)

In other words, �I is equivalent to a subset of R4 (which is three-dimensional, due to the constraint∑4
j=1 xj = 1). By contrast, BI is equivalent to a subset of R2: the unit square [0, 1]2. The fact that

�I is of higher dimension than BI (three dimensions versus two dimensions) suggests that �I may
be a “richer,” or a “larger,” set.

In fact, in this example, for every behavior strategy one can define an “equivalent” mixed strategy:
the behavior strategy

([α(T1), (1 − α)(B1)], [β(T2), (1 − β)(B2)]) (6.6)
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is equivalent to the mixed strategy

[αβ(T1T2), α(1 − β)T1B2, (1 − α)βB1T2, (1 − α)(1 − β)B1B2]. (6.7)

The sense in which these two strategies are equivalent is as follows: for each one of Player II’s
mixed strategies, the probability of reaching a particular vertex of the tree when Player I uses the
behavior strategy (α, β) of Equation (6.6) equals the probability of reaching that vertex when Player
I uses the mixed strategy of Equation (6.7). �

To define formally the equivalence between a mixed strategy and a behavior strategy,
we consider strategy vectors that consist of both mixed strategies and behavior strategies.

Definition 6.3 A mixed/behavior strategy vector is a vector of strategies σ = (σi)i in
which σi can be either a mixed strategy or a behavior strategy of player i, for each i.

For every mixed/behavior strategy vector σ = (σi)i∈N and every vertex x in the game
tree, denote by ρ(x; σ ) the probability that vertex x will be visited during the course of
the play of the game when the players implement strategies (σi)i∈N .

Example 6.4 Consider the two-player game depicted in Figure 6.2. In this figure, the vertices of the tree are

denoted by x1, x2, . . . , x17.

I

0

I

I

II

I

T1

B1

t

b

t

b

2
3

1
3

T2

B2

T2

B2

T3

B3

T4

B4

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

1

6
10

4
10

9
20

6
40

3
10

1
10

6
20

3
20

3
40

9
40

1
40

3
40

2
20

4
20

3
20

0

Figure 6.2 A two-player game, including the probabilities of arriving at each vertex

Suppose that the players implement the following mixed strategies:

σI =
[

3

10
(B1B2B3B4) ,

1

10
(B1T2B3B4) ,

4

10
(T1B2B3T4) ,

2

10
(T1B2T3T4)

]
, (6.8)

σII =
[

3

4
(t),

1

4
(b)

]
. (6.9)
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Given these mixed strategies, we have computed the probabilities that the play of the game will
reach the various vertices of the game tree, and these probabilities are listed alongside the vertices
in Figure 6.2. We began at the leaves of the tree; for example, the probability of arriving at leaf x13

is the probability that Player I will play B1 at vertex x1, and B2 at information set {x6, x7}, and that
Player II will play b at information set {x2, x3}. From among the four pure strategies of Player I for
which σI assigns positive probability, Player I will play B1 at vertex x1 and B2 at information set
{x6, x7} only at the pure strategy (B1B2B3B4), with this pure strategy chosen by σI with probability
3

10 . Since the mixed strategies of the two players (which are probability distributions over their
pure strategy sets) are independent, the probability that the play of the game will reach the leaf x13

is 3
10 × 1

4 = 3
40 . We compute the probability of getting to a vertex that is not a leaf by recursion

from the leaves to the root: the probability of getting to a vertex x is the sum of the probabilities of
getting to one of the children of x. �

Definition 6.5 A mixed strategy σi and a behavior strategy bi of player i in an extensive-
form game are equivalent to each other if for every mixed/behavior strategy vector σ−i of
the players N \ {i} and every vertex x in the game tree

ρ(x; σi, σ−i) = ρ(x; bi, σ−i). (6.10)

In other words, the mixed strategy σi and the behavior strategy bi are equivalent if for
every mixed/behavior strategy vector σ−i , the two strategy vectors (σi, σ−i) and (bi, σ−i)
induce the same probability of arriving at each vertex in the game tree. In particular,
ρ(x; σi, σ−i) = ρ(x; bi, σ−i) for every leaf x. The probability ρ(x; σ ) that the vertex x

will be visited during a play of the game equals the sum of the probabilities that the leaves
that are descendants of x will be visited. It follows that to check that Equation (6.10) holds
for every vertex x it suffices to check that it holds for every leaf of the game tree. It further
follows from the definition that when the behavior strategy bi is equivalent to the mixed
strategy σi , then for every mixed/behavior strategy vector σ−i of the other players the two
strategy vectors (σi, σ−i) and (bi, σ−i) lead to the same expected payoff (Exercise 6.6).

Theorem 6.6 If a mixed strategy σi of player i is equivalent to a behavior strategy bi , then
for every mixed/behavior strategy vector σ−i of the other players and every player j ∈ N ,

uj (σi, σ−i) = uj (bi, σ−i). (6.11)

Repeated application of Theorem 6.6 leads to the following corollary.

Corollary 6.7 Let σ = (σi)i∈N be a vector of mixed strategies. For each player i, let bi

be a behavior strategy that is equivalent to σi , and denote b = (bi)i∈N . Then, for each
player i,

ui(σ ) = ui(b). (6.12)
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Example 6.4 (Continued) Given the probabilities calculated in Figure 6.2, the behavior strategy bI defined

by

bI =
([

3
5 (T1), 2

5 (B1)
]
,
[

1
4 (T2), 3

4 (B2)
]
,
[

1
3 (T3), 2

3 (B3)
]
,

[
1(T4), 0(B4)

])
(6.13)

is equivalent to the mixed strategy σI defined in Equation (6.8),

σI =
[

3
10 (B1B2B3B4) , 1

10 (B1T2B3B4) , 4
10 (T1B2B3T4) , 2

10 (T1B2T3T4)
]
. (6.14)

To see how behavior strategy bI was computed from the mixed strategy σI, suppose that
Player II implements strategy σI = [ 3

4 (t), 1
4 (b)]. The probability that the play of the game will

arrive at each vertex x appears in the game tree in Figure 6.2. If behavior strategy bI is equivalent to
the mixed strategy σI, then the probability that an action in a particular information set is chosen is
the ratio between the probability of arriving at the vertex that leads to that action and the probability
of arriving at the vertex at which the action is chosen. For example, in order to compute the proba-
bility at which the action B2 is chosen in the information set {x6, x7}, we divide the probability 3

40 of

reaching vertex x13 by the probability 1
10 of reaching vertex x7, to obtain 3/40

1/10 = 3
4 , corresponding

to [ 1
4 (T2), 3

4 (B2)] in strategy bI (we obtain a similar result, of course, if we divide the probability
9

40 of reaching vertex x11 by the probability 3
10 of reaching vertex x6). To complete the construction

of bI from the mixed strategy σI, similar computations need to be conducted at Player I’s other
information sets, and it must be shown that these computations lead to the same outcome for all
strategies [α(t), (1 − α)(b)] of Player II (Exercise 6.7). �

Using a behavior strategy, instead of a mixed strategy, may be advantageous for two
reasons: first, the set Bi is “smaller,” and defined by fewer parameters, than the set �i .
For example, if the player has four information sets, with two actions at each information
set (as happens in Example 6.4), the total number of pure strategies available is 24 = 16,
so that a mixed strategy involves 15 variables, as opposed to a behavior strategy, which
involves only four variables (namely, the probability of selecting the first action in each
one of the information sets). Secondly, in large extensive-form games, behavior strategies
appear to be “more natural,” because in behavior strategies, players choose randomly
between their actions at each information set at which they find themselves, rather than
making one grand random choice of a “master plan” (i.e., a pure strategy) for the entire
game, all at once. This motivates the questions of whether each mixed strategy has an
equivalent behavior strategy, and whether each behavior strategy has an equivalent mixed
strategy. As the next two examples show, the answers to both questions may, in general,
be negative.

Example 6.8 A mixed strategy that has no equivalent behavior strategy Consider the game in

Figure 6.3, involving only one player.

I I

O1

O2

O3

O4

T1

B1

T2

B2

T2

B2

Figure 6.3 A game with a mixed strategy that has no equivalent behavior strategy
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There are four pure strategies, {T1T2, T1B2, B1T2, B1B2}. We will show that there is no behavior
strategy that is equivalent to the mixed strategy σI = [ 1

2 (T1T2), 0(T1B2), 0(T2B1), 1
2 (B1B2)]. This

mixed strategy induces the following probability distribution over the outcomes of the game:[
1
2 (O1), 0(O2), 0(O3), 1

2 (O4)
]
. (6.15)

A behavior strategy
(
[α(T1), (1 − α)(B1)], [β(T2), (1 − β)(B2)]

)
induces the following probability

distribution over the outcomes of the game:

[(1 − α)(1 − β)(O1), (1 − α)β(O2), α(1 − β)(O3), αβ(O4)]. (6.16)

If this behavior strategy were equivalent to the mixed strategy σI, they would both induce the same
probability distributions over the outcomes of the game, so that the following equalities would have
to obtain:

αβ = 1
2 , (6.17)

α(1 − β) = 0, (6.18)

(1 − α)β = 0, (6.19)

(1 − α)(1 − β) = 1
2 . (6.20)

But this system of equations has no solution: Equation (6.18) implies that either α = 0 or β = 1. If
α = 0, Equation (6.17) does not hold, and if β = 1, Equation (6.20) does not hold. �

Example 6.9 The Absent-Minded Driver: a game with a behavior strategy that has no equivalent mixed

strategy Consider the game in Figure 6.4, involving only one player, Player I. In this game, the
player, when he comes to choosing an action, cannot recall whether or not he has chosen an action
in the past. An illustrative story that often accompanies this example is that of an absent-minded
driver, motoring down a road with two exits. When the driver arrives at an exit, he cannot recall
whether it is the first exit on the road, or the second exit.

I

O3

O2

O1

R

L
R

L

x1

x2

x3

x5

x4

Figure 6.4 The Absent-Minded Driver game

There are two pure strategies: T and B. The pure strategy T yields the outcome O3, while the
pure strategy B yields the outcome O1. Since a mixed strategy is a probability distribution over the
set of pure strategies, no mixed strategy can yield the outcome O2 with positive probability.

In contrast, the behavior strategy [ 1
2 (T ), 1

2 (B)], where the player chooses one of the two actions
with equal probability at each of the two vertices in his information set, leads to the following
probability distribution over outcomes:[

1
4 (O1), 1

4 (O2), 1
2 (O3)

]
. (6.21)

Since this probability distribution can never be the result of implementing a mixed strategy, we
conclude that there is no mixed strategy equivalent to this behavior strategy. �
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6.2 Kuhn’s Theorem
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Let us note that the player suffers from forgetfulness of a different kind in each of the
above examples: in Example 6.8, when the player is about to take an action the second
time, he cannot recall what action he chose the first time; he knows that he has made a
previous move, but cannot recall what action he took. In Example 6.9, the player does not
even recall whether or not he has made a move in the past (although he does know that if
he did make a prior move, he necessarily must have chosen action B). What happens when
the player is not forgetful? Will this ensure that every behavior strategy has an equivalent
mixed strategy, and that every mixed strategy has an equivalent behavior strategy? As we
will show in this section, the answer to these questions is affirmative.

6.2.1 Conditions for the existence of an equivalent mixed strategy
to any behavior strategy
Let x be a vertex in the game tree that is not the root, and let x1 be a vertex on the path
from the root to x. The (unique) edge emanating from x1 on the path from the root to x is
called the action at x1 leading to x.

A pure strategy selects the same action at every vertex in each one of the corresponding
player’s information sets. It follows that if the path from the root to x passes through two
vertices x1 and x̂1 that are in the same information set of player i, and if the action at x1

leading to x differs from the action at x̂1 leading to x, then when player i implements
a pure strategy the play of the game cannot arrive at x. For this reason, in Example 6.9
there is no pure strategy leading to the vertex x5. Since a mixed strategy is a probability
distribution over pure strategies, the probability that a play of the game will arrive at such
a vertex x is 0 when player i implements any mixed strategy. In contrast, if all the players
implement behavior strategies in which at every information set every possible action is
played with positive probability, then for each vertex in the game tree there is a positive
probability that the play of the game will reach that vertex. This leads to the following
conclusion (Exercise 6.8).

Corollary 6.10 If there exists a path from the root to some vertex x that passes at least
twice through the same information set Ui of player i, and if the action leading in the
direction of x is not the same action at each of these information sets, then player i has a
behavior strategy that has no equivalent mixed strategy.

The last corollary will be used to prove the next theorem, which gives a necessary and
sufficient condition for the existence of a mixed strategy equivalent to every behavior
strategy. If every path emanating from the root passes through each information set at
most once, then every behavior strategy has an equivalent mixed strategy.

Theorem 6.11 Let � = (N, V, E, v0, (Vi)i∈N∪{0}, (px)x∈V0, (Ui)i∈N, O, u) be an
extensive-form game that satisfies the condition that at every vertex there are at least two
actions. Every behavior strategy of player i has an equivalent mixed strategy if and only
if each information set of player i intersects every path emanating from the root at most
once.
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In the game in Example 6.9, there is a path that twice intersects the same information
set, and we indeed identified a behavior strategy of that game that has no equivalent
mixed strategy. The theorem does not hold without the condition that there are at least two
actions at each vertex (Exercise 6.9). We first prove that the condition in the statement of
the theorem is necessary.

Proof of Theorem 6.11: the condition is necessary Suppose that there exists a path from
the root to a vertex x that intersects the same information set Ui of player i at least twice.
We will prove that there is a behavior strategy of player i that has no mixed strategy
equivalent to it. Let x1 and x̂1 be two distinct vertices in the above-mentioned information
set that are located along the path (see Figure 6.5). Denote by a the action at x1 leading
to x, and by b an action at x1 that differs from a. Let x2 be the vertex that the play of the
game reaches if at vertex x̂1 player i chooses action b.

x1

x1

x0

x2

xUi

b

a

b

a

Figure 6.5 The game tree in the proof of Theorem 6.11

The path from the root to x2 passes through the vertices x1 and x̂1, the action at x1 leading
to x2 is a, and the action at x̂1 leading to x2 is b. By Corollary 6.10 it follows that there is
a behavior strategy of player i that has no mixed strategy equivalent to it, which is what
we needed to show. �

We now explain the idea underlying the proof of the second direction. The proof itself
will be presented in Section 6.2.3 after we introduce several definitions. Let bi be a
behavior strategy of player i. When the play of the game arrives at information set Ui ,
player i conducts a lottery based on the probability distribution bi(Ui) to choose one of
the actions available at information set Ui . Player i could just as easily conduct this lottery
at the start of the game, instead of waiting until he gets to the information set Ui . In
other words, at the start of the game, the player can conduct a lottery for each one of his
information sets Ui , using in each case the probability distribution bi(Ui), and then play
the action thus chosen at each information set, respectively, if and when the play of the
game reaches it. Since all the lotteries are conducted at the start of the game, we have
essentially defined a mixed strategy that is equivalent to bi .

This construction would not be possible without the condition that any path from the
root intersects every information set at most once. Indeed, if there were a path intersecting
the same information set of player i several times, then the mechanism described in the
previous paragraph would require player i to choose the same action every time he gets
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to that information set. In contrast, a behavior strategy enables the player to choose his
actions at the information sets independently every time the play of the game arrives at the
information set. It follows that in this case the mixed strategy that the process defines is not
equivalent to the behavior strategies bi . Before we prove the other direction of Theorem
6.11 (sufficiency), we present ρ(x; σ ), the probability that the play of the game reaches
vertex x, as the product of probabilities, each of which depends solely on one player.

This representation will serve us in several proofs in this section, as will the notation
that we now introduce.

6.2.2 Representing ρ(x; σ) as a product of probabilities
For each decision vertex x of player i, denote by Ui(x) ∈ Ui the information set of player i

containing x. For each descendant x̂ of x denote by ai(x → x̂) ∈ A(Ui(x)) the equivalence
class containing the action leading from x to x̂. This is the action that player i must choose
at vertex x for the play of the game to continue in the direction of vertex x̂.

For each vertex x (not necessarily a decision vertex of player i) denote the number
of vertices along the path from the root to x (not including x) at which player i is
the decision maker by Lx

i , and denote these nodes by x1
i , x

2
i , . . . , x

Lx
i

i . In Example 6.4,
L

x10
I = 2, x1

I = x1, x2
I = x6, and

UI(x1) = {x1}, UI(x10) = {x6, x7}. (6.22)

Since an information set can contain several vertices on the path from the root to
x, as happens in the Absent-Minded Driver game (Example 6.9), it is possible that
Ui(x

l1
i ) = Ui(x

l2
i ) even when l1 �= l2. In Example 6.9, L

x4
I = 2 and

UI
(
x1

4

) = UI
(
x2

4

) = {x1, x2}. (6.23)

What is the probability that under the strategy implemented by player i, he will choose
the action leading to x at each one of the information sets preceding x? If player i

implements behavior strategy bi , this probability equals

ρi(x; bi) :=
{∏Lx

i

l=1 bi

(
ai

(
xl

i → x
)
; Ui

(
xl

i

))
if Lx

i > 0,

1 if Lx
i = 0.

(6.24)

If player i implements the mixed strategy σi , then σi(si) is the probability that he
chooses pure strategy si . Denote by S∗

i (x) ⊆ Si all of player i’s pure strategies under
which at each information set Ui(xl

i ), 1 ≤ l ≤ Lx
i , he chooses the action a(Ui(xl

i ) → x).
The set S∗

i (x) may be empty; since a pure strategy cannot choose two different actions at
the same information set, this happens when the path from the root to x passes at least
twice through the same information set of player i, and the action leading to x is not the
same action in every case.

When S∗
i (x) �= ∅, the probability that player i chooses the actions leading to vertex x is

ρi(x; σi) :=
∑

si∈S∗
i (x)

σi(si). (6.25)

When S∗
i (x) = ∅, this probability is defined by ρi(x; σi) := 0. Because the lotteries con-

ducted by the players are independent, we get that for each mixed/behavior strategy
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vector σ and every vertex x,

ρ(x; σ ) =
∏
i∈N

ρi(x; σi). (6.26)

We turn now to the proof of the second direction of Theorem 6.11.

6.2.3 Proof of the second direction of Theorem 6.11: sufficiency
We want to prove that if every path intersects each information set of player i at most
once, then every mixed strategy of player i has an equivalent behavior strategy.

A pure strategy of player i is a choice of an action from his action set at each of his
information sets. Hence the set of pure strategies of player i is

Si = ×
Ui∈Ui

A(Ui). (6.27)

For every pure strategy si of player i, and every information set Ui , the action that the
player chooses at Ui is si(Ui). It follows that for every behavior strategy bi and every pure
strategy si of player i, bi(si(Ui); Ui) is the probability that under behavior strategy bi , at
each time that the play of the game reaches a vertex in information set Ui , player i chooses
the same action that si chooses at this information set.

Given a behavior strategy bi of player i, we will now define a mixed strategy σi that
is equivalent to bi . For every pure strategy si of player i define the “probability that this
strategy is chosen according to bi” as

σi(si) :=
∏

Ui∈Ui

bi(si(Ui); Ui). (6.28)

First, we will show that σi := (σi(si))si∈Si
is a probability distribution over Si , and hence

it defines a mixed strategy for player i. Since σi(si) is a product of nonnegative numbers,
σi(si) ≥ 0 for every pure strategy si ∈ Si . We now verify that

∑
si∈Si

σi(si) = 1. Indeed,

∑
si∈Si

σi(si) =
∑
si∈Si

⎛⎝ ∏
Ui∈Ui

bi(si(Ui); Ui)

⎞⎠ (6.29)

=
∏

Ui∈Ui

∑
ai∈A(Ui )

bi(ai ; Ui) (6.30)

=
∏

Ui∈Ui

1 = 1. (6.31)

Equation (6.30) follows from changing the order of the product and the summation and
from the assumption that every path intersects every information set at most once.

Finally, we need to check that the mixed strategy σi is equivalent to bi . Let x be a
vertex. We will show that for each mixed/behavior strategy vector σ−i of players N \ {i},

ρ(x; bi, σ−i) = ρ(x; σi, σ−i). (6.32)

From Equation (6.26), we deduce that

ρ(x; bi, σ−i) = ρi(x; bi) ×
∏
j �=i

ρj (x; σj ), (6.33)



230 Behavior strategies and Kuhn’s Theorem

and

ρ(x; σi, σ−i) = ρi(x; σi) ×
∏
j �=i

ρj (x; σj ). (6.34)

It follows that in order to show that Equation (6.32) is satisfied, it suffices to show that

ρi(x; bi) = ρi(x; σi). (6.35)

Divide player i’s collection of information sets into two:U1
i , containing all the information

sets intersected by the path from the root to x, and U 2
i , containing all the information sets

that are not intersected by this path. Since S∗
i (x) is the set of pure strategies of player i in

which he implements the action leading to vertex x in all information sets intersected by
the path from the root to x,

ρi(x; σi) =
∑

si∈S∗
i (x)

σi(si) (6.36)

=
∑

si∈S∗
i (x)

∏
Ui∈Ui

bi(si(Ui); Ui) (6.37)

=
∑

si∈S∗
i (x)

⎛⎝ ∏
Ui∈U1

i

bi(si(Ui); Ui) ×
∏

Ui∈U2
i

bi(si(Ui); Ui))

⎞⎠ . (6.38)

Since U1
i contains only the information sets Ui(x1

i ), Ui(x2
i ), . . . , Ui(x

Lx
i

i ), and since for
every l ∈ {1, 2, . . . , Lx

i } the pure strategy si ∈ S∗
i (x) instructs player i to play action

a(Ui(xl
i ) → x) at information set Ui(xl

i ), we deduce, using Equation (6.24), that

∏
Ui∈U1

i

bi(si(Ui); Ui) =
Lx

i∏
l=1

bi(ai(x
l
i → x); Ui(x

l
i )) = ρi(x; bi). (6.39)

In particular, this product is independent of si ∈ S∗
i (s). We can therefore move the product

outside of the sum in Equation (6.38), yielding

ρi(x; σi) = ρi(x; bi) ×
⎛⎝ ∑

si∈S∗
i (x)

∏
Ui∈U 2

i

bi(si(Ui); Ui)

⎞⎠ . (6.40)

We will now show that the second element on the right-hand side of Equation (6.40) equals
1. The fact that si is contained in S∗

i (x) does not impose any constraints on the actions
implemented by player i at the information sets in U2

i . For every sequence (aUi
)Ui∈U 2

i
at

which aUi
∈ A(Ui) is a possible action for player i at information set Ui for all Ui ∈ U2

i ,
there is a pure strategy si ∈ S∗

i (x) such that aUi
= si(Ui) for all Ui ∈ U2

i . Moreover, there
is an injective mapping between the set of pure strategies S∗

i (x) and the set of the sequences
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(aUi
)Ui∈U2

i
∈ ×Ui∈U2

i
A(Ui). Therefore,∑

si∈S∗
i (x)

∏
Ui∈U2

i

bi(si(Ui); Ui) =
∑

{
(aUi

)
Ui∈U2

i
∈×

Ui∈U2
i
A(Ui )

}
∏

Ui∈U2
i

bi(aUi
; Ui)

=
∏

Ui∈U2
i

∑
aUi

∈A(Ui )

bi(aUi
; Ui) =

∏
Ui∈U2

i

1 = 1. (6.41)

Equation (6.40) therefore implies that

ρi(x; σi) = ρi(x; bi) (6.42)

which is what we wanted to prove.

6.2.4 Conditions guaranteeing the existence of a behavior strategy
equivalent to a mixed strategy
In this section, we present a condition guaranteeing that every mixed strategy has an equiv-
alent behavior strategy. This requires formalizing when a player never forgets anything.
During the play of a game, a player can forget many things:

� He can forget what moves he made in the past (as in Example 6.8).
� He can forget whether or not he made a move at all in the past (as in Example 6.9).
� He can forget things he knew at earlier stages of the games, such as the result of a chance

move, what actions another player has played, which players acted in the past, or how
many times a particular player played in the past.

The next definition guarantees that a player never forgets any of the items in the above list
(Exercises 6.11–6.15). Recall that all the vertices in the same information set must have
the same associated action set (Definition 3.23 on page 54).

Definition 6.12 Let X = (x0 → x1 → . . . → xK ) and X̂ = (x0 → x̂1 → . . . → x̂L) be
two paths2 in the game tree. Let Ui be an information set of player i, which intersects each
of these two paths at only one vertex: X at xk , and X̂ at x̂l . We say that these two paths
choose the same action at information set Ui if k < K , l < L, and the action at xk leading
to xk+1 is identical to the action at x̂l leading to x̂l+1, i.e., ai(xk → xk+1) = ai (̂xl → x̂l+1).

Definition 6.13 Player i has perfect recall if the following conditions are satisfied:

(a) Every information set of player i intersects every path from the root to a leaf at most
once.

(b) Every two paths from the root that end in the same information set of player i pass
through the same information sets of player i, and in the same order, and in every
such information set the two paths choose the same action. In other words, for every
information set Ui of player i and every pair of vertices x, x̂ in Ui , if the decision
vertices of player i on the path from the root to x are x1

i , x
2
i , . . . , x

L
i = x and his

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 In the description of a path in a game tree we list only the vertices, because the edges along the path are uniquely
determined by those vertices.
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decision vertices on the path from the root to x̂ are x̂1
i , x̂

2
i , . . . , x̂

L̂
i = x̂, then L = L̂,

and Ui(xl
i ) = Ui (̂xl

i ), and ai(xl
i → x) = ai (̂xl

i → x̂) for all l ∈ {1, 2, . . . , L}.
A game is called a game with perfect recall if all the players have perfect recall.

Two games are shown in Figure 6.6. In Game A, every player has a single information
set, and all the players have perfect recall. In Game B, in contrast, Player I has imperfect
recall, because the two paths connecting the root to the vertices in information set {x3, x4}
do not choose the same action in information set {x1}. Player II, however, has perfect
recall in this game.

III
I

IIx1

x2

x3

x4

x5

τ

β

T

B

T

B

t

b

t

b

Game A: a game
with perfect recall

I
I

IIx1

x2

x3

x4

x5

T1

B1

T2

B2

T2

B2

t

b

t

b

Game B: a game
with imperfect recall

Figure 6.6 Two games in extensive form

Recall that S∗
i (x) is the set of pure strategies of player i at which he chooses the actions

leading to vertex x (see page 228). The definition of perfect recall implies the following
corollary (Exercise 6.16).

Theorem 6.14 Let i be a player with perfect recall in an extensive-form game, and let x

and x′ be two vertices in the same information set of player i. Then S∗
i (x) = S∗

i (x′).

Theorem 6.15 (Kuhn [1957]) In every game in extensive form, if player i has perfect
recall, then for every mixed strategy of player i there exists an equivalent behavior strategy.

Proof: We make use of the following notation: for each vertex x of player i, and each
possible action a in A(Ui(x)), we denote by xa the vertex in the game tree that the play of
the game reaches if player i chooses action a at vertex x.

Let σi be a mixed strategy of player i. Our goal is to define a behavior strategy bi

equivalent to σi .

Step 1: Defining a behavior strategy bi .
To define a behavior strategy bi we have to define, for each information set Ui of player i,
a probability distribution over the set of possible actions at Ui .



233 6.2 Kuhn’s Theorem

So suppose Ui is an information set of player i, and let x be a vertex in Ui . For
each action ai ∈ A(Ui), the collection S∗

i (xai ) contains all the pure strategies si in S∗
i (x)

satisfying si(Ui) = ai .
If
∑

si∈S∗
i (x) σi(si) > 0 define

bi(ai ; Ui) :=
∑

si∈S∗
i (xai ) σi(si)∑

si∈S∗
i (x) σi(si)

, ∀ai ∈ A(x). (6.43)

The numerator on the right-hand side of Equation (6.43) is the probability that player i

will play the actions leading to xa , and the denominator is the probability that player i

will play the actions leading to x. It follows that the ratio between the two values equals
the conditional probability that player i plays action a if the play reaches vertex x.

If
∑

si∈S∗
i (x) σi(si) = 0, by Theorem 6.14 it follows that

∑
si∈S∗

i (x ′) σi(si) for each vertex
x′ in the information set of x. Therefore, when player i implements σi the probability that
the play of the game will visit the information set containing x is 0, i.e., ρi(x; σi) = 0.
In this case, the definition of bi , for information set Ui , makes no difference. For the
definition of bi to be complete, we define in this case

bi(ai ; Ui) = 1

|A(Ui)| , ∀ai ∈ A(x). (6.44)

We now show that the definition of bi is independent of the vertex x chosen in infor-
mation set Ui , so that the behavior strategy bi is well defined. It suffices to check the
case

∑
si∈S∗

i (x) σi(si) > 0, because when
∑

si∈S∗
i (x) σi(si) = 0, the definition of bi (see

Equation (6.44)) is independent of x; it depends only on Ui . Let then x1 and x2 be
two different vertices in Ui . Since player i has perfect recall, Theorem 6.14 implies that
S∗

i (x1) = S∗
i (x2). Since x1 and x2 are in the same information set, the set of possible actions

at x1 equals the set of possible actions at x2: A(x1) = A(x2). If a is a possible action at
these vertices, xa

1 and xa
2 are the vertices reached by the play of the game from x1 and from

x2 respectively, if player i implements action a at these vertices. Using Theorem 6.14 we
deduce that S∗

i (xa
1 ) = S∗

i (xa
2 ). In particular, it follows that the numerator and denominator

of Equation (6.43) are independent of the choice of vertex x in Ui .

Step 2: Showing that bi is a behavior strategy.
We need to prove that for every information set Ui of player i, bi(Ui) is a probability
distribution over A(Ui), i.e., that bi(Ui) is a vector of nonnegative numbers summing to one.
Equation (6.44) defines a probability distribution over A(Ui) for the case

∑
si∈S∗

i (x) σi(si) =
0. We show now that when

∑
si∈S∗

i (x) σi(si) > 0, Equation (6.43) defines a probability
distribution over A(Ui). Since σi(si) ≥ 0 for every pure strategy si , the numerator in
Equation (6.43) is nonnegative, and hence bi(ai ; Ui) ≥ 0 for every action ai ∈ A(Ui). The
sets {S∗

i (xa) : a ∈ A(Ui)} are disjoint, and their union is S∗
i (x). It follows that∑

a∈A(Ui )

∑
si∈S∗

i (xa)

σi(si) =
∑

si∈S∗
i (x)

σi(si). (6.45)

We deduce from Equations (6.43) and (6.45) that in this case
∑

ai∈A(Ui ) bi(ai ; Ui) = 1.
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Step 3: Showing that bi is equivalent to σi .
Let σ−i be a mixed/behavior strategy vector of the other players, and let x be a vertex in
the game tree (not necessarily a decision vertex of player i). We need to show that

ρ(x; bi, σ−i) = ρ(x; σi, σ−i). (6.46)

As we saw previously, Equation (6.26) implies that

ρ(x; bi, σ−i) = ρi(x; bi) ×
∏
j �=i

ρj (x; σj ), (6.47)

and

ρ(x; σi, σ−i) = ρi(x; σi) ×
∏
j �=i

ρj (x; σj ). (6.48)

To show that Equation (6.46) is satisfied, it therefore suffices to show that

ρi(x; bi) = ρi(x; σi). (6.49)

In words, we need to show that the probability that player i will play actions leading
to x under σi equals the probability that player i will do the same under bi . Recall that
x1

i , x
2
i , . . . , x

Lx
i

i is the sequence of decision vertices of player i along the path from the
root to x (not including the vertex x if player i is the decision maker there). If Lx

i = 0, then
player i has no information set intersected by the path from the root to x, so S∗

i (x) = Si .
In this case, we have defined ρi(x; bi) = 1 (see Equation (6.24)), and also

ρi(x; σi) =
∑

si∈S∗
i (x)

σi(si) =
∑
si∈Si

σi(si) = 1. (6.50)

Hence Equation (6.49) is satisfied.
Suppose, then, that Lx

i > 0. Every strategy of player i that chooses, at each information
set Ui(x1

i ), Ui(x2
i ), . . . , Ui(xl

i ), the action leading to x is a strategy that does so at each
information set Ui(x1

i ), Ui(x2
i ), . . . , Ui(x

l−1
i ) and at information set Ui(xl

i ) chooses the
action al := ai(xl

i → x). In other words,

S∗
i

(
xl+1

i

) = S∗
i

(
x

l,al

i

)
. (6.51)

Since bi is a behavior strategy, Equation (6.24) implies that

ρi(x; bi) =
Lx

i∏
l=1

bi

(
al; Ui

(
xl

i

))
. (6.52)

If ρi(x; bi) �= 0, then the definition of bi (Equation (6.43)) implies that

ρi(x; bi) =
Lx

i∏
l=1

∑
si∈S∗

i (x
al
l ) σi(si)∑

si∈S∗
i (xl )

σi(si)
. (6.53)

From Equation (6.51) we deduce that∑
si∈S∗

i (x
al
l )

σi(si) =
∑

si∈S∗
i (xl+1)

σi(si). (6.54)
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It follows that the product on the right-hand side of Equation (6.53) is a telescopic product:
the numerator in the l-th element of the product equals the denominator in the (l + 1)-th
element of the product. This means that adjacent product elements cancel each other
out. Note that S∗

i (xal

l ) = S∗
i (x) is satisfied for l = Lx

i , so that canceling adjacent product
elements in Equation (6.53) yields

ρi(x; bi) =
∑

si∈S∗
i (x) σi(si)∑

si∈S∗
i (x1

i ) σi(si)
. (6.55)

Recall that x1
i is player i’s first decision vertex on the path from the root to x. Since player i

has no information set prior to x1
i , every strategy of player i is in S∗

i (x1
i ), i.e., S∗

i (x1
i ) = Si .

The denominator in Equation (6.55) therefore equals 1, so that

ρi(x; bi) =
∑

si∈S∗
i (x)

σi(si) = ρi(x; σi), (6.56)

which is what we claimed.
To wrap up, we turn our attention to the case ρi(x; bi) = 0. From Equation (6.24), we

deduce that ρi(x; bi) is given by a product of elements and therefore one of those elements
vanishes: there exists l, 1 ≤ l ≤ Lx

i , such that bi(al ; Ui(xl
i )) = 0. From the definition of

bi (Equation (6.43)) we deduce that
∑

si∈S∗
i (x

l,al
i ) σi(si) = 0. On the other hand, S∗

i (xl,al

i ) ⊇
S∗

i (x) and therefore by Equation (6.25)

ρi(x; σi) =
∑

si∈S∗
i (x)

σi(si) ≤
∑

si∈S∗
i (x

l,al
i )

σi(si) = 0. (6.57)

Hence Equation (6.49) is satisfied in this case. �

6.3 Equilibria in behavior strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

By Nash’s Theorem (Theorem 5.10 on page 151) every finite extensive-form game has
a Nash equilibrium in mixed strategies. In other words, there exists a vector of mixed
strategies under which no player has a profitable deviation to another mixed strategy. An
equilibrium in behavior strategies is a vector of behavior strategies under which no player
has a profitable deviation to another behavior strategy.

The next theorem states that to ensure the existence of a Nash equilibrium in behavior
strategies, it suffices that all the players have perfect recall.

Theorem 6.16 If all the players in an extensive-form game have perfect recall then the
game has a Nash equilibrium in behavior strategies.

Proof: Since an extensive-form game is by definition a finite game, Nash’s Theorem
(Theorem 5.10 on page 151) implies that the game has a Nash equilibrium in mixed
strategies σ ∗ = (σ ∗

i )i∈N . Since all the players in the game have perfect recall, we know
from Kuhn’s Theorem (Theorem 6.15) that for each player i there exists a behavior strategy
b∗i equivalent to σ ∗

i . Corollary 6.7 then implies that

ui(σ
∗) = ui(b

∗), ∀i ∈ N, (6.58)
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where b∗ = (b∗
i )i∈N . We show now that no player can increase his expected payoff by

deviating to another behavior strategy. Let bi be a behavior strategy of player i. From
Theorem 6.11, there exists a mixed strategy σi equivalent to bi . Since σ ∗ is an equilibrium
in mixed strategies,

ui(σ
∗) ≥ ui(σi, σ

∗
−i). (6.59)

Since σi is equivalent to bi , and for each j �= i the strategy σ ∗
j is equivalent to b∗

j ,
Corollary 6.7 implies that

ui(σi, σ
∗
−i) = ui(bi, b

∗
−i). (6.60)

From Equations (6.58)–(6.60) we then have

ui(b
∗) = ui(σ

∗) ≥ ui(σi, σ
∗
−i) = ui(bi, b

∗
−i). (6.61)

In other words, player i cannot profit by deviating from b∗i to bi , so that the strategy vector
b∗ is an equilibrium in behavior strategies. �

As the proof of the theorem shows, when a game has perfect recall, at each equilibrium
in mixed strategies no player has a profitable deviation to a behavior strategy, and at each
equilibrium in behavior strategies no player has a profitable deviation to a mixed strategy.
Moreover, there exist equilibria at which some players implement mixed strategies and
some players implement behavior strategies, and at each such equilibrium no player has
a profitable deviation to either a mixed strategy or a behavior strategy.

The next example shows that when it is not the case that all players have perfect recall,
the game may not have a pure strategy equilibrium.

Example 6.17 Figure 6.7 depicts a two-player zero-sum game.

Bill

Jim

Jane

1

−1

2

0

−2

0

1
2

1
2

D

E

D

E

S

C

s

c

U1
I

U2
I

U II

Figure 6.7 The game in Example 6.17, in extensive form
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This game may be interpreted as follows: Player I represents a couple, Jim and Jane.
Player II is named Bill. At the first stage of the game, a winning card is handed either to Jim
or to Bill, with equal probability. The player who receives the card may choose to show (“S” or
“s”) his card, and receive a payoff of 1 from the other player (thus ending the play of the game),
or to continue (“C” or “c”). If the player holding the winning card chooses to continue, Jane (who
does not know who has the card) is called upon to choose between declaring end (“E”), and thus
putting an end to the play of the game without any player receiving a payoff, or declaring double
(“D”), which results in the player holding the winning card receiving a payoff of 2 from the other
player.

In this game, Player I has imperfect recall, because the paths from the root to the two vertices
in information set U2

I do not intersect the same information set of Player I: one path intersects U 1
I ,

while the other does not intersect it.
Player I’s set of pure strategies is {SD, SE,CD,CE}, and Player II’s set of pure strategies is

{S,C}. The strategic form of this game is given in the matrix in Figure 6.8 (in terms of payments
from Player II to I):

Player I

Player II

SD

SE

CD

CE

sc

−1
2

1
2

0

0

0

0

1
2

− 1
2

Figure 6.8 The game in Example 6.17 in strategic form

The value of the game in mixed strategies is v = 1
4 , and an optimal mixed strategy guaranteeing

this payoff to Player I is σI = [0(CE), 1
2 (CD), 1

2 (SE), 0(SD)]. Player II’s only optimal (mixed)
strategy is σII = [ 1

2 (c), 1
2 (s)].

To check whether the game has a value in behavior strategies we compute the minmax value vb

and the maxmin value vb in behavior strategies. The maxmin value in behavior strategies equals the
maxmin value in mixed strategies, since Player II has one information set. It follows that his set of
behavior strategies BII equals his set of mixed strategies �II (Exercise 6.4). Since he can guarantee
1
4 in mixed strategies he can guarantee 1

4 in behavior strategies. Formally,

vb = min
bII∈BII

max
bI∈BI

U (bI, bII) (6.62)

= min
σII∈BII

max
bI∈BI

U (bI, bII) (6.63)

= min
σII∈BII

max
sI∈SI

U (bI, bII) (6.64)

= min
σII∈BII

max
σI∈�I

U (bI, bII) = v = 1
4 (6.65)

Equation (6.64) holds because, as explained on page 179, it suffices to conduct maximization on
the right-hand side of Equation (6.63) over the pure strategies of Player I, and Equation (6.65) holds
because the function U is bilinear.
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We now compute the maxmin value in behavior strategies vb. In other words, we will calculate
Player I’s maxmin value when he is restricted to using only behavior strategies. A behavior strategy
of Player I can be written as bI = ([α(S), (1 − α)(C)], [β(D), (1 − β)(E)]). His expected payoff,
when he plays bI, depends on Player II’s strategy:

� If Player II plays s, Player I’s expected payoff is
1
2 (α + (1 − α)(2β + 0(1 − β))) + 1

2 (−1) = (1 − α)
(
β − 1

2

)
. (6.66)

� If Player II plays c, Player I’s expected payoff is
1
2 (α + (1 − α)(2β + 0(1 − β))) + 1

2 (β(−2) + 0(1 − β)) = α
(

1
2 − β

)
. (6.67)

Player I’s maxmin value in behavior strategies is therefore3

vb = max
α,β

min
{
(1 − α)

(
β − 1

2

)
, α

(
1
2 − β

)} = 0. (6.68)

To see that indeed vb = 0, note that if β ≤ 1
2 , then the first element in the minimization in Equation

(6.68) is nonpositive; if β ≥ 1
2 , then the second element is nonpositive; and if β = 1

2 , both elements
are zero. We conclude that vb = 1

4 �= 0 = vb, and therefore the game has no value in behavior
strategies.

Since the strategy σI = [0(CE), 1
2 (CD), 1

2 (SE), 0(SD)] guarantees Player I an expected payoff
of 1

4 , while any behavior strategy guarantees him at most 0, we confirm that there does not exist a
behavior strategy equivalent to σI, which can also be proved directly (prove it!).

The source of the difference between the two types of strategies in this case lies in the fact that
Player I wants to coordinate his actions at his two information sets: ideally, Jane should play E if
Jim plays S, and should play D if Jim plays C. This coordination is possible using a mixed strategy,
but cannot be achieved with a behavior strategy, because in any behavior strategy the lotteries
[α(S), (1 − α)(C)] and [β(D), (1 − β)(E)] are independent lotteries. �

6.4 Kuhn’s Theorem for infinite games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Section 6.2 we proved Kuhn’s Theorem when the game tree is finite. There are extensive-
form games with infinite game trees. This can happen in two ways: when there is a vertex
with an infinite number of children, and when there are infinitely long paths in the game
tree. In this section we generalize the theorem to the case in which each vertex has a finite
number of children and the game tree has infinitely long paths. Infinitely long paths exist
in games that may never end, such as backgammon and Monopoly. In Chapters 13 and 14
we present models of games that may not end. Generalizing Kuhn’s Theorem to infinite
games involves several technical challenges:

� The set of pure strategies has the cardinality of the continuum. Indeed, if for example
player i has a countable number of information sets and in each of his information
sets there are only two possible actions, a pure strategy of player i is equivalent to an
infinite sequence of zeros and ones. The collection of all such sequences is equivalent

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Again, it suffices to conduct maximization over the pure strategies of Player II, which are c and s.
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to the interval [0, 1] of real numbers, which has the cardinality of the continuum. Since
a mixed strategy is a probability distribution over pure strategies, we need to define
a σ -algebra over the collection of all pure strategies in order to be able to define
probability distributions over this set.

� In finite games, the equivalence of mixed strategies and behavior strategies was defined
using the equivalence between the probabilities that they induce over the vertices of the
game tree, and in particular over the set of leaves, which determines the outcome of the
game. In infinite games, the outcome of the game may be determined by an infinitely
long path in the game tree that corresponds to an infinitely long play of the game. It
follows that instead of probability distributions induced over a finite set of leaves, in
the case of an infinite game we need to deal with probability distributions induced over
the set of paths in the game tree, which as we showed above has the cardinality of the
continuum. This requires defining a measurable space over the set of plays of the game,
that is, over the set of paths (finite and infinite) starting at the root of the tree.

We first introduce several definitions that will be used in this section.

Definition 6.18 Let X be a set. A collection Y of subsets of X is a σ -algebra over X if
(a) ∅ ∈ Y , (b) X \ Y ∈ Y for all Y ∈ Y , and (c) ∪i∈NYi ∈ Y for every sequence (Yi)i∈N

of elements in Y .

De Morgan’s Laws imply that a σ -algebra is also closed under countable intersections:
if (Yi)i∈N is a sequence of elements of Y , then ∩i∈NYi ∈ Y . For each family Ŷ of subsets
of X, the σ -algebra generated by Ŷ is the smallest σ -algebra of Y (with respect to set
inclusion) satisfying Ŷ ⊆ Y . The σ -algebra that we will use in the rest of this section is
the σ -algebra of cylinder sets.

Definition 6.19 Let (Xn)n∈N be sequence of finite sets, and let X∞ :=×n∈N Xn. A set
B ∈ X∞ is called a cylinder set if there exist N ∈ N and (An)Nn=1, An ⊆ Xn for all

n ∈ {1, 2, . . . , N}, such that B = (×N
n=1 An) × (×∞

n=N+1 Xn). The σ -algebra of cylinder
sets is the σ -algebra Y generated by the cylinder sets in X∞.

Definition 6.20 A measurable space is a pair (X,Y) such that X is a set and Y is a
σ -algebra over X. A probability distribution over a measurable space (X,Y) is a function
p : Y → [0, 1] satisfying:

� p(∅) = 0.
� p(X \ Y ) = 1 − p(Y ) for every Y ∈ Y .
� p(∪n∈NYn) = ∑

n∈N p(Yn) for any sequence (Yn)n∈N of pairwise disjoint sets in Y .

The third property in the definition of a probability distribution is called σ -additivity.
The next theorem follows from the Kolmogorov Extension Theorem (see, for exam-

ple, Theorem A.3.1 in Durrett [2004]) and the Carathéodory Extension Theorem (see,
for example, Theorem 13.A in Halmos [1994]). Given an infinite product of spaces
X∞ = ×n∈N Xn and a sequence (pN )N∈N of probability distributions, where each pN is
a probability distribution over the finite product XN := ×N

n=1 Xn, the theorem presents
a condition guaranteeing the existence of an extension of the probability distributions
(pN )N∈N to X∞, i.e., a probability distribution p over X∞ whose marginal distribution
over XN is pN , for each N ∈ N.
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Theorem 6.21 Let (Xn)n∈N be a sequence of finite sets. Suppose that for each N ∈ N

there exists a probability distribution pN over XN :=×N
n=1 Xn that satisfies

pN (A) = pN+1(A × XN+1), ∀N ∈ N, ∀A ⊆ XN. (6.69)

Let X∞ := ×n∈N Xn and let Y be the σ -algebra of cylinder sets over X∞. Then there
exists a unique probability distribution p over (X∞,Y) extending (pN )N∈N, i.e.,

pN (A) = p(A × XN+1 × XN+2 × · · · ), ∀N ∈ N, ∀A ⊆ XN. (6.70)

When (V, E, x0) is a (finite or infinite) game tree, denote by H the set of maximal
paths in the tree, meaning paths from the root to a leaf, and infinite paths from the root.
For each vertex x denote by H (x) the set of paths in H passing through x. Let H be the
σ -algebra generated by the sets H (x) for all x ∈ V . Recall that for each vertex x that is
not a leaf the set of children of x is denoted by C(x).

In this section we also make use of the following version of Theorem 6.21, which
states that if there is an infinite tree such that each vertex x in the tree has an associated
probability distribution p(x), and if these probability distributions are consistent in the
sense that the probability associated with a vertex equals the sum of the probabilities
associated with its children, then there is a unique probability distribution p̂ over the
set of maximal paths satisfying the property that the probability that the set of paths
passing through vertex x equals p(x). The proof of the theorem is left to the reader
(Exercise 6.24).

Theorem 6.22 Let (V, E, x0) be a (finite or infinite) game tree such that |C(x)| < ∞ for
each vertex x. Denote by H the set of maximal paths. Let p : V → [0, 1] be a function
satisfying p(x) = ∑

x ′∈C(x) p(x ′) for each vertex x ∈ V that is not a leaf. Then there exists
a unique probability distribution p̂ over (H,H) satisfying p̂(H (x)) = p(x) for all x ∈ V .

6.4.1 Definitions of pure strategy, mixed strategy, and behavior strategy
Let G be an extensive-form game with an infinite game tree such that each vertex has a
finite number of children. In such a game, as in the finite case, a pure strategy of player i

is a function that associates each information set of player i with a possible action at
that information set. A behavior strategy of player i is a function associating each one
of his information sets with a probability distribution over the set of possible actions at
that information set. Denote by Si =×Ui∈Ui

A(Ui) player i’s set of pure strategies and by
Bi = ×Ui∈Ui


(A(Ui)) his set of behavior strategies.
A mixed strategy is a probability distribution over the collection of pure strategies.

When the game has finite depth,4 the set of pure strategies is a finite set and the set
of player i’s mixed strategies �i is a simplex. When player i has an infinite number of
information sets at which he has at least two possible actions the set of pure strategies Si

has the cardinality of the continuum. To define a probability distribution over this set we
need to define a σ -algebra over it. Let Si be the σ -algebra of cylinder sets of Si . The pair
(Si,Si) is a measurable space and the set of probability distributions over it is the set of
mixed strategies �i of player i.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 The depth of a vertex is the number of edges in the path from the root to the vertex. The depth of a game is the
maximum (or supremum) of the depth of all vertices in the game tree.
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6.4.2 Equivalence between mixed strategies and behavior strategies
In a finite game of depth T , a mixed strategy σT

i is equivalent to a behavior strategy bT
i

if ρ(x; σT
i , σ T

−i) = ρ(x; bT
i , σ T

−i) for every mixed/behavior strategy vector σT
−i of the other

players and every vertex x in the game tree. In this section we extend the definition of
equivalence between mixed and behavior strategies to infinite games.

We begin by defining ρi(x; σi) and ρi(x; bi), the probability that player i implementing
either mixed strategy σi or behavior strategy bi will choose actions leading to the vertex
x at each vertex along the path from the root to x that is in his information sets.

For each behavior strategy bi of player i, and each vertex x in the game tree,

ρi(x; bi) := �
Lx

i

l=1bi

(
ai ; U

l
i

)
, (6.71)

where Lx
i is the number of vertices along the path from the root to x that are in player i’s

information sets (not including the vertex x, if at vertex x player i chooses an action), and
U 1

i , U 2
i , . . . , U

Lx
i

1 are the information sets containing these vertices (if there are several
vertices along the path to x in the same information set Ui of player i, then this information
set will appear more than once in the list U 1

i , U 2
i , . . . , U

Lx
i

1 ).
We now define the probability ρi(x; σi) for a mixed strategy σi . For any T ∈ N let GT

be the game that includes the first T stages of the game G.

� The set of vertices V T of GT contains all vertices of G with depth at most T .
� The information sets of each player i in GT are all nonempty subsets of V T that

are obtained as the intersection of an information set in UT
i with V T−1; that is, an

information set in GT contains only vertices whose depth is strictly less than T . This is
because the vertices whose depth is T are leaves of GT . Denote by UT

i the collection of
player i’s information sets in the game G that have a nonempty intersection with V T−1.
With this notation, player i’s collection of information sets in the game GT is all the
nonempty intersections of V T−1 with a set in UT

i . Below, for any T ∈ N, we identify
each information set UT

i of player i in the game GT with the information set Ui ∈ UT
i

for which UT
i = V T−1 ∩ Ui .

Since each vertex has a finite number of children, the set V T contains a finite number of
vertices. To simplify the notation, an information set of player i in the game GT , which
is the intersection of V T and an information set Ui of player i in the game G, will also
be denoted by Ui . Since Kuhn’s Theorem does not involve the payoffs of a game, we will
not specify the payoffs in the game GT .

Player i’s set of pure strategies in the game GT is ST
i := ×Ui∈UT

i
A(Ui). For each mixed

strategy σi in the game G, let σT
i be its marginal distribution over ST

i . Then σT
i is a mixed

strategy in the game GT . The sequence of probability distributions (σT
i )T ∈N satisfies the

following property: the marginal distribution of σT
i over ST−1

i is σT−1
i . It follows that for

each vertex x whose depth is less than or equal to T we have ρi(x; σT1
i ) = ρi(x; σT2

i ) for
all T1, T2 ≥ T . Define for each vertex x

ρi(x; σi) := ρi

(
x; σT

i

)
, (6.72)
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where T is greater than or equal to the depth of x. Finally, define, for each mixed/behavior
strategy vector σ ,

ρ(x; σ ) := �i∈Nρi(x; σi). (6.73)

This is the probability that the play of the game reaches vertex x when the players
implement the strategy vector σ .

The following theorem, which states that every vector of strategies uniquely defines a
probability distribution over the set of infinite plays, follows from Theorem 6.22 and the
definition of ρ (Exercise 6.25).

Theorem 6.23 Let σ be a mixed/behavior strategy vector in a (finite or infinite) extensive-
form game. Then there exists a unique probability distribution μσ over (H,H) satisfying
μσ (H (x)) = ρ(x; σ ) for every vertex x.

Definition 6.24 A mixed strategy σi of player i is equivalent to a behavior strategy bi of
player i if, for every mixed/behavior strategy vector σ−i of the other players, μ(σi ,σ−i ) =
μ(bi ,σ−i ).

Theorem 6.23 implies the following theorem.

Theorem 6.25 A mixed strategy σi of player i is equivalent to his behavior strategy bi if
for every mixed/behavior strategy vector σ−i of the other players and every vertex x we
have ρ(x; σi, σ−i) = ρ(x; bi, σ−i).

6.4.3 Statement of Kuhn’s Theorem for infinite games and its proof
The definition of a player with perfect recall in an infinite extensive-form game is identical
to the definition for finite games (Definition 6.13 on page 231). If player i has perfect
recall in a game G, then he also has perfect recall in the game GT for all T ∈ N (verify!).

Theorem 6.26 Let G be an extensive-form game with an infinite game tree such that
each vertex in the game tree has a finite number of children. If player i has perfect recall,
then for each mixed strategy of player i there is an equivalent behavior strategy and for
each behavior strategy of player i there is an equivalent mixed strategy.

Proof: Let G be an extensive-form game with an infinite game tree such that each vertex
in the game tree has a finite number of children. Let i be a player with perfect recall. We
begin by proving one direction of the statement of the theorem: for each mixed strategy
of player i there is an equivalent behavior strategy. Let σi be a mixed strategy of player i

in the game G. For each T ∈ N, let σT
i be the restriction of σi to the game GT ; in other

words, σT
i is the marginal distribution of σi over ST

i . In the proof of Kuhn’s Theorem
(Theorem 6.15 on page 232), we constructed an equivalent behavior strategy for any given
mixed strategy in a finite extensive-form game. Let bT

i be the behavior strategy equivalent
to the mixed strategy σT

i in the game GT , constructed according to that theorem. Since
σT+1

i is equivalent to bT+1
i in the game GT+1

i , since the marginal distribution of σT+1
i over

ST
i is σT

i , and since σT
i is equivalent to bT

i in the game GT
i , it follows that for each vertex

x whose depth is less than or equal to T ,

ρi

(
x; bT+1

i

) = ρi

(
x; σT+1

i

) = ρi

(
x; σT

i

) = ρi

(
x; bT

i

)
. (6.74)
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It follows that

bT+1
i (Ui) = bT

i (Ui), ∀Ui ∈ UT
i . (6.75)

In other words, the behavior strategies (bT
i )T ∈N are consistent, in the sense that every two

of them coincide on information sets that are in the domain of both. Define a behavior
strategy bi of player i by

bi(Ui) := bT
i (Ui), ∀Ui ∈ Ui , (6.76)

where T satisfies Ui ∈ UT
i . By Equation (6.75) it follows that bi(Ui) is well defined.

We will prove that σi and bi are equivalent in the game G. Let σ−i = (σj )j �=i be a
mixed/behavior strategy vector of the other players. For each T ∈ N, let σT

j be the strategy
σj restricted to the game GT . Denote σT

−i = (σT
j )j �=i . Since the strategies σT

i and bT
i are

equivalent in the game GT ,

ρ
(
x; σT

i , σ T
−i

) = ρ
(
x; bT

i , σ T
−i

)
(6.77)

for each vertex whose depth is less than or equal to T . By definition, it follows that for
each vertex x

ρ(x; σi, σ−i) = ρ(x; bi, σ−i). (6.78)

Theorem 6.25 implies that σi and bi are equivalent strategies.
We now prove the other direction of the statement of the theorem. Let bi be a behavior

strategy of player i. For each T ∈ N let bT
i be the restriction of bi to the collection of

information sets UT
i . It follows that bT

i is a behavior strategy of player i in the game GT .
Since player i has perfect recall in the game GT , and since the game GT is a finite game,
there exists a mixed strategy σT

i equivalent to bT
i in the game GT .

Since σT+1
i is equivalent to bT+1

i in the game GT+1
i , since the restriction of bT+1

i to
UT

i is bT
i , and since σT

i is equivalent to bT
i in the game GT

i , it follows that σT
i is the

marginal distribution of σT+1
i on ST

i . By Theorem 6.21 (with respect to the product space
Si = ×Ui∈Ui

A(Ui)) we deduce that there exists a mixed strategy σi whose projection over
ST

i is σT
i for all T ∈ N. Reasoning similar to that used in the first part of this proof shows

that σi and bi are equivalent strategies in the game G (Exercise 6.26). �
Using methods similar to those presented in this section one can prove Kuhn’s Theorem

for extensive-form games with game trees of finite depth in which every vertex has a finite
or countable number of children. Combining that result with the proof of Theorem 6.26
shows that Kuhn’s Theorem holds in extensive-form games with game trees of infinite
depth in which every vertex has a finite or countable number of children.

6.5 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The Absent-Minded Driver game appearing in Example 6.9 (page 225) was first introduced
in Piccione and Rubinstein [1997], and an entire issue of the journal Games and Economic
Behavior (1997, issue 1) was devoted to analyzing it. Item (b) of Exercise 6.17 is taken
from von Stengel and Forges [2008].
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6.6 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6.1 In each of the games in the following diagrams, identify which players have perfect
recall. In each case in which there is a player with imperfect recall, indicate what
the player may forget during a play of the game, and in what way the condition in
Definition 6.13 (page 231) fails to obtain.

0

I

I

2
3

1
3

τ

β

T1

B1

T1

B1

T2

B2

T2

B2

Game A

I

II

I

T1

B1

t

b

t

b
T2

T2

T2

T2

Game B

I

I

III

T1

B1

T2

B2

T 2

B2

t

b

t

b

Game C

0

I

I

I

2
5

3
5

τ

β

T1

B1

T2

B2

T3

B3

T3

B3

Game D

0

I

II

I

1
7

6
7

τ

β

T1

B1

t

b

T 2

B2

T 2

B2

T 2

B2

Game E

I II

I

I
T1

B1

t

b

t

b

T2

B2

T3

B3

Game F
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I

II

I

T1

B1

B2

T2

b

t

b

t

B2

T2

Game G

0

II

I

4
7

3
7

τ

β

B

T

b

t

b

t

B

T

Game H

6.2 In each of the following games, find a mixed strategy equivalent to the noted behavior
strategy.

(a) bI =
[

1
3 (T ), 2

3 (B)
]
, in the game

I II

T

B

b

t

t

b

(b) bII =
([

4
9 (t1), 5

9 (b1)
]
,
[

3
5 (t2), 2

5 (b2)
]
,
[

2
3 (t3), 1

3 (b3)
])

, in the game

I

II

II

II

T

B

t1

b1

t2

b2

t3

b3 t3

b3

(c) bII =
([

4
9 (t1), 5

9 (b1)
]
,
[

1
4 (t2), 3

4 (b2)
])

, in the game

0

I

II

II

3
5

2
5

T

B

t1

b1

t2

b2 t2

b2
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6.3 Identify the payoff that each player can guarantee for himself in each of the
following two-player zero-sum game using mixed strategies and using behavior
strategies.

I

80

10

50

T1

B1
T1

B1

Game A

I I

100

50

50

100

T1

B1

T2

B2

T2

B2

Game B

I
6

8

10

2

T1

B1

T1

B1

T1

B1

Game C

I II I

100

0

0

0

100

0

0

0

T1

B1

t

b

t

b

T2

B2

T2

B2

T2

B2

T2

B2
Game D

0

I

I

II I

100

0

0

0

100

0

0

0

0

0

p

1 − p

T1

B1

T2

B2

t

b

t

b

T3

B3

T3

B3

T3

B3

T3

B3
Game E

6.4 Prove that if a player in an extensive-form game has only one information set, then
his set of mixed strategies equals his set of behavior strategies.

6.5 Does there exist a two-player zero-sum extensive-form game that has a value
in mixed strategies and a value in behavior strategies, but these two values are
not equal to each other? Either prove that such a game exists or provide a
counterexample.

6.6 Prove Theorem 6.6 (page 223): if bi is a behavior strategy equivalent to the mixed
strategy σi , then for every strategy vector σ−i ,

uj (σi, σ−i) = uj (bi, σ−i), ∀j ∈ N. (6.79)

6.7 Prove that in Example 6.4 (page 222) for every mixed strategy σ̂II of Player II
the probability distribution induced by (σI, σ̂II) over the leaves of the game tree
is identical with the probability distribution induced by (bI, σ̂II) over the leaves of
the game tree. The mixed strategy σI defined in Equation (6.14) and the behavior
strategy bI defined in Equation (6.13) (page 224).
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6.8 Prove Corollary 6.10 (page 226): if there exists a path from the root to the vertex
x that passes at least twice through the same information set Ui of player i, and if
the action leading to x is not the same action in each of these passes through the
information set, then player i has a behavior strategy that has no equivalent mixed
strategy.

6.9 Show that Theorem 6.11 does not hold without the condition that there are at least
two possible actions at each vertex.

6.10 Explain why Equation (6.37) in the proof of Theorem 6.11 (page 230) does not
necessarily hold when a game does not have perfect recall.

6.11 Prove that if a player does not know whether or not he has previously made a
move during the play of a game, then he does not have perfect recall (according to
Definition 6.13 on page 231).

6.12 Prove that if a player knows during the play of a game how many moves he has
previously made, but later forgets this, then he does not have perfect recall (according
to Definition 6.13 on page 231).

6.13 Prove that if a player knows during the play of a game which action another player
has chosen at a particular information set, but later forgets this, then he does not
have perfect recall (according to Definition 6.13 on page 231).

6.14 Prove that if a player does not know what action he chose at a previous information
set in a game, then he has imperfect recall in that game (according to Definition 6.13
on page 231).

6.15 Prove that if at a particular information set in a game a player knows which player
made the move leading to that information set, but later forgets this, then he does
not have perfect recall (according to Definition 6.13 on page 231).

6.16 Prove that if x1 and x2 are two vertices in the same information set of player i, and
if player i has perfect recall in the game, then S∗

i (x1) = S∗
i (x2). (See page 228 for

the definition of the set S∗
i (x).)

6.17 Let U and Û be two information sets (they may both be the information sets of
the same player, or of two different players). U will be said to precede Û if there
exist a vertex x ∈ U and a vertex x̂ ∈ Û such that the path from the root to x̂ passes
through x.

(a) Prove that if U is an information set of a player with perfect recall, then U does
not precede U .

(b) Prove that in a two-player game without chance moves, where both players have
perfect recall, if U precedes Û , then Û does not precede U .

(c) Find a two-player game with chance moves, where both players have perfect
recall and there exist two information sets U and Û such that U precedes Û , and
Û precedes U .
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(d) Find a three-player game without chance moves, where all the players have
perfect recall and there exist two information sets U and Û such that U precedes
Û , and Û precedes U .

6.18 Find a behavior strategy equivalent to the given mixed strategies in each of the
following games.

(a) sI =
[

1
2 (B1, B2), 1

2 (T1, T2)
]
, in the game

I

I

T1

B1

T2

B2

(b) sI =
[

3
7 (B1B2M3), 1

7 (B1T2B3), 2
7 (T1B2M3), 1

7 (T1T2T3)
]

and

sII =
[

3
7 (b1b2), 1

7 (b1t2), 1
7 (t1b2), 2

7 (t1t2)
]
, in the game

I

0

0

II

II

I

I
T1

B1

1
2

1
2

1
5

4
5

t2

b2

t2

b2

t1

b1

T3
M3

B3

T2

B2

T2

B2

6.19 (a) Let i be a player with perfect recall in an extensive-form game and let σi be
a mixed strategy of player i. Suppose that there is a strategy vector σ−i of the
other players such that ρ(x; σi, σ−i) > 0 for each leaf x in the game tree. Prove
that there exists a unique behavior strategy bi equivalent to σi .

(b) Give an example of an extensive-form game in which player i has perfect recall
and there is a mixed strategy σi with more than one behavior strategy equivalent
to it.

6.20 Let i be a player with perfect recall in an extensive-form game and let bi be a
behavior strategy of player i. Suppose that there is a strategy vector σ−i of the other
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players such that ρ(x; bi, σ−i) > 0 for each leaf in the game tree. Prove that there
exists a unique mixed strategy σi equivalent to bi .

6.21 In the following two-player zero-sum game, find the optimal behavior strategies of
the two players. (Why must such strategies exist?)

I

0

II

I

I

II

T1

B1

1
3

2
3

t1

b1

T2

B2

T3

B3

T3

B3

t2

b2

t2

b2

9

18
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6

3

9

7

5

6

6.22 Compute the value of the following game, in mixed strategies, and in behavior
strategies, if these values exist.

I

I

III

B1

T1

t

b

t

b

T2

B2

T3

B3

T3

B3

T3

B3

2

0

0

2

1

3

2

1

6.23 (a) Compute the value in mixed strategies of the game below.
(b) Compute what each player can guarantee using behavior strategies (in other

words, compute each player’s security value in behavior strategies).
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I

T1

B1

B2

T2

b

t

b

t

B2

T2

−3

−1

2

4

−2

1

I

II

6.24 Prove Theorem 6.22 (page 240).

6.25 Prove Theorem 6.23 (page 242): let σ be a mixed/behavior strategy vector in a (finite
or infinite) extensive-form game. Then there exists a unique probability distribution
μσ over (H,H) satisfying μσ (H (x)) = ρ(x; σ ) for each vertex x.

6.26 Complete the proof of the second direction of Kuhn’s Theorem for infinite games
(Theorem 6.26, page 242): prove that the mixed strategy σi constructed in the proof
is equivalent to the given behavior strategy bi .



7 Equilibrium refinements

Chapter summary
The most important solution concept in noncooperative game theory is the Nash
equilibrium. When games possess many Nash equilibria, we sometimes want to know
which equilibria are more reasonable than others. In this chapter we present and study
some refinements of the concept of Nash equilibrium.

In Section 7.1 we study subgame perfect equilibrium, which is a solution concept for
extensive-form games. The idea behind this refinement is to rule out noncredible
threats, that is, “irrational” behavior off the equilibrium path whose goal is to deter
deviations. In games with perfect information, a subgame perfect equilibrium always
exists, and it can be found using the process of backward induction.

The second refinement, presented in Section 7.3, is the perfect equilibrium, which is
based on the idea that players might make mistakes when choosing their strategies. In
extensive-form games there are two types of perfect equilibria corresponding to the two
types of mistakes that players may make: one, called strategic-form perfect equilibrium,
assumes that players may make a mistake at the outset of the game, when they choose
the pure strategy they will implement throughout the game. The other, called
extensive-form perfect equilibrium, assumes that players may make mistakes in choosing
an action in each information set. We show by examples that these two concepts are
different and prove that every extensive-form game possesses perfect equilibria of both
types, and that every extensive-form perfect equilibrium is a subgame perfect
equilibrium.

The last concept in this chapter, presented in Section 7.4, is the sequential equilibrium
in extensive-form games. It is proved that every finite extensive-form game with perfect
recall has a sequential equilibrium. Finally, we study the relationship between the
sequential equilibrium and the extensive-form perfect equilibrium.

When a game has more than one equilibrium, we may wish to choose some equilibria
over others based on “reasonable” criteria. Such a choice is termed a “refinement” of
the equilibrium concept. Refinements can be derived in both extensive-form games and
strategic-form games. We will consider several equilibrium refinements in this chapter,
namely, perfect equilibrium, subgame perfect equilibrium, and sequential equilibrium.

Throughout this chapter, when we analyze extensive-form games, we will assume that
if the game has chance vertices, every possible move at every chance vertex is chosen with
positive probability. If there is a move at a chance vertex that is chosen with probability 0,

251
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it, and all the vertices following it in the tree, may be omitted, and we may consider instead
the resulting smaller tree.

7.1 Subgame perfect equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The concept of subgame perfect equilibrium, which is a refinement of equilibrium in
extensive-form games, is presented in this section. In an extensive-form game, each
strategy vector σ defines a path from the root to one of the leaves of the game tree,
namely, the path that is obtained when each player implements the strategy vector σ .
When the strategy vector σ is a Nash equilibrium, the path that is thus obtained is called
the equilibrium path. If x is a vertex along the equilibrium path, and if �(x) is a subgame,
then the strategy vector σ restricted to the subgame �(x) is also a Nash equilibrium
because each profitable deviation for a player in the subgame �(x) is also a profitable
deviation in the original game (explain why). In contrast, if the vertex x is not located
along the equilibrium path (in which case it is said to be off the equilibrium path) then the
strategy vector σ restricted to the subgame �(x) is not necessarily a Nash equilibrium of
the subgame. The following example illustrates this point.

Example 7.1 Consider the two-player extensive-form game shown in Figure 7.1.

I

II
x1

x2

B

A

D

C

(2, 1)

(0, 0)

(1, 2)
Figure 7.1 The extensive-form game in Example 7.1

Figure 7.2 shows the corresponding strategic form of this game.

Player I

Player II

0, 0 2, 1

1, 2 1, 2

B

A

DC

Figure 7.2 The strategic-form game, and two pure-strategy equilibria of the game

This game has two pure-strategy equilibria, (B,D) and (A,C). Player I clearly prefers (B,D),
while Player II prefers (A,C). In addition, the game has a continuum of mixed-strategy equilibria:
(A, [y(C), (1 − y)(D)]) for y ≥ 1

2 , with payoff (1, 2), which is identical to the payoff of (A,C).
Which equilibrium is more likely to be played?
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The extensive form of the game is depicted again twice in Figure 7.3, with the thick lines
corresponding to the two pure-strategy equilibria.

I

II
x1

x2

B

A

D

C

(2, 1)

(0, 0)

(1, 2)

Equlibrium (B, D)

I

II
x1

x2

B

A

D

C

(2, 1)

(0, 0)

(1, 2)

Equlibrium (A, C)
Figure 7.3 The pure-strategy equilibria of the game in extensive form

This game has one proper subgame, �(x2), in which only Player II is active. The two equilibria
(A,C) and (B,D) induce different plays in this subgame. While the restriction of the equilibrium
(B,D) to �(x2), namely D, is an equilibrium of the subgame �(x2), the restriction of the equilibrium
(A,C) to �(x2), namely C, is not an equilibrium in this subgame, since a deviation to D is profitable
for Player II. The vertex x2 is on the equilibrium path of (B,D), which is x1 → x2 → (2, 1), and
it is not on the equilibrium path of (A,C), which is x1 → (1, 2). This is necessarily so, since if x2

were on the equilibrium path of (A,C) and Player II did not play an equilibrium in the subgame
�(x2), then (A,C) could not be an equilibrium (why ?).

Player II’s strategy at vertex x2 seems irrational: the equilibrium strategy calls on him to choose
C, which yields him a payoff of 0, instead of D, which yields him a payoff of 1. This choice, in
fact, is never actually made when this equilibrium is played, because Player I chooses A at vertex
x1, but the equilibrium, as constructed, says that “if Player I were to choose B, then Player II would
choose C.” This may be regarded as a threat directed by Player II to Player I: if you “dare” choose
B, I will choose C, and then you will get 0 instead of 1, which you would get by choosing A. This
threat is intended by Player II to persuade Player I to choose the action that leads to payoff (1, 2),
which Player II prefers to (2, 1). Is this a credible threat?

Whether or not a threat is credible depends on many factors, which are not expressed in our
model of the game: previous interaction between the players, reputation, behavioral norms, and so
on. Consideration of these factors, which may be important and interesting, is beyond the scope of
this book. We will, however, consider what happens if we invalidate such threats, on the grounds
that they are not “rational.”

Another way of saying the same thing is: the restriction of the equilibrium (A,C) to the subgame
�(x2), which begins at vertex x2 (the subgame in which only Player II has a move), yields the
strategy C, which is not an equilibrium of that subgame. This observation led to the concept of
subgame perfect equilibrium that we develop in this section. �

Reinhard Selten [1965, 1973] suggested that the equilibria that should be chosen in
extensive-form games are those equilibria that are also equilibria when restricted to each
subgame. In other words, Selten suggested choosing those equilibria at which the actions
of the players are still in equilibrium even when they are off the equilibrium path.

By definition, a strategy σi tells player i which action to choose at each of his information
sets, even at information sets that will not be arrived at during the play of the game that
results from implementing σi (whether due to moves chosen by player i, or moves chosen
by the other players). It follows that, for every strategy vector σ , it is possible to compute
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the payoff of each player if the play of the game is at vertex x (even if the play has not
arrived at x when the players implement σ ). Denote by ui(σ | x) player i’s payoff in
the subgame �(x) when the players implement the strategy vector σ , if the play of the
game is at vertex x. For example, in the game in Example 7.1, u1((A, C) | x1) = 1 and
u1((A, C) | x2) = 0 (note that x2 is not reached when (A,C) is played).

The payoff ui(σ | x) depends only on the restriction of the strategy vector σ to the
subgame �(x). We will therefore use the same notation to denote the payoff when σ is a
strategy vector in �(x) and when in the strategy vector σ some of the strategies are in �

and some in �(x).

Definition 7.2 A strategy vector σ ∗ (in mixed strategies or behavior strategies) in an
extensive-form game � is called a subgame perfect equilibrium if for every subgame, the
restriction of the strategy vector σ ∗ to the subgame is a Nash equilibrium of that subgame:
for every player i ∈ N , every strategy σi , and every subgame �(x),

ui(σ
∗ | x) ≥ ui(σi, σ

∗
−i | x). (7.1)

As we saw in Example 7.1, the equilibrium (A, C) is not a subgame perfect equilibrium.
In contrast, the equilibrium (B, D) is a subgame perfect equilibrium: the choice D is an
equilibrium of the subgame starting at x2. For each y ∈ [ 1

2 , 1], the equilibrium in mixed
strategies (A, [y(C), (1 − y)(D)]) is not a subgame perfect equilibrium, because the choice
of C with positive probability is not an equilibrium of the subgame starting at x2.

Note that in the strategic form of the game, Player II’s strategy C is (weakly) dominated
by the strategy D, and hence the elimination of dominated strategies in this game elim-
inates the equilibrium (A, C) (and the mixed-strategy equilibria for y ∈ [ 1

2 , 1]), leaving
only the subgame perfect equilibrium (B, D). A solution concept based on the elimina-
tion of weakly dominated strategies, and its relation to the concept of subgame perfect
equilibrium, will be studied in Section 7.3.

Remark 7.3 Since every game is a subgame of itself, by definition, every subgame perfect
equilibrium is a Nash equilibrium. The concept of subgame perfect equilibrium is therefore
a refinement of the concept of Nash equilibrium. �

As previously stated, each leaf x in a game tree defines a sub-tree �(x) in which
effectively no player participates. An extensive-form game that does not include any
subgame other than itself and the subgames defined by the leaves is called a game without
nontrivial subgames. For such games, the condition appearing in Definition 7.2 holds
vacuously, and we therefore deduce the following corollary.

Theorem 7.4 In an extensive-form game without nontrivial subgames, every Nash equi-
librium (in mixed strategies or behavior strategies) is a subgame perfect equilibrium.

For each strategy vector σ , and each vertex x in the game tree, denote by Pσ (x) the
probability that the play of the game will visit vertex x when the players implement the
strategy vector σ .

Theorem 7.5 Let σ ∗ be a Nash equilibrium (in mixed strategies or behavior strategies) of
an extensive-form game �, and let �(x) be a subgame of �. If Pσ ∗ (x) > 0, then the strategy
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vector σ ∗ restricted to the subgame �(x) is a Nash equilibrium (in mixed strategies or
behavior strategies) of �(x).

This theorem underscores the fact that the extra conditions that make a Nash equilibrium
a subgame perfect equilibrium apply to subgames �(x) for which Pσ (x) = 0, such as for
example the subgame �(x2) in Example 7.1, under the equilibrium (A, C).

Proof: The idea behind the proof is as follows. If in the subgame �(x) the strategy vector
σ ∗ restricted to the subgame were not a Nash equilibrium, then there would exist a player
i who could profit in that subgame by deviating from σ ∗

i to a different strategy, say σ ′
i , in

the subgame. Since the play of the game visits the subgame �(x) with positive probability,
the player can profit in � by deviating from σ ∗

i , by implementing σ ′
i if the game gets to x.

We now proceed to the formal proof. Let �(x) be the subgame of � starting at vertex
x and let σ ∗ be a Nash equilibrium of � satisfying Pσ ∗(x) > 0. Let σ ′

i be a strategy of
player i in the subgame �(x). Denote by σi the strategy1 of player i that coincides with
σ ∗ except in the subgame �(x), where it coincides with σ ′

i .
Since σ ∗ and (σi, σ

∗
−i) coincide at all vertices that are not in �(x),

Pσ ∗(x) = P(σi ,σ
∗
−i )(x). (7.2)

Denote by ûi the expected payoff of player i, conditional on the play of the game not
arriving at the subgame �(x) when the players implement the strategy vector σ ∗. Then

ui(σ
∗) = Pσ ∗ (x)ui(σ

∗ | x) + (1 − Pσ ∗(x))̂ui. (7.3)

Writing out the analogous equation for the strategy vector (σi, σ
∗
−i) and using

Equation (7.2) yields

ui(σi, σ
∗
−i) = P(σi ,σ

∗
−i )(x)ui((σ

′
i , σ

∗
−i) | x) + (1 − P(σi ,σ

∗
−i )(x))̂ui (7.4)

= Pσ ∗(x)ui((σ
′
i , σ

∗
−i) | x) + (1 − Pσ ∗(x))̂ui. (7.5)

Since σ ∗ is an equilibrium,

Pσ ∗(x)ui(σ
∗ | x) + (1 − Pσ ∗(x))̂ui = ui(σ

∗) (7.6)

≥ ui(σi, σ
∗
−i) (7.7)

= Pσ ∗(x)ui((σ
′
i , σ

∗
−i) | x) + (1 − Pσ ∗(x))̂ui. (7.8)

Since Pσ ∗(x) > 0, one has

ui(σ ∗ | x) ≥ ui((σ ′
i , σ

∗
−i) | x). (7.9)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 When σ ∗
i and σ ′

i are behavior strategies, the strategy σi coincides with σ ∗
i in player i’s information sets that are not

in �(x), and with σ ′
i in player i’s information sets that are in the subgame of �(x).

When σ ∗
i and σ ′

i are mixed strategies, the strategy σi is defined as follows: every pure strategy si of player i is
composed of the pair (s1

i , s2
i ), in which s1

i associates a move with each of player i’s information sets in the subgame
�(x), and s2

i associates a move with each of player i’s information sets that are not in the subgame �(x). Then
σi (s1

i , s2
i ) := σ ′

i (s1
i )

∑
{̂si : ŝ2

i =s2
i } σ

∗ (̂si ).

Since �(x) is a subgame, every information set that is in �(x) does not contain vertices that are not in that
subgame; hence the strategy σi is well defined in both cases.
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Since this inequality is satisfied for each player i, and each strategy σi , in the sub-
game �(x), the strategy vector σ ∗ restricted to the subgame �(x) is a Nash equilibrium
of �(x). �

Recall that, given a mixed strategy σi of player i, we denote by σi(si) the probability
that the pure strategy si will be chosen, and given a behavior strategy σi , we denote by
σi(Ui ; ai) the probability that the action ai will be chosen in the information set Ui of
player i.

Definition 7.6 A mixed strategy σi of player i is called completely mixed if σi(si) > 0 for
each si ∈ Si . A behavior strategy σi of player i is called completely mixed if σi(Ui ; ai) > 0
for each information set Ui of player i, and each action ai ∈ A(Ui).

A mixed strategy is completely mixed if under the strategy a player chooses each of his
pure strategies with positive probability, and a behavior strategy is completely mixed if
at each of his information sets, the player chooses with positive probability each of his
possible actions at that information set.

Since at each chance vertex every action is chosen with positive probability, if each
player i uses a completely mixed strategy σi , then Pσ (x) > 0 for each vertex x in the game
tree. This leads to the following corollary of Theorem 7.5.

Corollary 7.7 Let � be an extensive-form game. Then every Nash equilibrium in com-
pletely mixed strategies (behavior strategies or mixed strategies) is a subgame perfect
equilibrium.

As Theorem 7.4 states, in games whose only subgames are the game itself, every Nash
equilibrium is a subgame perfect equilibrium; in such cases, subgame perfection imposes
no further conditions beyond the conditions defining the Nash equilibrium. In contrast,
when a game has a large number of subgames, the concept of subgame perfection becomes
significant, because a Nash equilibrium must meet a large number of conditions to be a
subgame perfect equilibrium. The most extreme case of such a game is a game with
perfect information. Recall that a game with perfect information is a game in which every
information set is composed of only one vertex. In such a game, every vertex is the root
of a subgame.

Example 7.8 Figure 7.4 depicts a two-player game with perfect information.

I I

I

II

(1, 2)

(−2, −4)

(−10, 10)

(3, 7)

(−10, 10)

(4, 5)

b

a

d

c

i

h

g

f
e

x1

x2

x3

x4

Figure 7.4 A subgame perfect equilibrium in a game with perfect information

To find a subgame perfect equilibrium, start with the smallest subgames: those whose roots
are vertices adjacent to the leaf vertices, in this case the subgames �(x3) and �(x4). The only
equilibrium in the subgame �(x3) is the one in which Player I chooses e, because this action leads
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to the result (4, 5), which includes the best payoff Player I can receive in the subgame. Similar
reasoning shows that the only equilibrium in the subgame �(x4) is the one in which Player I
chooses i, leading to the result (−2,−4). We can now replace the subgame �(x3) with the result
of its equilibrium, (4, 5), and the subgame �(x4) with the result of its equilibrium, (−2,−4). This
yields the game depicted in Figure 7.5 (this procedure is called “folding” the game).

I

II

(1, 2)

(−2, −4)

(4, 5)

b

a

d

c

x1

x2

Figure 7.5 The folded game

Now, in the subgame starting at x2, at equilibrium, Player II chooses c, leading to the result
(4, 5). Folding this subgame leads to the game depicted in Figure 7.6.

I

x1
(4, 5)

(1, 2)b

a

Figure 7.6 The game after further folding

In this game, at equilibrium Player I chooses a, leading to the result (4, 5). Recapitulating all the
stages just described gives us the subgame perfect equilibrium shown in Figure 7.4. �

This process is called backward induction (see Remark 4.50 on page 121). The process
leads to the equilibrium ((a, e, i), c), which by construction is a subgame perfect equi-
librium. Backward induction leads, in a similar way, to a subgame perfect equilibrium in
pure strategies in every (finite) game with perfect information. We thus have the following
theorem.

Theorem 7.9 Every finite extensive-form game with perfect information has a subgame
perfect equilibrium in pure strategies.

The proof of the theorem is accomplished by backward induction on the subgames,
from the smallest (starting from the vertices adjacent to the leaves) to the largest (starting
from the root of the tree). The formal proof is left to the reader (Exercise 7.8). We will
later show (Theorem 7.37 on page 271) that every extensive-form game with perfect recall
has a subgame perfect equilibrium in behavior strategies.

With regard to games with incomplete information, we can reuse the idea of “folding”
a game to prove the following theorem.

Theorem 7.10 Every extensive-form game with perfect recall has a subgame perfect
equilibrium in mixed strategies.

The proof of the theorem is left to the reader as an exercise (Exercise 7.15).
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Remark 7.11 In the last two theorems we used the fact that an extensive-form game is
finite by definition: the number of decision vertices is finite, and the number of actions at
every decision vertex is finite. To prove Theorem 7.9, it is not necessary to assume that the
game tree is finite; it suffices to assume that there exists a natural number L such that the
length of each path emanating from the root is no greater than L. Without this assumption,
the process of backward induction cannot begin, and these two theorems are not valid.
These theorems do not hold in games that are not finite. There are examples of infinite
two-player games that have no equilibria (see, for example, Mycielski [1992], Claim 3.1).
Such examples are beyond the scope of this book. Exercise 7.16 presents an example of
a game with imperfect information in which one of the players has a continuum of pure
strategies, but the game has no subgame perfect equilibria. �

Remark 7.12 In games with perfect information, when the backward induction process
reaches a vertex at which a player has more than one action that maximizes his payoff,
any one of them can be chosen in order to continue the process. Each choice leads to a
different equilibrium, and therefore the backward induction process can identify several
equilibria (all of which are subgame perfect equilibria). �

Remark 7.13 The process of backward induction is in effect the game-theory version of
the dynamic programming principle widely used in operations research. This is a very
natural and useful approach to multistage optimization: start with optimizing the action
chosen at the last stage, stage n, for every state of the system at stage n − 1. Continue by
optimizing the action chosen at stage n − 1 for every state of the system at stage n − 2,
and so on. �

Backward induction is a very convincing logical method. However, its use in game
theory sometimes raises questions stemming from the fact that unlike dynamic optimiza-
tion problems with a single decision maker, games involve several interacting decision
makers. We will consider several examples illustrating the limits of backward induction in
games. We first construct an example of a game that has an equilibrium that is not subgame
perfect, but is preferred by both players to all the subgame perfect equilibria of the game.

Example 7.14 A two-player extensive-form game with two equilibria is depicted in Figure 7.7.
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An equilibrium that is not subgame perfect
Figure 7.7 A game with two equilibria
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Using backward induction, we find that the only subgame perfect equilibrium in the game is
((A,C, F, ), b), leading to the payoff (2, 2). The equilibrium ((B,C,E), t) leads to the payoff (4, 4)
(verify that this is indeed an equilibrium). This equilibrium is not a subgame perfect equilibrium,
since it calls on Player I to choose E in the subgame �(x4), which is not an equilibrium. This
choice by Player I may be regarded as a threat to Player II: “if you choose b (in an attempt to get
6) instead of t , I will choose E and you will get 0.” What is interesting in this example is that both
players have an “interest” in maintaining this threat, because it serves both of them: it enables them
to receive the payoff (4, 4), which is preferred by both of them to the payoff (2, 2) that they would
receive under the game’s only subgame perfect equilibrium. �

Example 7.15 The repeated Prisoner’s Dilemma Consider the Prisoner’s Dilemma game with the payoff

shown in Figure 7.8.

Player I

Player II

C

D

CD

0, 4

1, 1

3, 3

4, 0

Figure 7.8 Prisoner’s Dilemma

Suppose two players play the Prisoner’s Dilemma game 100 times, with each player at each
stage informed of the action chosen by the other player (and therefore also the payoff at each
stage).

We can analyze this game using backward induction: at equilibrium, at the 100th (i.e., the last)
repetition, each of the players chooses D (which strictly dominates C), independently of the actions
undertaken in the previous stages: for every other choice, a player choosing C can profit by deviating
to D. This means that in the game played at the 99th stage, what the players choose has no effect
on what will happen at the 100th stage, so that at equilibrium each player chooses D at stage 99,
and so forth. Backward induction leads to the result that the only subgame perfect equilibrium is
the strategy vector under which both players choose D at every stage.2 In Exercise 7.9, the reader
is asked to turn this proof idea into a formal proof.

In fact, it can be shown that in every equilibrium (not necessarily subgame perfect equilibrium)
in this 100-stage game the players play (D,D) in every stage (see Chapter 13). This does not seem
reasonable: one would most likely expect rational players to find a way to obtain the payoff (3, 3),
at least in the initial stages of the game, and not play (D,D), which yields only (1, 1), in every
stage. A large number of empirical studies confirm that in fact players do usually cooperate during
many stages when playing the repeated Prisoner’s Dilemma, in order to obtain a higher payoff than
that indicated by the equilibrium strategy. �

Example 7.16 The Centipede game The Centipede game that we saw in Exercise 3.12 on page 61 is also

a two-player game with 100 stages, but unlike the repeated Prisoner’s Dilemma, in the Centipede
game the actions of the players are implemented sequentially, rather than simultaneously: in the
odd stages, t = 1, 3, . . . , 99, Player I has a turn, and he decides whether to stop the game (S) or to

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 This is a verbal description of the process of backward induction in a game tree with 100 stages. Writing out the
formal backward induction process in full when the game tree is this large is, of course, not practical.



260 Equilibrium refinements

continue (C). If he stops the game at stage t , the payoff is (t, t − 1) (hence Player I receives t , and
Player II receives t − 1), and if he instead chooses C, the game continues on to the next stage. In
the even stages, t = 2, 4, . . . , 100, Player II has a turn, and he also chooses between stopping the
game (S) and continuing (C). If he stops the game at stage t , the payoff is (t − 2, t + 1). If neither
player chooses to stop in the first 99 stages, the game ends after 100 stages, with the payoff of 101
to Player I and 100 to Player II. The visual depiction of the game in extensive form explains why it
is called the Centipede game (see Figure 7.9).

I I III II II

(1, 0) (0, 3) (3, 2) (2, 5) (99, 98) (98, 101)

(101, 100)
Stage: 4321 99 100

CCC CC
SSSS SS

Figure 7.9 The Centipede game

What does backward induction lead to in this game? At stage 100, Player II should choose to
stop the game: if he stops the game, he leaves the table with $101, while if the game continues
he will only get $100. Since that is the case, at stage 99, Player I should stop the game: he knows
that if he chooses to continue the game, Player II will stop the game at the next stage, and Player I
will end up with $98, while if he stops, he walks away with $99. Subgame perfection requires
him to stop at stage 99. A similar analysis obtains at every stage; hence the only subgame perfect
equilibrium in the game is the strategy at which each player stops the game at every one of his turns.
In particular, at this equilibrium, Player I stops the game at the first stage, and the payoff is (1, 0).
This result is unreasonable: shrewd players will not stop the game and be satisfied with the payoff
(1, 0) when they can both do much better by continuing for several stages. Empirical studies reveal
that many people do indeed “climb the centipede” up to a certain level, and then one of them stops
the game.

It can be shown that at every Nash equilibrium of the game (not necessarily subgame perfect
equilibrium), Player I chooses S at the first stage (Exercise 4.19 on page 134). �

7.2 Rationality, backward induction, and forward induction
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The last two examples indicate that backward induction alone is insufficient to describe
rational behavior. Kohlberg and Mertens [1986] argued that backward induction requires
that at each stage every player looks only at the continuation of the game from that stage
forwards, and ignores the fact that the game has reached that stage. But if the game has
reached a particular vertex in the game tree, that fact itself gives information about the
behavior of the other players, and this should be taken into account. For example, if I
am playing the repeated Prisoner’s Dilemma, and at the third stage it transpires that the
other player played C in the previous two stages, then I need to take this into account,
beyond regarding it as “irrational.” Perhaps the other player is signaling that we should
both play (C, C)? Similarly, if the Centipede game reaches the second stage, then Player
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I must have deviated from equilibrium, and not have stopped the game at the first stage.
It seems reasonable to conjecture that if Player II chooses not to stop the game at that
point, then Player I will not stop at stage 3. Backward induction implies that Player I
should stop at stage 3, but it also implies that he should stop at stage 1. If he did not stop
then, why should he stop now? The approach that grants significance to the history of the
game is called forward induction. We will not present a formal description of the forward
induction concept, and instead only give an example of it.

Example 7.17 Consider the two-player extensive-form game depicted in Figure 7.10.
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(1, 1)

(0, 0)

(3, 2)

(2, 3)

Equilibrium (B, t)
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II

B

M

T

t

b

t

b

(1, 5)

(1, 1)

(0, 0)

(3, 2)

(2, 3)

Equilibrium (M, b)
Figure 7.10 An extensive-form game with two subgame perfect equilibria

This game has two equilibria in pure strategies:

� (B, t), with payoff (2, 3).
� (M,b), with payoff (3, 2).

Since the game has no nontrivial subgames, both equilibria are subgame perfect equilibria
(Theorem 7.4). Is (B, t) a reasonable equilibrium? Is it reasonable for Player II to choose t? If
he is called on to choose an action, that means that Player I has not chosen B, which would guar-
antee him a payment of 2. It is unreasonable for him to have chosen T , which guarantees him only
1, and he therefore must have chosen M , which gives him the chance to obtain 3. In other words,
although Player II cannot distinguish between the two vertices in his information set, from the very
fact that the game has arrived at the information set and that he is being called upon to choose an
action, he can deduce, assuming that Player I is rational, that Player I has played M and not T . This
analysis leads to the conclusion that Player II should prefer to play b, if called upon to choose an
action, and (M,b) is therefore a more reasonable equilibrium. This convincing choice between the
two equilibria was arrived at through forward induction. �

Inductive reasoning, and the inductive use of the concept of rationality, has the potential
of raising questions regarding the consistency of rationality itself. Consider the game
depicted in Figure 7.11.

The only subgame perfect equilibrium of this game is ((r, c), a), which yields the payoff
(2, 1). Why does Player II choose a at x2? Because if Player I is rational, he will then
choose c, leading to the payoff (1, 2), which Player II prefers to the payoff (1, 1) that
would result if he were to choose b. But is Player I really rational? Consider the fact that
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Figure 7.11 A game with only one subgame perfect equilibrium
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Figure 7.12 A game with only one subgame perfect equilibrium

if the game has arrived at x2, and Player II is called upon to play, then Player I must be
irrational: Player I must have chosen l, which yields him at most 1, instead of choosing r ,
which guarantees him 2. Then why should Player II assume that Player I will be rational
at x3? Perhaps it would be more rational for Player II to choose b, and guarantee himself
a payoff of 1, instead of running the risk that Player I may again be irrational and choose
d, which will yield the payoff (0, 0).

The game depicted in Figure 7.12, which is just like the previous game except that the
payoff (1, 1) is replaced by (3, 1), is even more problematic.

This game also has only one subgame perfect equilibrium, ((r, c), a), yielding payoff
(2, 1). Again, by backward induction, Player I will not choose l, which leads to the payoff
(1, 2). Player II, at x2, must therefore conclude that Player I is irrational (because Player I
must have chosen l at x1, which by backward induction leads to him getting 1, instead of r ,
which guarantees him a payoff of 2). And if Player I is irrational, then Player II may need
to fear that if he chooses a, Player I will then choose d and the end result will be (0, 0).
It is therefore possible that at x2, Player II will choose b, in order to guarantee himself a
payoff of 1. But, if that is the case, Player I is better off choosing l at x1, because then
he will receive 3, instead of 2, which is what choosing r gets him. So is Player I really
irrational if he chooses l? Perhaps Player I’s choice of l is a calculated choice, aimed at
making Player II think that he is irrational, and therefore leading Player II to choose b?
Then which one of Player I’s choices at vertex x1 is rational, and which is irrational?

7.3 Perfect equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

This section presents the concept of perfect equilibrium. While subgame perfect equilib-
rium is a refinement of the concept of Nash equilibrium applicable only to extensive-form
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games, perfect equilibrium is a refinement of the concept of Nash equilibrium that is
applicable to extensive-form games and strategic-form games.

After introducing the concept of subgame perfect equilibrium in 1965, Selten revisited
it in 1975, using the following example.

Example 7.18 Consider the three-player game depicted in Figure 7.13.
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Figure 7.13 A game in extensive-form, along with two equilibria

Since this game has no nontrivial subgames, every equilibrium of the game is a subgame perfect
equilibrium. There are two equilibria in pure strategies:

� (T , t, β), with payoff (1, 1, 1).
� (B, t, τ ), with payoff (3, 2, 2).

(Check that each of these two strategy vectors does indeed form a Nash equilibrium.)
Selten argued that Player II’s behavior in the equilibrium (B, t, τ ) is irrational. The reasoning is

as follows: if Player II is called upon to play, that means that Player I misplayed, playing T instead
of B, because at equilibrium he is supposed to play B. Since Player III is supposed to play τ at that
equilibrium, if Player II deviates and plays b, he will get 4 instead of 1. �

Selten introduced the concept of the “trembling hand,” which requires rational players
to take into account the possibility that mistakes may occur, even if they occur with small
probability. The equilibrium concept corresponding to this type of rationality is called
“perfect equilibrium.” In an extensive-form game, a mistake can occur in two ways. A
player may, at the beginning of the play of a game, with small probability mistakenly
choose a pure strategy that differs from the one he intends to choose; such a mistake can
cause deviations at every information set that is arrived at in the ensuing play. A second
possibility is that the mistakes in different information sets are independent of each other;
at each information set there is a small probability that a mistake will be made in choosing
the action. As we will see later in this chapter, these two ways in which mistakes can occur
lead to alternative perfect equilibrium concepts.

The analysis of this solution concept therefore requires careful attention to these details.
We will first present the concept of perfect equilibrium for strategic-form games, in
Section 7.3.1, and present its extensive-form game version in Section 7.3.2.
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7.3.1 Perfect equilibrium in strategic-form games
Definition 7.19 Let � = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form in which the
set of pure strategies of each player is finite. A perturbation vector of player i is a vector
εi = (εi(si))si∈Si

satisfying εi(si) > 0 for each si ∈ Si , and∑
si∈Si

εi(si) ≤ 1, ∀i ∈ N. (7.10)

A perturbation vector is a vector ε = (εi)i∈N , where εi is a perturbation vector of player
i for each i ∈ N .

For every perturbation vector ε, the ε-perturbed game is the game �(ε) =
(N, (�i(εi))i∈N, (ui)i∈N ) where player i’s strategy set is

�i(εi) := {σi ∈ �i : σi(si) ≥ εi(si), ∀si ∈ Si}. (7.11)

In words, in the ε-perturbed game �(ε), every pure strategy si is chosen with probability
greater than or equal to εi(si). The condition in Equation (7.10) guarantees that the strategy
set �i(εi) is not empty. Furthermore, �i(εi) is a compact and convex set (Exercise 7.17).
The following theorem therefore follows from Theorem 5.32 (page 171).

Theorem 7.20 Every (finite) ε-perturbed game has an equilibrium; i.e., there exists a
mixed-strategy vector σ ∗ = (σ ∗

i )i∈N satisfying σ ∗
i ∈ �i(εi) for each player i ∈ N , and

Ui(σ
∗) ≥ Ui(σi, σ

∗
−i), ∀i ∈ N, ∀σi ∈ �i(εi). (7.12)

Given a perturbation vector ε, denote by

M(ε) := max
i∈N,si∈Si

εi(si) (7.13)

the maximal perturbation in �(ε), and by

m(ε) := min
i∈N,si∈Si

εi(si) (7.14)

the minimal perturbation. Note that m(ε) > 0.

Example 7.21 Consider the two-player game depicted in Figure 7.14.

Player I

Player II
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0, 0

1, 1

0, 0

0, 0

Figure 7.14 The strategic-form game of Example 7.21
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This game has two pure strategy equilibria, (T ,L) and (B,R). Consider now the ε-perturbed
game, where the perturbation vector ε = (ε1, ε2) is as follows.

ε1(T ) = η,

ε1(B) = η2,

ε2(L) = η,

ε2(R) = 2η,

where η ∈ (0, 1
3 ]. Then

M(ε) = 2η, m(ε) = η2. (7.15)

Since m(ε) > 0, all the strategies in �1(ε1) and �2(ε2) are completely mixed strategies. In
particular, in the perturbed game, Player I’s payoff under T is always greater than his payoff under
B: if Player I plays B, he receives 0, while if he plays T his expected payoff is positive. It follows
that Player I’s best reply to every strategy in �2(ε2) is to play T with the maximally allowed
probability; this means that the best reply is [(1 − η2)(T ), η2(B)].

Similarly, we can calculate that Player II’s expected payoff is greatest when he plays L, and his
best reply to every strategy in �1(ε1) is [(1 − 2η)(L), 2η(R)]. It follows that the only equilibrium
in this ε-perturbed game is

([(1 − η2)(T ), η2(B)], [(1 − 2η)(L), 2η(R)]). (7.16)

�

In Example 7.21 Player I’s pure strategy T weakly dominates his pure strategy B. In this
case, when Player II is restricted to playing mixed strategies, the strategy T always leads
to a higher payoff than the strategy B, and therefore at equilibrium Player I plays the pure
strategy B with the minimal possible probability. This line of reasoning is generalized to
the following theorem, whose proof is left to the reader.

Theorem 7.22 If si is a weakly dominated strategy, then at every equilibrium σ of the
ε-perturbed game,

σi(si) = εi(si). (7.17)

Let (εk)k∈N be a sequence of perturbation vectors satisfying limk→∞ M(εk) = 0: the
maximal constraint converges to 0. Then for every completely mixed strategy σi of
player i, there exists k0 ∈ N such that σi ∈ �i(εk

i ) for every k0 ≥ k. Indeed, denote c :=
minsi∈Si

σi(si) > 0 and choose k0 ∈ N, where M(εk
i ) ≤ c for all k ≥ k0. Then σi ∈ �i(εk

i )
for every k ≥ k0. Since every mixed strategy in �i can be approximated by a completely
mixed strategy (Exercise 7.18), we deduce the following theorem.

Theorem 7.23 Let (εk)k∈N be a sequence of perturbation vectors satisfying
limk→∞ M(εk) = 0. For every mixed strategy σi ∈ �i of player i, there exists a sequence
(σk

i )k∈N of mixed strategies of player i satisfying the following two properties:

� σk
i ∈ �i(εk

i ) for each k ∈ N.
� limk→∞ σk

i exists and equals σi .

The following theorem, which is a corollary of Theorem 7.23, states that the limit of
equilibria in an ε-perturbed game, where the perturbation vectors (εk)k∈N are positive and
converge to zero, is necessarily a Nash equilibrium of the original unperturbed game.
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Theorem 7.24 Let � = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game. For each k ∈ N,
let εk be a perturbation vector, and let σk be an equilibrium of the εk-perturbed game
�(εk). If

1. limk→∞ M(εk) = 0,
2. limk→∞ σk exists and equals the mixed strategy vector σ ,

then σ is a Nash equilibrium of the original game �.

Proof: To show that σ is a Nash equilibrium, we need to show that no player can profit
from a unilateral deviation. Let σ ′

i be a strategy of player i. By Theorem 7.23, there exists
a sequence of strategies (σ ′k

i )k∈N converging to σ ′
i , and satisfying σ ′k

i ∈ �i(εk
i ) for each

k ∈ N.
Since σ k is an equilibrium in the εk-perturbed game �(εk),

ui(σ
k) ≥ ui

(
σ ′k

i , σ k
−i

)
. (7.18)

By the continuity of the payoff function ui ,

ui(σ ) = lim
k→∞

ui(σ
k) ≥ lim

k→∞
ui

(
σ ′k

i , σ k
−i

) = ui(σ
′
i , σ−i). (7.19)

Since this inequality obtains for every player i ∈ N and every mixed strategy σ ′
i ∈ �i , it

follows that σ is a Nash equilibrium. �
A mixed strategy vector that is the limit of equilibria in perturbed games, where the

perturbation vectors are all positive, and converge to zero, is called a perfect equilibrium.

Definition 7.25 A mixed strategy vector σ in a strategy-form game (N, (Si)i∈N, (ui)i∈N ) is
a perfect equilibrium if there exists a sequence of perturbation vectors (εk)k∈N satisfying
limk→∞ M(εk) = 0, and for each k ∈ N there exists an equilibrium σ k of �(εk) such
that

lim
k→∞

σk = σ. (7.20)

The following corollary of Theorem 7.24 states that the concept of perfect equilibrium
is a refinement of the concept of Nash equilibrium.

Corollary 7.26 Every perfect equilibrium of a finite strategic-form game is a Nash equi-
librium.

The game in Example 7.21 (page 264) has two equilibria, (T , L) and (B, R). The
equilibrium (T , L) is a perfect equilibrium: (T , L) is the limit of the equilibria given
by Equation (7.16), as η converges to 0. We will later show that (B, R) is not a perfect
equilibrium. In Example 7.18 (page 263), the equilibrium (T , t, β) is a perfect equilibrium,
but the equilibrium (B, t, τ ) is not a perfect equilibrium (Exercise 7.30). The next theorem
states that every finite game has at least one perfect equilibrium.

Theorem 7.27 Every finite strategic-form game has at least one perfect equilibrium.

Proof: Let � be a finite strategic form game, and let (εk)k∈N be a sequence of pertur-
bation vectors satisfying limk→∞ M(εk) = 0. For example, εk

i (si) = 1
k|Si | for each player
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i ∈ N and for each si ∈ Si . Theorem 7.20 implies that for each k ∈ N the game �(εk)
has an equilibrium in mixed strategies σ k . Since the space of mixed strategy vectors
� is compact (see Exercise 5.1 on page 194), the sequence (σ k)k∈N has a convergent
subsequence (σ kj )j∈N. Denote the limit of this subsequence by σ . Applying Theorem
7.24 to the sequence of perturbation vectors (εkj )j∈N, and to the sequence of equi-
libria (σ kj )j∈N, leads to the conclusion that σ is a perfect equilibrium of the original
game. �

As a corollary of Theorem 7.22, and from the definition of perfect equilibrium, we can
deduce the following theorem (Exercise 7.22).

Theorem 7.28 In every perfect equilibrium, every (weakly) dominated strategy is chosen
with probability zero.

In other words, no weakly dominated strategy can be a part of a perfect equilibrium.
This means that, for example, in Example 7.21, the strategy vector (B, R) is not a perfect
equilibrium, since B is a dominated strategy of Player I (and R is a dominated strategy of
Player II).

As Exercise 7.28 shows, the converse of this theorem is not true: it is possible for a
Nash equilibrium to choose every dominated strategy with probability zero, but not to be
a perfect equilibrium. The following theorem states that a completely mixed equilibrium
must be a perfect equilibrium.

Theorem 7.29 Every equilibrium in completely mixed strategies in a strategic-form game
is a perfect equilibrium.

Proof: Let σ ∗ be a completely mixed equilibrium of a strategic-form game �. Then
c := mini∈N minsi∈Si

σ ∗
i (si) > 0.

Let (εk)k∈N be a sequence of perturbation vectors satisfying limk→∞ M(εk) = 0. Since
limk→∞ M(εk) = 0, it must be the case that M(εk) < c for sufficiently large k. Hence for
each such k, we may conclude that σ ∗

i ∈ �i(εk
i ) for every player i; i.e., σ ∗ is a possible

strategy vector in the game �(εk). Let K0 ∈ N be sufficiently large so that for each
k ≥ K0, one has σ ∗

i ∈ �i(εk
i ) for every player i. Since �(εk) has fewer strategies than �,

Theorem 4.31 (page 107) implies that σ ∗ is an equilibrium of �(εk).
We may therefore apply Theorem 7.24 to the sequences (εk)k≥K0 and the constant

sequence (σ ∗)∞n=K0
, to conclude that σ ∗ is a perfect equilibrium, which is what we needed

to show. �

7.3.2 Perfect equilibrium in extensive-form games
Since every extensive-form game can be presented as a strategic-form game, the concept
of perfect equilibrium, as defined in Definition 7.25, also applies to extensive-form games.
This definition of perfect equilibrium for extensive-form games is called strategic-form
perfect equilibrium.

Theorem 7.27 implies the following corollary (Exercise 7.32).
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Theorem 7.30 Every extensive-form game has a strategic-form perfect equilibrium.

In this section, we will study the concept of extensive-form perfect equilibrium, where
the mistakes that each player makes in different information sets are independent of each
other. We will limit our focus to extensive-form games with perfect recall. By Kuhn’s
Theorem, in such games each behavior strategy has an equivalent mixed strategy, and the
converse also holds. Let � be an extensive-form game with perfect recall. Denote by Ui

player i’s set of information sets. Recall that we denote player i’s set of possible actions
at information set Ui by A(Ui).

When we are dealing with behavior strategies, a perturbation vector δi of player i

is a vector associating a positive real number with each action ai ∈
⋃

Ui∈Ui
A(Ui) of

player i, such that
∑

ai∈A(Ui )
δi(ai) ≤ 1 for each information set Ui ∈ Ui . Let δ = (δi)i∈N

be a set of perturbation vectors, one for each player. Denote the maximal perturbation
in �(ε) by

M(δ) := max
{i∈N,ai∈

⋃
Ui∈Ui

A(Ui )}
δi(ai), (7.21)

and the minimal perturbation by

m(δ) := min
{i∈N,ai∈

⋃
Ui∈Ui

A(Ui )}
δi(ai) > 0. (7.22)

The game �(δ) is the extensive-form game such that player i’s set of strategies, denoted
byBi(δi), is the set of behavior strategies in which every action ai is chosen with probability
greater than or equal to δi(ai), that is,

Bi(δi) := {
σi ∈ ×

Ui∈Ui


(A(Ui)) : σi(Ui ; ai) ≥ δi(ai), ∀i ∈ N, ∀Ui ∈ Ui , ∀ai ∈ A(Ui)
}
.

(7.23)

Since every possible action at every chance vertex is chosen with positive probability,
and since m(δ) > 0, it follows that Pσ (x) > 0 for every vertex x, and every behavior
strategy vector σ = (σi)i∈N in �(δ): the play of the game arrives at every vertex x with
positive probability. For each vertex x such that �(x) is a subgame, denote by �(x; δ) the
subgame of �(δ) starting at the vertex x. Similarly to Theorem 7.5, we have the following
result, whose proof is left to the reader (Exercise 7.33).

Theorem 7.31 Let � be an extensive-form game, and let �(x) be a subgame of �. Let
δ be a perturbation vector, and let σ ∗ be a Nash equilibrium (in behavior strategies) of
the game �(δ). Then the strategy vector σ ∗, restricted to the subgame �(x), is a Nash
equilibrium of �(x; δ).

Similar to Definition 7.25, which is based on mixed strategies, the next definition bases
the concept of perfect equilibrium on behavior strategies.

Definition 7.32 A behavior strategy vector σ in an extensive-form game � is called
an extensive-form perfect equilibrium if there exists a sequence of perturbation vectors
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(δk)k∈N satisfying limk→∞ M(δk) = 0, and for each k ∈ N there exists an equilibrium σ k

of �(δk), such that limk→∞ σ k = σ is satisfied.

These concepts, strategic-form perfect equilibrium and extensive-form perfect equilib-
rium, differ from each other: a strategic-form perfect equilibrium is a vector of mixed
strategies, while an extensive-form perfect equilibrium is a vector of behavior strategies.
Despite the fact that in games with perfect recall there is an equivalence between mixed
strategies and behavior strategies (see Chapter 6), an extensive-form perfect equilibrium
may fail to be a strategic-form perfect equilibrium. In other words, a vector of mixed
strategies, each equivalent to a behavior strategy in an extensive-form perfect equilib-
rium, may fail to be a strategic-form perfect equilibrium (Exercise 7.36). Conversely, a
strategic-form perfect equilibrium may not necessarily be an extensive-form equilibrium
(Exercise 7.37). The conceptual difference between these two concepts is similar to the
difference between mixed strategies and behavior strategies: in a mixed strategy, a player
randomly chooses a pure strategy at the start of a game, while in a behavior strategy he
randomly chooses an action at each of his information sets. Underlying the concept of
strategic-form perfect equilibrium is the assumption that a player may mistakenly choose,
at the start of the game, a pure strategy different from the one he intended to choose. In
contrast, underlying the concept of extensive-form perfect equilibrium is the assumption
that a player may mistakenly choose an action different from the one he intended at any of
his information sets. In extensive-form games where each player has a single information
set, these two concepts are identical, because in that case the set of mixed strategies of
each player is identical with his set of behavior strategies.

As stated above, Selten defined the concept of perfect equilibrium in order to further
“refine” the concept of subgame perfect equilibrium in extensive-form games. We will
now show that this is indeed a refinement: every extensive-form perfect equilibrium is
a subgame perfect equilibrium in behavior strategies. (This result can also be proved
directly.) Since every subgame perfect equilibrium is a Nash equilibrium (Remark 7.3
on page 254), we will then conclude that every extensive-form perfect equilibrium is
a Nash equilibrium in behavior strategies. This result can also be proved directly; see
Exercise 7.31.

Theorem 7.33 Let � be an extensive-form game. Every extensive-form perfect equilib-
rium of � is a subgame perfect equilibrium.

The analogous theorem for strategic-form perfect equilibrium does not obtain (see
Exercise 7.37). Before we proceed to the proof of the theorem, we present a technical result
analogous to Theorem 7.23, which states that every behavior strategy may be approximated
by a sequence of behavior strategies in perturbed games, where the perturbations converge
to zero. The proof of this theorem is left to the reader (Exercise 7.34).

Theorem 7.34 Let (δk)k∈N be a sequence of perturbation vectors satisfying
limk→∞ M(δk) = 0. For each behavior strategy σi ∈ Bi of player i, there exists a sequence
(σk

i )k∈N of behavior strategies satisfying the following two properties:
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� σ k
i ∈ Bi(δk

i ) for each k ∈ N.
� limk→∞ σ k

i exists and equals σi .

Proof of Theorem 7.33: Let σ ∗ = (σ ∗
i )i∈N be an extensive-form perfect equilibrium, and

let �(x) be a subgame (starting at vertex x). We will show that the restriction of σ ∗ to this
subgame is a subgame perfect equilibrium.

By the definition of extensive-form perfect equilibrium, for each k ∈ N there exists
a perturbation vector δk , and an equilibrium σ k in the δk-perturbed game satisfying
limk→∞ M(δk) = 0, and limk→∞ σk = σ ∗. Theorem 7.31 implies that the strategy vector
σk is a Nash equilibrium in behavior strategies of the game �(x; δk). Let σ ′

i be a behavior
strategy of player i. We will show that

ui(σ
∗ | x) ≥ ui((σ

′
i , σ

∗
−i) | x). (7.24)

Theorem 7.34 implies that there exists a sequence (σ ′k
i )k∈N of behavior strategies converg-

ing to σ ′
i and satisfying σ ′k

i ∈ Bi(δk
i ) for each k ∈ N. Since σ k is an equilibrium of the

subgame �(x; δk),

ui(σ
k | x) ≥ ui

((
σ ′k

i , σ k
−i

) | x
)
. (7.25)

Equation (7.24) is now derived from Equation (7.25) by using the continuity of the payoff
function ui and passing to the limit as k → ∞. �

The next example shows that the converse of Theorem 7.33 does not obtain; a subgame
perfect equilibrium need not be an extensive-form perfect equilibrium.

Example 7.35 Consider the two-player extensive-form game depicted in Figure 7.15. This game has two pure-

strategy equilibria, (A,L) and (B,R). Each of these equilibria is a subgame perfect equilibrium,
since the game has no nontrivial subgames (see Theorem 7.4).

I

II

A

B

C

R

L

R

L

(1, 3)

(1, 1)

(2, 1)

(0, 0)

(1, 2)

Equilibrium (A, L)

I

II

A

B

C

R

L

R

L

(1, 3)

(1, 1)

(2, 1)

(0, 0)

(1, 2)

Equilibrium (B, R)
Figure 7.15 The game in Example 7.35, along with two of its equilibria
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The equilibrium (A,L) is not an extensive-form perfect equilibrium. Indeed, since each player
has a single information set, if (A,L) were an extensive-form perfect equilibrium it would also
be a strategic-form perfect equilibrium (Exercise 7.39). But the strategy L is a weakly dominated
strategy, and therefore Theorem 7.28 implies that it cannot form part of a strategic-form perfect
equilibrium.

Showing that (B,R) is an extensive-form perfect equilibrium is left to the reader (Exercise 7.47).
�

Together with Theorem 7.33, the last example proves that the concept of extensive-form
perfect equilibrium is a refinement of the concept of subgame perfect equilibrium. Note
that in this example, a subgame perfect equilibrium that is not an extensive-form perfect
equilibrium is given in pure strategies, and therefore the inclusion of the set of extensive-
form perfect equilibria in the set of subgame perfect equilibria is a proper inclusion, even
when only pure strategy equilibria are involved.

Theorem 7.33 states that every extensive-form perfect equilibrium is a subgame perfect
equilibrium, and therefore also a Nash equilibrium. It follows that if a game has no
Nash equilibria in behavior strategies, then it has no extensive-form perfect equilibria. By
Theorem 6.16 (page 235) this can happen only if the game does not have perfect recall.
Example 6.17 (page 236) describes such a game.

As we now show, a finite extensive-form game with perfect recall always has an
extensive-form perfect equilibrium.

Theorem 7.36 Every finite extensive-form game with perfect recall has an extensive-form
perfect equilibrium.

Proof: Let � be a finite extensive-form game with perfect recall, and let (δk)k∈N be a
sequence of perturbation vectors satisfying limk→∞ M(δk) = 0. Since all the players have
perfect recall, Theorem 6.16 (page 235) shows that �(δk) has an equilibrium σ k in behavior
strategies. Since the space of behavior strategy vectors×i∈N Bi is compact, the sequence
(σk)k∈N has a convergent subsequence (σkj )j∈N, converging to a limit σ ∗. Then σ ∗ is an
extensive-form perfect equilibrium. �

Theorems 7.36 and 7.33 lead to the following result.

Theorem 7.37 Every finite extensive-form game with perfect recall has a subgame perfect
equilibrium in behavior strategies.

7.4 Sequential equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

This section presents another equilibrium concept for extensive-form games, which differs
from the three concepts we have studied so far in this chapter, subgame perfect equilibrium,
strategic-form perfect equilibrium, and extensive-form perfect equilibrium. The subgame
perfect equilibrium concept assumes that players analyze each game from the leaves to
the root, with every player, at each of his information sets, choosing an action under
the assumption that in each future subgame, all the players will implement equilibrium
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strategies. The two perfect equilibrium concepts assume that each player has a positive,
albeit small, probability of making a mistake, and that the other players take this into
account when they choose their actions. The sequential equilibrium concept is based on
the principle that at each stage of a game, the player whose turn it is to choose an action
has a belief, i.e., a probability distribution, about which vertex in his information set is
the true vertex at which the game is currently located, and a belief about how the play
of the game will proceed given any action that he may choose. These beliefs are based
on the information structure of the game (the information sets) and the strategies of the
players. Given these beliefs, at each of his information sets, each player chooses the action
that gives him the highest expected payoff.

In this section we will deal only with games with perfect recall. We will later, in
Example 7.60 (on page 283), remark on why it is unclear how the concept of sequential
equilibrium can be generalized to games without perfect recall. Recall that a player’s
behavior strategy in an extensive-form game is a function associating each of that player’s
information sets with a probability distribution over the set of possible actions at that
information set. Such a probability distribution is called a mixed action.

Before we begin the formal presentation, we will look at an example that illustrates the
concept of sequential equilibrium and the ideas behind it.

Example 7.38 Consider the two-player extensive-form game depicted in Figure 7.16.

I
UII

x1

x2

x3

x4

x5

x6

x7

T

M

B

t

m

b

t

m

b

T1

B1

T1

B1

T2

B2

T2

B2

U1
I

U2
I

(2, 0)

(3, 2)

(5, 3)

(0, −1)

(0, 3)

(2, 2)

(0, 0)

(2, 2)

(3, 0)

(0, 2)

(2, 1)
Figure 7.16 The game in Example 7.38 and a strategy vector

The following pair of behavior strategies σ = (σI, σII) is a Nash equilibrium of the game (see
Figure 7.16, where the actions taken in this equilibrium appear as bold lines):
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� Player I’s strategy σI:
� At information set U 1

I , choose the mixed action [ 3
12 (T ), 4

12 (M), 5
12 (B)].

� At information set U 2
I , choose B1.

� At information set U 3
I , choose T2.

� Player II’s strategy σII: Choose b.

(Check that this is indeed an equilibrium.) The strategy vector σ determines, for each vertex x, the
probability Pσ (x) that a play of the game will visit this vertex:

Pσ (x2) = 4
12 , Pσ (x3) = 5

12 , Pσ (x4) = 0,

Pσ (x5) = 4
12 , Pσ (x6) = 0, Pσ (x7) = 0.

When Player II is called upon to play, he knows that the play of the game is located at information
set UII = {x2, x3}. Knowing Player I’s strategy, he can calculate the conditional probability of each
one of the vertices in this information set to be the actual position of the play,

Pσ (x2 | UII) = Pσ (x2)

Pσ (x2) + Pσ (x3)
=

4
12

4
12 + 5

12

= 4

9
, (7.26)

and similarly, Pσ (x3 | UII) = 5
9 . The conditional probability Pσ (· | UII) is Player II’s belief at

information set UII.
Similarly, when Player I is called to play at information set U 1

I , he cannot distinguish
between x4 and x5, but knowing Player II’s strategy σII, Player I can ascribe probability
1 to the play of the game being at vertex x5. Formally, this is the following conditional
distribution,

Pσ

(
x5 | U 1

I

) = Pσ (x5)

Pσ (x4) + Pσ (x5)
=

4
12

0 + 4
12

= 1, (7.27)

with a similar calculation yielding Pσ (x4 | U 1
I ) = 0. The conditional distribution Pσ (· | U 1

I ) is
Player I’s belief at information set U 1

I . Does Player I also have a belief at information set U 2
I ? The

answer to this question is negative, because if the players implement the strategy vector σ , the play
of the game will not visit this information set. Formally, the conditional distribution Pσ (· | U 2

I )
is undefined, because the probability Pσ (U 2

I ) = Pσ (x6) + Pσ (x7), which represents the probability
that the play of the game will arrive at information set U 2

I , equals 0. �

For each strategy vector σ , and for each player i and each of his information sets Ui ,
denote Pσ (Ui) := ∑

x∈Ui
Pσ (x). Since the game has perfect recall, every path from the root

passes through every information set at most once, and hence Pσ (Ui) is the probability that
a play of the game will visit information set Ui when the players implement the strategy
vector σ . As we saw, the strategy vector σ determines a belief Pσ (· | Ui) over the vertices
of information set Ui , for each information set satisfying Pσ (Ui) > 0: when player i is
called upon to play in information set Ui , his belief about the vertex at which the play of
the game is located is given by the conditional distribution Pσ (· | Ui).

Beliefs, calculated this way from the strategy vector σ , satisfy the property of consis-
tency. In other words, the beliefs are consistent with the distribution Pσ over the vertices
of the game tree, and with Bayes’ formula for calculating conditional probability. We say
that the strategy vector σ determines a partial belief system. The word partial denotes the
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fact that the beliefs are defined only for some of the information sets; they are not defined
for information sets that the strategy vector σ leads to with probability 0.

Example 7.38 (Continued) We will now explore the connection between an action chosen by a player at a

given information set, and his belief at that information set. Player I, at information set U 1
I , ascribes

probability 1 to the play of the game being located at vertex x5. He therefore regards action B1

as being the optimal action for him: B1 leads to a payoff 2, while T1 leads to a payoff 0. Given
his belief at U 1

I , Player I is rational in choosing B1. If, in contrast, according to his belief at U 1
I

he had ascribed high probability to the play of the game being located at vertex x4 (a probability
greater than or equal to 2

7 ) it would have been rational for him to choose T1. This property, in
which a player’s strategy calls on him to choose an action maximizing his expected payoff at each
information set, given his belief at that information set, is termed sequential rationality.

We will now check whether sequential rationality obtains at Player II’s information set UII in
the equilibrium we previously presented in this example. As we computed above, Player II’s belief
about the vertex at which the play of the game is located, given that it has arrived at information
set UII, is

Pσ (x2 | UII) = 4
9 , Pσ (x3 | UII) = 5

9 . (7.28)

Given this belief, and the strategy vector σ , if Player II chooses action b, he receives a payoff of 2
with probability 4

9 (if the play of the game is at vertex x2) and a payoff of 1 with probability 5
9 (if

the play of the game is at vertex x3). His expected payoff is therefore

4
9 × 2 + 5

9 × 1 = 13
9 . (7.29)

A similar calculation shows that if he chooses action m, his expected payoff is

4
9 × (−1) + 5

9 × 0 = − 4
9 , (7.30)

and if he chooses action t his expected payoff is

4
9 × 2 + 5

9 × 0 = 8
9 . (7.31)

The strategy σII calls on Player II to choose action b at information set UII, which does indeed max-
imize his expected payoff, relative to his belief. In other words, Player II’s strategy is sequentially
rational.

We next ascertain that Player I’s strategy is sequentially rational at information set U 1
I , containing

a single vertex, x1. When the play of the game arrives at information set U 1
I , Player I knows that x1

must be the vertex at which the play of the game is located, because the information set contains
only one vertex. The mixed strategy [ 3

12 (T ), 4
12 (M), 5

12 (B)] maximizes Player I’s expected payoff
if and only if all three actions yield him the same expected payoff. This is due to the fact that the
payoff is a linear function of the probabilities in which the various actions are implemented by
Player I at information set U1

I . We encountered a similar argument at the indifference principle
(Theorem 5.18, page 160). The reader is asked to verify that each of these three actions yield
the payoff 2, and therefore any mixed action implemented by Player I at information set U 1

I
satisfies sequential rationality, in particular the mixed action [ 3

12 (T ), 4
12 (M), 5

12 (B)] implemented
in σI. �

In Example 7.38, we saw that the strategy vector σ induces a partial belief system over
the players’ information sets, and that each player i’s strategy is sequentially rational at
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each information set Ui for which the belief Pσ (· | Ui) is defined, i.e., at each information
set at which the play of the game arrives with positive probability under the strategy
vector σ .

The main idea behind the concept of sequential equilibrium is that the property of
sequential rationality should be satisfied at every information set, including those infor-
mation sets that are visited with probability 0 under the strategy vector σ . This requirement
is similar to the requirement that the subgame perfect equilibrium be an equilibrium both
on the equilibrium path, and off the equilibrium path. A sequential equilibrium therefore
requires specifying players’ beliefs at all information sets. A sequential equilibrium is thus
a pair (σ, μ), where σ = (σi)i∈N is a vector of behavior strategies, and μ is a complete
belief system; i.e., with every player and every information set of that player, μ associates
a belief: a distribution over the vertices of that information set. The pair (σ, μ) must satisfy
two properties: the beliefs μ must be consistent with Bayes’ formula and with the strategy
vector σ , and σ must be sequentially rational given the beliefs μ.

The main stage in the development of the concept of sequential equilibrium is defining
the concept of consistency of beliefs μ with respect to a given strategy vector σ . Doing
this requires extending the partial belief system Pσ to every information set Ui for which
Pσ (Ui) = 0. This extension is based on Selten’s trembling hand principle, which was dis-
cussed in the section defining perfect equilibrium. Denote by U the set of the information
sets of all the players.

Definition 7.39 A complete belief system μ is a vector μ = (μU )U∈U associating each
information set U ∈ U with a distribution over the vertices in U .

Definition 7.40 Let U ′ ⊆ U be a partial collection of information sets. A partial belief
system μ (with respect to the U ′) is a vector μ = (μU )U∈U ′ associating each information
set U ∈ U ′ with a distribution over the vertices in U .

If μ is a partial belief system, denote by Uμ the collection of information sets at which
μ is defined.

Although the definition of a belief system is independent of the strategy vector imple-
mented by the players, we are interested in belief systems that are closely related to the
strategy vector σ . The partial belief system that is induced by σ plays a central role in the
definition of sequential equilibrium.

Definition 7.41 Let σ be a strategy vector. Let Uσ = {U ∈ U : Pσ (U ) > 0} be the col-
lection of all information sets that the play of the game visits with positive probability
when the players implement the strategy vector σ . The partial belief system induced by
the strategy vector σ is the collection of distributions μσ = (μσ,U )U∈Uσ

, satisfying, for
each U ∈ Uσ ,

μσ,U (x) := Pσ (x | U ) = Pσ (x)

Pσ (U )
, ∀x ∈ U. (7.32)

Note that Uσ = Uμσ
. To avoid using both denotations, we will henceforth use only the

denotation Uμσ
.
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Remark 7.42 Since we have assumed that at each chance vertex, every action is chosen
with positive probability, it follows that if all the strategies in the strategy vector σ

are completely mixed, i.e., at each information set every action is chosen with positive
probability, then Pσ (Ui) > 0 for each player i and each of his information sets Ui; hence
in this case the belief system μσ is a complete belief system: it defines a belief at each
information set in the game (Uμσ

= U ). �

Recall that ui(σ | x) is the expected payoff of player i when the players implement the
strategy σ , given that the play of the game is at vertex x. It follows that player i’s expected
payoff when the players implement the strategy vector σ , given that the game arrives at
information set Ui and given his belief, is

ui(σ | Ui, μ) :=
∑
x∈Ui

μσ,Ui
(x)ui(σ | x). (7.33)

Definition 7.43 Let σ be a vector of behavior strategies, μ be a partial belief system,
and Ui ∈ Uμ be an information set of player i. The strategy vector σ is called rational at
information set Ui , relative to μ, if for each behavior strategy σ ′

i of player i

ui(σ | Ui, μ) ≥ ui((σ ′
i , σ−i) | Ui, μ). (7.34)

The pair (σ, μ) is called sequentially rational if for each player i and each information
set Ui ∈ Uμ, the strategy vector σ is rational at Ui relative to μ.

As the following theorems show, there exists a close connection between the concepts
of sequential rationality and those of Nash equilibrium and subgame perfect equilibrium.

Theorem 7.44 In an extensive-form game with perfect recall, if the pair (σ, μσ ) is
sequentially rational, then the strategy vector σ is a Nash equilibrium in behavior
strategies.

Proof: Let i ∈ N be a player, and let σ ′
i be any behavior strategy of player i. We will

prove that ui(σ ) ≥ ui(σ ′
i , σ−i).

We say that an information set Ui of player i is highest if every path from the root to
a vertex in Ui does not pass through any other information set of player i. Denote by Ûi

the set of player i’s highest information sets: any path from the root to a leaf that passes
through an information set of player i necessarily passes through an information set in
Ûi . Denote by p∗

σ,i the probability that, when the strategy vector σ is played, a play of the
game will not pass through any of player i’s information sets, and denote by u∗

σ,i player
i’s expected payoff, given that the play of the game according to the strategy vector does
not pass through any of player i’s information sets.

Note that p∗
σ,i and u∗

σ,i are independent of player i’s strategy, since these values
depend on plays of the game in which player i does not participate. Similarly, for every
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information set Ui ∈ Ûi , the probability Pσ (Ui) is independent of player i’s strategy, since
these probabilities depend on actions chosen at vertices that are not under player i’s
control.

Using this notation, we have that

pσ (Ui) = p(σ ′
i ,σ−i )(Ui), ∀Ui ∈ Ûi , (7.35)

ui(σ ) =
∑
Ui∈Ûi

pσ (Ui)ui(σ | Ui, μσ ) + p∗
σ,iu

∗
σ,i , (7.36)

ui(σ ′
i , σ−i) =

∑
Ui∈Ûi

p(σ ′
i ,σ−i )(Ui)ui((σ ′

i , σ−i) | Ui, μσ ) + p∗
σ,iu

∗
σ,i (7.37)

=
∑

Ui∈Ûi

pσ (Ui)ui((σ
′
i , σ−i) | Ui, μσ ) + p∗

σ,iu
∗
σ,i, (7.38)

where Equation (7.38) follows from Equation (7.35). Since for every Ui ∈ Uμσ
, the pair

(σ, μσ ) is sequentially rational at Ui ,

ui(σ | Ui, μσ ) ≥ ui((σ
′
i , σ−i) | Ui, μσ ). (7.39)

Equations (7.36)–(7.39) imply that

ui(σ ) ≥ ui(σ
′
i , σ−i), (7.40)

which is what we wanted to prove. �

The following theorem, whose proof is left to the reader (Exercise 7.41), is the converse
of Theorem 7.44.

Theorem 7.45 If σ ∗ is a Nash equilibrium in behavior strategies, then the pair (σ ∗, μσ ∗ )
is sequentially rational at every information set in Uμσ∗ .

In a game with perfect information, every information set contains only one vertex,
and therefore when called on to make a move, a player knows at which vertex the play
of the game is located. In this case, we denote by μ̂ the complete belief system in which
μ̂U = [1(x)], for every information set U = {x}. The next theorem, whose proof is left
to the reader (Exercise 7.42), characterizes subgame perfect equilibria using sequential
rationality.

Theorem 7.46 In a game with perfect information, a behavior strategy vector σ is a
subgame perfect equilibrium if and only if the pair (σ, μ̂) is sequentially rational at each
vertex in the game.

As previously stated, the main idea behind the sequential equilibrium refinement is to
expand the definition of rationality to information sets Ui at which Pσ (Ui) = 0. This is
accomplished by the trembling hand principle: player i may find himself in an information
set Ui for which Pσ (Ui) = 0, due to a mistake (tremble) on the part of one of the players,
and we require that even if this should happen, the player ought to behave rationally relative
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to beliefs that are “consistent” with such mistakes. In other words, we extend the partial
belief system μσ to a complete belief system μ that is consistent with the trembling hand
principle, and we require that σ be sequentially rational not only with respect to μσ , but
also with respect to μ.

Remark 7.47 A belief at an information set Ui is a probability distribution over the
vertices in Ui , i.e., an element of the compact set 
(Ui). A complete belief system is a
vector of beliefs, one belief per information set, and therefore a vector in the compact set
×U∈U 
(U ). Since this set is compact, every sequence of complete belief systems has a
convergent subsequence. �
Definition 7.48 An assessment is a pair (σ, μ) in which σ = (σi)i∈N is a vector of behav-
ior strategies, and μ = (μU )U∈U is a complete belief system.

Definition 7.49 An assessment (σ, μ) is called consistent if there exists a sequence of
completely mixed behavior strategy vectors (σ k)k∈N satisfying the following conditions:

(i) The strategies (σ k)k∈N converge to σ , i.e., limk→∞ σk = σ .
(ii) The sequence of beliefs (μσk )k∈N induced by (σ k)k∈N converges to the belief

system μ,

μσ (U ) = lim
k→∞

μσk (U ), ∀U ∈ U . (7.41)

Remark 7.50 If σ is a completely mixed behavior strategy vector, then μσ is a complete
belief system (Remark 7.42). In this case, (σ, μσ ) is a consistent system. This follows
directly from Definition 7.49, using the sequence (σ k)k∈N defined by σ k = σ for all
k ∈ N. �
Remark 7.51 Since the strategies σk in Definition 7.49 are completely mixed strategies,
for every k ∈ N the belief system μσk is a complete belief system (Remark 7.42), and hence
the limit μ is also a complete belief system (Remark 7.47). �
Definition 7.52 An assessment (σ, μ) is called a sequential equilibrium if it is consistent
and sequentially rational.

Remark 7.53 By definition, if an assessment (σ, μ) is sequentially rational then it is
rational at each information set at which the belief μ is defined. Since the belief system of
an assessment is a complete belief system, it follows that a sequentially rational assessment
(σ, μ) is rational at each information set. �

The following result, which is a corollary of Theorem 7.44, shows that the concept of
sequential equilibrium is a refinement of the concept of Nash equilibrium.

Theorem 7.54 In an extensive-form game with perfect recall, if the assessment (σ, μ) is
a sequential equilibrium, then the strategy vector σ is a Nash equilibrium in behavior
strategies.

All of the above leads to:

Theorem 7.55 In an extensive-form game with perfect recall, if σ is a Nash equilibrium
in completely mixed behavior strategies, then (σ, μσ ) is a sequential equilibrium.
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Proof: Remark 7.50 implies that the pair (σ, μσ ) is a consistent assessment.
Theorem 7.45 implies that this assessment is sequentially rational. �

Example 7.56 Consider the two-player extensive-form game depicted in Figure 7.17.

I

II

A

B

C

t

b

t

b

x1

x2

x3

(0, 2)

(1, 0)

(1, 0)

(0, 1)

(3, 0)
Figure 7.17 The game in Example 7.56, and a strictly dominant strategy of Player I

The strategy A strictly dominates Player I’s two other strategies, and hence at every Nash
equilibrium, Player I chooses A. This means that at any Nash equilibrium Player II’s strategy has
no effect at all on the play of the game, and hence in this game there is a continuum of equilibria
in mixed strategies, (A, [y(t), (1 − y)(b)]), for 0 ≤ y ≤ 1.

We now compute all the sequential equilibria of the game. Since every sequential equilibrium is
a Nash equilibrium (Theorem 7.54), every sequential equilibrium (σ,μ) satisfies σI = A.

Player II’s belief at her sole information set is therefore μUII = (μUII (x2), μUII (x3)). Is every
belief μUII part of a consistent complete belief system? The answer is positive: the only condition
that the assessment (σ,μ) needs to satisfy in order to be a consistent assessment is σI = A. This
follows directly from Definition 7.49, using the sequence

σ k
I =

[
k − 1

k
(A),

μUII (x2)

k
(B),

μUII (x3)

k
(C)

]
for each k ∈ N.

We next check which beliefs of Player II at information set UII are rational at UII. If the play
of the game is at information set UII, action b yields Player II the expected payoff 2μUII (x2),
and action t yields the expected payoff μUII (x3). Since μUII (x2) + μUII (x3) = 1, we deduce the
following:

� If μUII (x2) > 1
3 , then the only action that is rational for Player II at information set UII is t .

� If μUII (x2) < 1
3 , then the only action that is rational for Player II at information set UII is b.

� If μUII (x2) = 1
3 , then every mixed action of Player II is rational at information set UII.

In other words, the set of sequentially rational equilibria consists of the following assessments:

� σI = A, σII = t , μUII = [y(x2), (1 − y)(x3)] for y > 1
3 .

� σI = A, σII = b, μUII = [y(x2), (1 − y)(x3)] for y < 1
3 .

� σI = A, σII = [z(t), (1 − z)(b)] for z ∈ [0, 1], μUII = [ 1
3 (x2), 2

3 (x3)]. �
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Example 7.38 (Continued) We have seen that the following pair (σ,μσ ) satisfies the properties of partial

consistency, and sequential rationality, at every information set U for which Pσ (U ) > 0:

� Player I:
� plays the mixed action [ 3

12 (T ), 4
12 (M), 5

12 (B)] at U 1
I .

� chooses B1 at information set U 1
I .

� chooses T2 at information set U 2
I .

� Player II chooses b.
� Player II’s belief at information set UII is [ 4

9 (x2), 5
9 (x3)].

� Player I’s belief at information set U 2
I is [1(x5)].

We now show that (σ,μσ ) can be extended to a sequential equilibrium. To do so, we need to specify
what Player I’s belief is at information set U 3

I . Denote this belief by μU3
I
= (μU3

I
(x6), μU 3

I
(x7)).

Note that for each μU3
I
, the assessment (σ,μσ , μU3

I
) is consistent. This is achieved by defining

σk
I = σI, σ k

II =
[

μU 3
I
(x6)

k
(t),

μU3
I
(x7)

k
(m),

k − 1

k
(b)

]
, (7.42)

and using Definition 7.49. Finally, the action T2 yields Player I the expected payoff 3μU3
I
(x7),

and action B1 yields him the expected payoff 2μU3
I
(x6). It follows that action T2 is rational if

μU 3
I
(x6) ≤ 3

5 . We deduce that the assessment (σ,μσ ) can be expanded to a sequential equilibrium
(σ,μ) if we add:

� the belief of Player I at information set U 3
I is [p(x6), (1 − p)(x7)], where p ∈ [0, 3

5 ]. �

Sequential equilibrium, and extensive-form perfect equilibrium, are similar but not
identical concepts. The following theorem states that every extensive-form perfect equi-
librium can be completed to a sequential equilibrium. Example 7.59, which is presented
after the proof of the theorem, shows that the converse does not obtain, and therefore the
concept of extensive-form perfect equilibrium is a refinement of the concept of sequential
equilibrium.

Theorem 7.57 Let σ be an extensive-form perfect equilibrium in an extensive-form game
with perfect recall �. Then σ can be completed to a sequential equilibrium: there exists
a complete belief system μ = (μU )U∈U satisfying the condition that the pair (σ, μ) is a
sequential equilibrium.

Since by Theorem 7.30 (page 268) every finite extensive-form game with perfect recall
has an extensive-form perfect equilibrium, we immediately deduce the following corollary
of Theorem 7.57.

Corollary 7.58 Every finite extensive-form game with perfect recall has a sequential
equilibrium.

Proof of Theorem 7.57: Since σ is an extensive-form perfect equilibrium, there
exists a sequence (δk)k∈N of perturbation vectors satisfying limk→∞ M(δk) = 0, and for
each k ∈ N, there exists an equilibrium σ k of the δk-perturbed game �(δk), satisfying
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limk→∞ σ k = σ . Theorem 7.55 implies that for each k ∈ N, the assessment (σk, μσk ) is a
sequential equilibrium in the game �(δk).

By Remark 7.47, there exists an increasing sequence (kj )j∈N of natural numbers satis-
fying the condition that the sequence (μσ

kj )j∈N converges to a complete belief system μ.
We deduce from this that (σ, μ) is a consistent assessment.

We now prove that (σ, μ) is a sequentially rational assessment. Let i ∈ N be a player,
Ui be an information set of player i, and σ ′

i be a behavior strategy of player i. By
Theorem 7.34, there exists a sequence (σ ′k

i )k∈N of behavior strategies of player i converging
to σ ′

i and satisfying the condition that for each k ∈ N, the strategy σ ′k
i is a possible strategy

for player i in the game �(δk). Since the assessment (σ k, μσk ) is a sequential equilibrium
in the game �(δk), one has

ui(σ
k | Ui, μσk ) ≥ ui

((
σ ′k

i , σ−i

) | Ui, μσk

)
. (7.43)

From the continuity of the payoff function, and consideration of the subsequence (kj )j∈N,
we conclude that

ui(σ | Ui, μ) ≥ ui((σ
′
i , σ−i) | Ui, μ). (7.44)

This completes the proof that the pair (σ, μ) is sequentially rational, and hence a sequential
equilibrium. �

We will now show that the converse of Theorem 7.57 does not hold: there exist games
that have a sequential equilibrium of the form (σ, μ), where the strategy vector σ is not
an extensive-form perfect equilibrium.

Example 7.59 Consider the two-player extensive-form game depicted in Figure 7.18. In this game there are

two Nash equilibria in pure strategies: (T , t) and (B, b). Since every player has a single information
set, the set of strategic-form perfect equilibria equals the set of extensive-form perfect equilibria.
Since strategy T dominates strategy B (and strategy t dominates strategy b), only (T , t) is a
strategic-form perfect equilibrium (see Theorem 7.28 on page 267). However, as we will now show,
both (T , t) and (B, b) form elements of sequential equilibrium.

I

x1

x2

x3

T

B

t

b

t

b

(1, 1)

(0, 0)

(0, 0)

(0, 0)

II

Equilibrium (T, t)

I

x 1

x2

x3

T

B

t

b

t

b

(1, 1)

(0, 0)

(0, 0)

(0, 0)

II

Equilibrium (B, b)
Figure 7.18 The game in Example 7.59, along with two sequential equilibria

Under both equilibria, the play of the game visits every information set, and therefore the beliefs
of the players in these equilibria are as follows:
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� At the equilibrium (T , t), the beliefs of the players are [1(x1)] and [1(x2)] respectively.
� At the equilibrium (B, b), the beliefs of the players are [1(x1)] and [1(x3)] respectively.

We first show that the pair ((T , t), [1(x1)], [1(x1)]) is a sequential equilibrium. To show that this
pair is consistent define

σk =
([

k − 1

k
(T ),

1

k
(B)

]
,

[
k − 1

k
(t),

1

k
(b)

])
, ∀k ∈ N. (7.45)

Then μσk (UII) =
[

k−1
k

(x2), 1
k
(x3)

]
for all k ∈ N, limk→∞ σ k = (T , t), and limk→∞ μσk (UII) =

[1(x2)]. This pair is sequentially rational because the payoff to each of the players is 1, which
is the maximal payoff in the game.

We next show that the pair ((B, b), [1(x1)], [1(x3)]) is also a sequential equilibrium. To show
that this pair is consistent define

σ k =
([

1

k
(T ),

k − 1

k
(B)

]
,

[
1

k
(t),

k − 1

k
(b)

])
, ∀k ∈ N. (7.46)

Then μσk (UII) =
[

1
k
(x2), k−1

k
(x3)

]
for all k ∈ N, limk→∞ σ k = (B, b), and limk→∞ μσk (UII) =

[1(x3)]. This pair is sequentially rational because Player I receives 0 whether he plays T or
B, and given his belief at information set {x2, x3}, Player II receives 0 whether he plays t or
plays b. �

In summary, the main differences between the three refinements of Nash equilibrium
in extensive-form games are as follows:

� A mixed strategy vector σ is a strategic-form perfect equilibrium if it is the limit of
equilibria in completely mixed strategies (σ k)k∈N of a sequence of perturbed games,
where the perturbations converge to zero.

� A mixed strategy vector σ is an extensive-form perfect equilibrium if it is the limit of
equilibria in completely mixed behavior strategies (σ k)k∈N of a sequence of perturbed
games, where the perturbations converge to zero.

� An assessment (σ, μ) is a sequential equilibrium if μ is the limit of a sequence of beliefs
(μσk )k∈N induced by a sequence of strategies (σ k)k∈N converging to σ in a sequence of
games with perturbations converging to zero (the consistency property), and for each
player i, at each of his information sets, σi is the best reply to σ−i according to μ (the
sequential rationality property).

As we saw in Example 7.59, if (σ, μ) is a sequential equilibrium then the strategy vector
σ is not necessarily an extensive-form perfect equilibrium. This is due to the fact that the
definition of extensive-form perfect equilibrium contains a condition that is not contained
in the definition of sequential equilibrium: for σ to be an extensive-form perfect equilib-
rium, σk must be an equilibrium of the corresponding perturbed game for every k ∈ N;
i.e., the sequential rationality property must obtain for every element of the sequence
(σ k)k∈N, while for (σ, μ) to be a sequential equilibrium, the sequential rationality property
must hold only in the limit, σ .
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The next example illustrates why it is not clear how to extend the definition of sequential
equilibrium to games with imperfect recall.

Example 7.60 The Absent-Minded Driver Consider the Absent-Minded Driver game depicted in

Figure 7.19, which we previously encountered in Example 6.9 (page 225). The game contains
a single player, who cannot distinguish between the two vertices in the game tree, and hence, at any
vertex cannot recall whether or not he has played in the past.

I

3

0

2

T

B T

B

x1

x2

Figure 7.19 The Absent-Minded Driver game

The only Nash equilibrium in this game is T , because this strategy yields a payoff of 3, which
is the game’s highest payoff.

We now check whether the concept of sequential equilibrium can be adapted to this example.
We first need to contend with the fact that because there are paths that visit the same information
set several times, we need to reconsider what a belief at a vertex means. Suppose that the player
implements strategy σ = [1(B)], in which he plays action B. The play of the game will visit the
vertex x1, and the vertex x2, hence pσ (x1) = pσ (x2) = 1, and pσ (U ) = 1 holds for the information
set U = {x1, x2}. It follows that Equation (7.32) does not define a belief system, because pσ (U ) �=
pσ (x1) + pσ (x2). We therefore need to define the player’s belief system as follows:

μU (x1) = pσ (x1)

pσ (x1) + pσ (x2)
= 1

2 , μU (x2) = pσ (x2)
pσ (x1)+pσ (x2) = 1

2 . (7.47)

In words, if the player implements strategy B, at his information set he ascribes equal probability
to the play of the game being at either of the vertices x1 and x2.

Is the concept of sequential equilibrium applicable in this game? We will show that the assessment
(B, [ 1

2 (x1), 1
2 (x2)]) is sequentially rational, and therefore is a sequential equilibrium according to

Definition 7.52, despite the fact that the strategy B is not a Nash equilibrium. If Player I implements
strategy B at his information set, his expected payoff is 2, because he believes the play of the game
is located at either x1, or x2, with equal probability, and in either case, if he implements strategy
B, his expected payoff is 2. If, however, Player I implements strategy T at this information set,
his expected payoff is 3

2 : the player ascribes probability 1
2 to the play of the game being located

at vertex x1, which yields a payoff of 3 if he implements strategy T , and he ascribes probability
1
2 to the play of the game being located at vertex x2, in which case he receives a payoff of 0 if
he implements strategy T . It follows that (B, [ 1

2 (x1), 1
2 (x2)]) is a sequentially rational assessment,

despite the fact that B is not an equilibrium.
The reason that Theorem 7.54 does not hold in games with imperfect recall is due to the fact that

if there exists a path from the root that passes through two different vertices in the same information
set U of a player, then when the player changes the action that he implements at U , he may also
change his belief at U . This possibility is not taken into account in the definition of sequential
equilibrium. �
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7.5 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Sections 7.1 and 7.3 are based on the research conducted by Reinhardt Selten, who
was awarded the Nobel Memorial Prize in Economics in 1994 for his contributions to
refinements of the Nash equilibrium. The concept of sequential equilibrium first appeared
in Kreps and Wilson [1982]. The interested reader may find a wealth of material on the
concepts of subgame perfect equilibrium, and perfect equilibrium, in van Damme [1987].
Exercises 7.6 and 7.7 are based on Glazer and Ma [1989]. Exercise 7.13 is based on
Selten [1978]. Exercise 7.14 is a variation of an example appearing in Rubinstein [1982].
Exercise 7.16 is based on an example appearing in Harris, Reny, and Robson [1995].
Exercise 7.26 is based on an example appearing in van Damme [1987, page 28]. Exercise
7.37 is based on an example appearing in Selten [1975]. The game in Exercise 7.46 is
taken from Selten [1975]. The game in Exercise 7.48 is based on a game appearing in
Kreps and Ramey [1987]. Exercise 7.49 is taken from Kohlberg and Mertens [1986].
Exercise 7.52 is based on an example appearing in Banks and Sobel [1987]. Exercise 7.53
is based on an example appearing in Cho and Kreps [1987]. Exercise 7.54 is based on an
example appearing in Camerer and Weigelt [1988].

7.6 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7.1 (a) What is the number of subgames in a game with perfect information whose game
tree has eight vertices?

(b) What is the number of subgames in a game whose game tree has eight vertices
and one information set, which contains two vertices (with all other information
sets containing only one vertex)?

(c) What is the number of subgames in a game whose game tree has eight vertices,
three of which are chance vertices?

7.2 Answer the following questions, for each of the following two-player zero-sum
extensive-form games:

(a) Find all the equilibria obtained by backward induction.
(b) Describe the corresponding strategic-form game.
(c) Check whether there exist additional equilibria.

I

II

I

3

3

3

2

a

b

c

d
e

f

Game A

I

II

0
II

II

4

5
6
−6
−9
12

a

b

c

d
e

fg

h

Game B

2

3

3

1
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7.3 Find all the equilibria of the following two-player zero-sum game.

I

II

II

10

8

15

12

a

b

c

d

e

f

Explain why one cannot obtain all the equilibria of the game by implementing
backward induction.

7.4 Find all the subgame perfect equilibria of the following games.

I

T

B

t1

b1

t2

b2

(1, 1)

(1, 0)

(0, 1)

(0, 0)

II

Game A

I

II

II

T

B

t1

b1

t2

b2

(5, 1)

(1, 1)

(0, 3)

(3, 2)

Game B

II

I

(0, 2)

(3, 2)

(1, 5)

(2, 3)

T1

B1
T2

B2

Game C

II

I

(0, 1)

(6, 3)

(5, 4)

(3, 5)

T1

B1
T2

B2

Game D

7.5 The Ultimatum game Allen and Rick need to divide $100 between them as follows:
first Allen suggests an integer x between 0 and 100 (which is the amount of money
he wants for himself). Rick, on hearing the suggested amount, decides whether to
accept or reject. If Rick accepts, the payoff of the game is (x, 1 − x): Allen receives
x dollars, and Rick receives 100 − x dollars. If Rick chooses to reject, neither player
receives any money.

(a) Describe this situation as an extensive-form game.
(b) What is the set of pure strategies each player has?
(c) Show that any result (a, 100 − a), a ∈ {0, 1, . . . , 100}, is a Nash equilibrium

payoff. What are the corresponding equilibrium strategies?
(d) Find all the subgame perfect equilibria of this game.

7.6 The Judgment of Solomon Elizabeth and Mary appear before King Solomon at
his palace, along with an infant. Each woman claims that the infant is her child. The
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child is “worth” 100 dinars to his true mother, but he is only “worth” 50 dinars to
the woman who is not his mother. The king knows that one of these two women is
the true mother of the child, and he knows the “value” that the true mother ascribes
to the child, and the “value” that the impostor ascribes to the child, but he does not
know which woman is the true mother, and which the impostor.

To determine which of the two women is the true mother, the king explains to
Elizabeth and Mary that he will implement the following steps:

(i) He will ask Elizabeth whether the child is hers. If she answers negatively, the
child will be given to Mary. If she answers affirmatively, the king will continue
to the next step.

(ii) He will ask Mary if the child is hers. If she answers negatively, the child will
be given to Elizabeth. If she answers affirmatively, Mary will pay the king 75
dinars, and receive the child, and Elizabeth will pay the king 10 dinars.

Answer the following questions:

(a) Describe the mechanism implemented by the king using two extensive-form
games: in one extensive-form game Elizabeth is the true mother of the child, and
in the second extensive-form game Mary is the true mother of the child.

(b) Prove that the mechanism implemented by the king guarantees that despite the
fact that he does not know which of the above extensive-form games is being
played, in each game the only subgame perfect equilibrium is the one under
which the true mother gets her child and neither woman pays anything at all.

(c) Find another equilibrium of each game, which is not the subgame perfect
equilibrium.

7.7 The following is a generalization of the “Judgment of Solomon,” discussed in
Exercise 7.6.

Emperor Caligula wishes to grant a prize-winning horse as a gift to one of his
friends, Claudius or Marcus. The value that Claudius ascribes to the horse is in the
set {u1, u2, . . . , un}, and the value that Marcus ascribes to the horse is in the set
{v1, v2, . . . , vm}. Each one of the emperor’s friends knows the precise value that
he ascribes to the horse, and he also knows the precise value that the other friend
ascribes to the horse, but the only thing that the emperor knows is that the value that
each of his friends ascribes to the horse is taken from the appropriate set of possible
values. The emperor wishes to give the horse to the friend who values the horse
most highly, but does not want to take money from his friends.

The emperor implements the following steps:

(i) Let ε > 0 be a positive number satisfying the condition that for each i and j , if
ui �= vj then |ui − vj | > ε.

(ii) The emperor will ask Claudius if he values the horse at least as much as Marcus
does. If Claudius answers negatively, the horse will be given to Marcus. If
Claudius answers affirmatively, the emperor will continue to the next stage.

(iii) The emperor will ask Marcus if he values the horse more than Claudius does.
If Marcus answers negatively, the horse will be given to Claudius. If Marcus
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answers affirmatively, the two friends will each pay the emperor ε/4, and the
emperor will continue to the next step.

(iv) Claudius will be called upon to suggest a value u ∈ {u1, u2, . . . , un}.
(v) Knowing Claudius’ suggested value, Marcus will be called upon to suggest a

value v ∈ {v1, v2, . . . , vm}.
(vi) The individual who suggested the higher value receives the horse, with the

emperor keeping the horse in case of a draw. The winner pays max{u, v} − ε
2

for the horse. The loser pays nothing.

Answer the following questions:

(a) Describe the sequence of steps implemented by the emperor as an extensive-
form game. Assume that at the start of the game the following move of chance
is implemented, which determines the private value of the horse for each of the
two friends: the private value of the horse for Claudius is chosen from the set
{u1, u2, . . . , un} using the uniform distribution, and the private value of the horse
for Marcus is chosen from the set {v1, v2, . . . , vm} using the uniform distribution.

(b) Prove that the only subgame perfect equilibrium of the game leads to the friend
who values the horse the most receiving the horse (in case both friends equally
value the horse, Claudius receives the horse).

7.8 Prove Theorem 7.9 on page 257: every (finite) extensive-form game with perfect
information has a subgame perfect equilibrium in pure strategies.

7.9 Prove that in the 100-times-repeated Prisoner’s Dilemma game (see Example 7.15
on page 259), the only subgame perfect equilibrium is the one where both players
choose D in all stages of the game (after every history of previous actions).

7.10 (a) Find all the equilibria of the following two-player game.

Player I

Player II

B

T

RL

2, 0

3, 0

1, 5

1, 2

(b) Suppose the players play the game twice; after the first time they have played
the game, they know the actions chosen by both of them, and hence each player
may condition his action in the second stage on the actions that were chosen in
the first stage.

Describe this two-stage game as an extensive-form game.
(c) What are all the subgames of the two-stage game?
(d) Find all the subgame perfect equilibria of the two-stage game.

7.11 The one-stage deviation principle for subgame perfect equilibria Recall that
ui(σ | x) is the payoff to player i when the players implement the strategy vector σ ,
given that the play of the game has arrived at the vertex x.
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Prove that a strategy vector σ ∗ = (σ ∗
i )i∈N in an extensive-form game with perfect

information is a subgame perfect equilibrium if and only if for each player i ∈ N ,
every decision vertex x, and every strategy σ̂i of player i that is identical to σ ∗

i at
every one of his decision vertices except for x,

ui(σ
∗ | x) ≥ ui((̂σi, σ

∗
−i) | x). (7.48)

Guidance: To prove that σ ∗ is a subgame perfect equilibrium if the condition above
obtains, one needs to prove that the condition ui(σ ∗ | x) ≥ ui((σi, σ

∗
−i) | x) holds

for every vertex x, every player i, and every strategy σi . This can be accomplished
by induction on the number of vertices in the game tree as follows. Suppose that this
condition does not hold. Among all the triples (x, i, σi) for which it does not hold,
choose a triple such that the number of vertices where σi differs from σ ∗

i is minimal.
Denote by X the set of all vertices such that σi differs from σ ∗

i . By assumption,
|X | ≥ 1. From the vertices in X , choose a “highest” vertex, i.e., a vertex such that
every path from the root to it does not pass through any other vertex in X . Apply
the inductive hypothesis to all the subgames beginning at the other vertices in X .

7.12 Principal-Agent game Hillary manages a technology development company. A
company customer asks Hillary to implement a particular project. Because it is
unclear whether or not the project is feasible, the customer offers to pay Hillary $2
million at the start of work on the project, and an additional $4 million upon its
completion (if the project is never completed, the customer pays nothing beyond
the initial $2 million payment). Hillary seeks to hire Bill to implement the project.
The success of the project depends on the amount of effort Bill invests in his work:
if he fails to invest effort, the project will fail; if he does invest effort, the project
will succeed with probability p, and will fail with probability 1 − p. Bill assesses
the cost of investing effort in the project (i.e., the amount of time he will need to
devote to work at the expense of the time he would otherwise give to his family,
friends, and hobbies) as equivalent to $1 million. Bill has received another job offer
that will pay him $1 million without requiring him to invest a great deal of time and
effort. In order to incentivize Bill to take the job she is offering, Hillary offers him a
bonus, to be paid upon the successful completion of the project, beyond the salary of
$1 million.

Answer the following questions:

(a) Depict this situation as an extensive-form game, where Hillary first determines
the salary and bonus that she will offer Bill, and Bill afterwards decides whether
or not to take the job offered by Hillary. If Bill takes the job offered by Hillary,
Bill then needs to decide whether or not to invest effort in working on the project.
Finally, if Bill decides to invest effort on the project, a chance move determines
whether the project is a success or a failure. Note that the salary and bonus that
Hillary can offer Bill need not be expressed in integers.

(b) Find all the subgame perfect equilibria of this game, assuming that both Hillary
and Bill are risk-neutral, i.e., each of them seeks to maximize the expected payoff
he or she receives.
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(c) What does Hillary need to persuade Bill of during their job interview, in order
to increase her expected payoff at equilibrium?

7.13 The Chainstore game A national chain of electronics stores has franchises in
shopping centers in ten different cities. In each shopping center, the chainstore’s
franchise is the only electronics store. Ten local competitors, one in each city, are
each contemplating opening a rival electronics store in the local shopping center,
in the following sequence. The first competitor decides whether or not to open a
rival electronics store in his city. The second competitor checks whether or not the
first competitor has opened an electronics store, and takes into account the national
chainstore’s response to this development, before deciding whether or not he will
open a rival electronics store in his city. The third competitor checks whether or
not the first and second competitors have opened electronics stores, and takes into
account the national chainstore’s response to these developments, before deciding
whether or not he will open a rival electronics store in his city, and so on. If a
competitor decides not to open a rival electronics store, the competitor’s payoff is 0,
and the national chain store’s payoff is 5. If a competitor does decide to open a rival
electronics store, his payoff depends on the response of the national chainstore. If the
national chainstore responds by undercutting prices in that city, the competitor and
the chainstore lose 1 each. If the national chainstore does not respond by undercutting
prices in that city, the competitor and the national chainstore each receive a payoff
of 3.

(a) Describe this situation as an extensive-form game.
(b) Find all the subgame perfect equilibria.
(c) Find a Nash equilibrium that is not a subgame perfect equilibrium, and explain

why it fails to be a subgame perfect equilibrium.

7.14 Alternating Offers game Debby and Barack are jointly conducting a project that
will pay them a total payoff of $100. Every delay in implementing the project
reduces payment for completing the project. How should they divide this money
between them? The two decide to implement the following procedure: Debby starts
by offering a division (xD, 100 − xD), where xD is a number in [0, 100] representing
the amount of money that Debby receives under the terms of this offer, while Barack
receives 100 − xD. Barack may accept or reject Debby’s offer. If he rejects the
offer, he may propose a counteroffer (yD, 99 − yD) where yD is a number in [0, 99]
representing the amount of money that Debby receives under the terms of this offer,
while Barack receives 99 − yD. Barack’s offer can only divide $99 between the two
players, because the delay caused by his rejection of Debby’s offer has reduced the
payment for completing the project by $1. Debby may accept or reject Barack’s offer.
If she rejects the offer, she may then propose yet another counteroffer, and so on.
Each additional round of offers, however, reduces the amount of money available by
$1: if the two players come to an agreement on a division after the kth offer has been
passed between them, then they can divide only (101 − k) dollars between them.
If the two players cannot come to any agreement, after 100 rounds of alternating
offers, they drop plans to conduct the project jointly, and each receives 0.
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Describe this situation as an extensive-form game, and find all of its subgame
perfect equilibria.

7.15 Prove Theorem 7.10: every extensive-form game with perfect recall has a subgame
perfect equilibrium in mixed strategies.

7.16 A game without a subgame perfect equilibrium Consider the four-player
extensive-form game in Figure 7.20. In this game, Player I’s set of pure strate-
gies is the interval [−1, 1]; i.e., Player I chooses a number a in this interval. The
other players, Players II, III, and IV, each have two available actions, at each of
their information sets. Figure 7.20 depicts only one subgame tree, after Player I
has chosen an action. All the other possible subtrees are identical to the one shown
here.

I II

III

III

IV

IV

(−| a |2 −

−

−

−

−

2|a|

− 2|a|

− 2|a|

+ 2|a|

+ 2|a|

+ 2|a|

+ 2|a|

(−| a |2 − 2|a 20

(−| a |2 20

(−| a |2

(−| a |2

(−| a |2 20

(−| a |2 20

(−| a |2

,   1, −a, −a)

,   1, −a,   a)

, −1,   a, −a)

, −1,   a,   a)

, −2, −a, −a)

, −2, −a,   a)

,   2,   a, −a)

,   2,   a,   a)

a

T

B

t1

b1

t2

b2

τ1

β1

τ1

β1

τ2

β2

τ2

β2

Figure 7.20 A game without subgame perfect equilibria

This game may be regarded as a two-stage game: in the first stage, Players I and
II choose their actions simultaneously (where Player I chooses a ∈ [−1, 1], and
Player II chooses T or B), and in the second stage, Players III and IV, after learning
which actions were chosen by Players I and II, choose their actions simultan-
eously.

Suppose that the game has a subgame perfect equilibrium, denoted by σ =
(σI, σII, σIII, σIV). Answer the following questions:

(a) What are all the subgames of this game?
(b) What will Players III and IV play under σ , when a �= 0?
(c) What are the payoffs of Players III and IV, when a = 0?
(d) Denote by β the probability that Player II plays the pure strategy B, under

strategy σII. Explain why there does not exist a subgame perfect equilibrium
such that Player I plays a = 0, Player II plays β = 1

2 , and if a = 0, Player
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III chooses t1 with probability 1
4 , and chooses t2 with probability 1

8 , while
Player IV chooses τ1 and τ2 with probability 1.

(e) Depict the expected payoff of Player I as a function of a and β, in the case where
a �= 0.

(f) Find the upper bound of the possible payoffs Player I can receive, in the case
where a = 0.

(g) What is Player I’s best reply when β < 1
2 ? What are the best replies of Players

III and IV, given Player I’s strategy? What is Player II’s best reply to these
strategies of Players I, III, and IV?

(h) What is Player I’s best reply when β > 1
2 ? What are the best replies of Players

III and IV, given Player I’s strategy? What is Player II’s best reply to these
strategies of Players I, III, and IV?

(i) Suppose that β = 1
2 . What is the optimal payoff that Player I can receive? Deduce

that under σ , Player I necessarily plays a = 0, and his payoff is then 0. What
does this say about the strategies of Players III and IV? What is Player II’s best
reply to these strategies of Players I, III, and IV?

(j) Conclude that this game has no subgame perfect equilibrium.
(k) Find a Nash equilibrium of this game.

This exercise does not contradict Theorem 7.37, which states that every finite
extensive-form game with perfect recall has a subgame perfect equilibrium in
behavior strategies, because this game is infinite: Player I has a continuum of pure
strategies.

7.17 Prove that for each player i, and every vector of perturbations εi , the set of strategies
�i(εi) (see Equation (7.11)) is compact and convex.

7.18 Prove that every mixed strategy σi ∈ �i can be approximated by a completely mixed
strategy; that is, for every δ > 0 there is a completely mixed strategy σ ′

i of player i

that satisfies maxsi∈Si
|σi(si) − σ ′

i (si)| < δ.

7.19 Prove that the set of perfect equilibria of a strategic-form game is a closed subset of
×i∈N �i .

7.20 Find all the perfect equilibria in each of the following games, in which Player I is
the row player and Player II is the column player.

B

T

ML

1, 0

1, 1

0, 1

1, 0

Game A

B

M

T

CL R

−2, 1

0, 0

1, 1

−2, 0

0, 0

0, 0

−2, −2

0, −2

−1, −2

Game B

7.21 Consider the following two-player strategic-form game:
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B

M

T

CL R

1, 2

1, 1

1, 2

0, 3

2, 2

3, 0

3, 0

2, 0

0, 3

(a) Prove that ([x1(T ), x2(M), (1 − x1 − x2)(B)], L) is a Nash equilibrium of this
game if and only if 1

3 ≤ x1 ≤ 2
3 , 0 ≤ x2 ≤ 2 − 3x1, and x1 + x2 ≤ 1.

(b) Prove that the equilibria identified in part (a) are all the Nash equilibria of the
game.

(c) Prove that if ([x1(T ), x2(M), (1 − x1 − x2)(B)], L) is a perfect equilibrium, then
1 − x1 − x2 > 0.

(d) Prove that for every x1 ∈ ( 1
3 ,

1
2 ) the strategy vector ([x1(T ), (1 − x1)(M)], L) is

a perfect equilibrium.
(e) Using Exercise 7.19 determine the set of perfect equilibria of this game.

7.22 Prove Theorem 7.28 (page 267): in a perfect equilibrium, every weakly dominated
strategy is chosen with probability 0.

7.23 Let σ1 and σ2 be optimal strategies (in pure or mixed strategies) of two players in
a two-player zero-sum game. Is (σ1, σ2) necessarily a perfect equilibrium? If so,
prove it. If not, provide a counterexample.

7.24 A pure strategy si of player i is said to be weakly dominated by a mixed strategy if
player i has a mixed strategy σi satisfying:

(a) For each strategy s−i ∈ S−i of the other players,

ui(si, s−i) ≤ Ui(σi, s−i). (7.49)

(b) There exists a strategy t−i ∈ S−i of the other players satisfying

ui(si, t−i) < Ui(σi, t−i). (7.50)

Prove that in a perfect equilibrium, every pure strategy that is weakly dominated
by a mixed strategy is chosen with probability 0.

7.25 (a) Prove that (T , L) is the only perfect equilibrium in pure strategies of the following
game.

Player I

Player II

B

T

ML

0, 4

6, 6

4, 4

0, 0

(b) Prove that in the following game, which is obtained from the game in part (a) by
adding a dominated pure strategy to each player, (B, M) is a perfect equilibrium.
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Player I

Player II

I

B

T

ML R

0, 4

6, 6

0, 0

4, 4

0, 0

0, 2

2, 0

2, 0

2, 2

7.26 In this exercise, we will show that in a three-player game a vector of strategies that
makes use solely of strategies that are not dominated is not necessarily a perfect
equilibrium. To do so, consider the following three-player game, where Player I
chooses a row (T or B), Player II chooses a column (L or R), and Player III chooses
a matrix (W or E).

B

T

RL
W

1, 1, 1

1, 1, 1

0, 0, 1

1, 0, 1

B

T

RL
E

0, 1, 0

1, 1, 0

1, 0, 0

0, 0, 0

(a) Find all the dominated strategies.
(b) Find all the Nash equilibria of this game.
(c) Find all the perfect equilibria of this game.

7.27 Prove that the following definition of perfect equilibrium is equivalent to
Definition 7.25 (page 266).

Definition 7.61 A strategy vector σ is called a perfect equilibrium if there
exists a sequence (σ k)k∈N of vectors of completely mixed strategies satisfying:

� For each player i ∈ N , the limit limk→∞ σk
i exists and equals σi .

� σ is a best reply to σ k
−i , for each k ∈ N, and each player i ∈ N .

7.28 Prove that, in the following game, (B, L) is a Nash equilibrium, but not a perfect
equilibrium.

Player I

Player II

B

C

T

ML R

1, 1

1, 1

1, 1

1, 1

0, 0

3, 3

1, 1

3, 3

0, 0

7.29 Show that in the game in Example 7.35 (page 270) the equilibrium (B, R) is an
extensive-form perfect equilibrium. Does this game have additional Nash equilibria?
If so, which of them is also an extensive-form perfect equilibrium? Justify your
answer.
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7.30 Prove that, in the game in Example 7.18 (page 263), the equilibrium (T , t, β) is an
extensive-form perfect equilibrium, but the equilibrium (B, t, τ ) is not an extensive-
form perfect equilibrium.

7.31 Prove directly the following theorem which is analogous to Corollary 7.26
(page 266) for extensive-form perfect equilibria: every extensive-form perfect equi-
librium is a Nash equilibrium in behavior strategies. To prove this, first prove the
analog result to Theorem 7.24 for a sequence of equilibria in perturbed games
(�(δk))k∈N.

7.32 Prove Theorem 7.30 (page 268): every finite extensive-form game has a strategic-
form perfect equilibrium.

7.33 Prove Theorem 7.31 (page 268): let δ be a perturbation vector, let σ ∗ be a Nash
equilibrium (in behavior strategies) in the game �(δ), and let �(x) be a subgame of
�. Then the strategy vector σ ∗, restricted to the subgame �(x), is a Nash equilibrium
(in behavior strategies) of �(x; δ).

7.34 Prove Theorem 7.34 (page 269): let (δk)k∈N be a sequence of perturbation vectors
satisfying limk→∞ M(δk) = 0. Then for every behavior strategy σi ∈ Bi of player i

there exists a sequence (σk
i )k∈N of behavior strategies satisfying the following two

properties:

� σk
i ∈ Bi(δk

i ) for each k ∈ N.
� limk→∞ σk

i exists and equals σi .

7.35 Prove Theorem 7.36 (page 271): every finite extensive-form game with perfect recall
has an extensive-form perfect equilibrium.

7.36 This exercise shows that an extensive-form perfect equilibrium is not necessarily a
strategic-form perfect equilibrium.

In the following game, find an extensive-form perfect equilibrium that is not a
strategic-form perfect equilibrium.

I II

I

(0, 0)

(1, 1)

( 1
2 , 1

2 )

(0, 0)

(1, 1)

T1

B1

t

b

t

b
T2

B2

Does the game have another Nash equilibrium? Does it have another subgame
perfect equilibrium?

7.37 This exercise proves the converse to what we showed in Exercise 7.36: a
strategic-form perfect equilibrium is not necessarily an extensive-form perfect
equilibrium.
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(a) Prove that the following game has a unique extensive-form perfect equilibrium.

I

I
II

(2, 0)

(0, 3)

(0, 2)

(1, 1)

B1

T1

b

t

B2

T2

(b) Show that this game has another equilibrium, which is a strategic-form perfect
equilibrium. To do so, construct the corresponding strategic-form game, and
show that it has more than one perfect equilibrium.

(c) Does this game have a strategic-form perfect equilibrium that is not a subgame
perfect equilibrium?

7.38 Show that the following game has a unique Nash equilibrium, and in particular
a unique extensive-form perfect equilibrium and a unique strategic-form perfect
equilibrium.

I

II

A

B

C

R

L

R

L

(1, 3)

(2, 1)

(3, 1)

(0, 0)

(1, 2)

7.39 Prove that in an extensive-form game in which every player has a single information
set, every strategic-form perfect equilibrium is equivalent to an extensive-form
perfect equilibrium, and that the converse also holds.

7.40 Consider the extensive-form game shown in Figure 7.21.

0 III

T

B

T

B

t

b

t

b

t

b1
3

2
3

x1

x2

x3

x4

x5

x6

x7

Figure 7.21 A game in extensive form



296 Equilibrium refinements

For each of the following pairs, explain why it is not a consistent assessment of the
game:

(a) ([ 1
2 (T ), 1

2 (B)], t, [ 1
2 (x2), 1

2 (x3)], [ 1
4 (x4), 1

4 (x5), 1
2 (x6)]).

(b) ([ 1
2 (T ), 1

2 (B)], b, [ 2
3 (x2), 1

3 (x3)], [ 1
3 (x4), 1

3 (x5), 1
3 (x6)]).

(c) (T , t, [ 2
3 (x2), 1

3 (x3)], [ 2
3 (x4), 1

3 (x6)]).

(d) (T , t, [ 2
3 (x2), 1

3 (x3)], [ 1
2 (x5), 1

2 (x6)]).

7.41 Prove Theorem 7.45 (page 277): if σ ∗ is a Nash equilibrium in behavior strategies,
then the pair (σ ∗, μσ ∗) is sequentially rational in every information set U satisfying
Pσ ∗ (U ) > 0.

7.42 Prove Theorem 7.46 (page 277): in a game with perfect information, a vector of
behavior strategies σ is a subgame perfect equilibrium if and only if the pair (σ, μ̂)
is sequentially rational at every information set of the game, where μ̂ is a complete
belief system such that μ̂U = [1(x)] for every information set U = {x}.

7.43 List all the consistent assessments of the extensive-form game in Exercise 7.40
(Figure 7.21).

7.44 List all the consistent assessments of the extensive-form game in Example 7.17
(page 261).

7.45 List all the consistent assessments of the following extensive-form game.

0

I

I

3
5

2
5

B2

T2

B1

T1

B1

T1

B2

T2

7.46 List all the consistent assessments, and all the sequentially rational assessments of
the following game.

I

II

III

T

B

t

b

τ

β

τ

β

(1, 1, 1)

(0, 0, 1)

(4, 4, 0)

(0, 0, 0)

(3, 3, 2)

7.47 Find all the sequential equilibria of the game in Example 7.35 (page 270).
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7.48 Consider the following extensive-form game.

0

I

I

II

1
2

1
2

T1

B1

T2

B2

a

b

c

a

b

c

(1, 0)

(1, 0)

(0, 2)

(0, 3)

(3, 0)

(0, 2)

(3, 0)

(0, 3)

(a) Prove that in this game at every Nash equilibrium Player I plays (T1, B2).
(b) List all the Nash equilibria of the game.
(c) Which of these Nash equilibria can be completed to a sequential equilibrium,

and for each such sequential equilibrium, what is the corresponding belief of
Player II at his information sets? Justify your answer.

7.49 Find all the sequential equilibria of the following game.

I

II

III

(1, 2, 1)
(0, 3, 2)

(2, 0, 0)
(3, 1, 0)

(0, 3, 2)

T

B
t

b

τ

β τ

β

7.50 The following example shows that the set of sequential equilibria is sensitive to the
way in which a player makes decisions: it makes a difference whether the player,
when called upon to choose an action from among a set of three possible actions,
eliminates the actions he will not choose one by one, or simultaneously.

Consider the two extensive-form games below. Show that (2, 2) is a sequential
equilibrium payoff in Game A, but not a sequential equilibrium payoff in Game B.

I

II

(2, 2)

(3, 3)

( 3
2 , 0)

(0, 0)

(1, 1)

T

M

R

t

b

t

b

Game A

I

I

II

(2, 2)
(3, 3)

( 3
2 , 0)

(0, 0)

(1, 1)

T

I

M

R

t

b

t

b

Game B
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7.51 In an extensive-form game with perfect recall, is every Nash equilibrium part of a
sequential equilibrium? That is, for every Nash equilibrium σ ∗ does there exist a
belief system μ that satisfies the property that (σ ∗, μ) is a sequential equilibrium?
If yes, prove it. If not, construct a counterexample.

7.52 Pre-trial settlement A contractor is being sued for damages by a municipality that
hired him to construct a bridge, because the bridge has collapsed. The contractor
knows whether or not the collapse of the bridge is due to negligence on his part,
or due to an act of nature beyond his control, but the municipality does not know
which of these two alternatives is the true one. Both sides know that if the matter is
settled by a court trial, the truth will eventually be uncovered.

The contractor can try to arrive at a pre-trial settlement with the municipality.
He has two alternatives: to make a low settlement offer, under which he pays
the municipality $300,000, or a high offer, under which he pays the municipality
$500,000. After the contractor has submitted a settlement offer, the municipality
must decide whether or not to accept it. Both parties know that if the suit goes to
trial, the contractor will pay lawyer fees of $600,000, and that, in addition to this
expense, if the court finds him guilty of negligence, he will be required to pay the
municipality $500,000 in damages. Assume that the municipality has no lawyer fees
to pay.

Answer the following questions:

(a) Describe this situation as an extensive-form game, where the root of the game
is a chance move that determines with equal probability whether the contractor
was negligent or not.

(b) Explain the significance of the above assumption, that a chance move determines
with equal probability whether the contractor was negligent or not.

(c) Find all the Nash equilibria of this game.
(d) Find all the sequential equilibria of this game.
(e) Repeat items (c) and (d) when the chance move selects whether the contractor

was negligent or not with probabilities p and 1 − p respectively.

7.53 Signaling game Caesar is at a cafe, trying to choose what to drink with breakfast:
beer or orange juice. Brutus, sitting at a nearby table, is pondering whether or not to
challenge Caesar to a duel after breakfast. Brutus does not know whether Caesar is
brave or cowardly, and he will only dare to challenge Caesar if Caesar is cowardly.
If he fights a cowardly opponent, he receives one unit of utility, and he receives the
same single unit of utility if he avoids fighting a brave opponent. In contrast, he
loses one unit of utility if he fights a brave opponent, and similarly loses one unit
of utility if he dishonors himself by failing to fight a cowardly opponent. Brutus
ascribes probability 0.9 to Caesar being brave, and probability 0.1 to Caesar being
a coward. Caesar has no interest in fighting Brutus: he loses 2 units of utility if he
fights Brutus, but loses nothing if there is no fight. Caesar knows whether he is brave
or cowardly. He can use the drink he orders for breakfast to signal his type, because
it is commonly known that brave types receive one unit of utility if they drink beer
(and receive nothing if they drink orange juice), while cowards receive one unit of
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utility if they drink orange juice (and receive nothing if they drink beer). Assume
that Caesar’s utility is additive; for example, he receives three units of utility if he is
brave, drinks beer, and avoids fighting Brutus. Answer the following questions:

(a) Describe this situation as an extensive-form game, where the root of the game
tree is a chance move that determines whether Caesar is brave (with probability
0.9) or cowardly (with probability 0.1).

(b) Find all the Nash equilibria of the game.
(c) Find all the sequential equilibria of the game.

7.54 Henry seeks a loan to form a new company, and submits a request for a loan to
Rockefeller. Rockefeller knows that p percent of people asking him for loans are
conscientious, who feel guilty if they default on their loans, and 1 − p percent of
people asking him for loans have no compunction about defaulting on their loans,
but he does not know whether or not Henry is a conscientious borrower. Rockefeller
is free to grant Henry a loan, or to refuse to give him a loan. If Henry receives
the loan, he can decide to repay the loan, or to default. If Rockefeller refuses to
loan money to Henry, both sides receive 10 units. If Rockefeller loans Henry the
money he needs to form a company, and Henry repays the loan, Rockefeller receives
40 units, while Henry receives 60 units. If Rockefeller loans Henry the money he
needs to form a company, but Henry defaults on the loan, Rockefeller loses x units,
and Henry’s payoff depends on his type: if he is a conscientious borrower, he receives
0, but if he has no compunction about defaulting, he gains 150 units. Answer the
following questions:

(a) Describe this situation as an extensive-form game, where the root of the game
tree is a chance move that determines Henry’s type.

(b) Find all the Nash equilibria, and the sequential equilibria, of this game, in the
following three cases:
(i) p = 1

3 , and x = 100.
(ii) p = 0.1, and x = 50.

(iii) p = 0, and x = 75.

7.55 The one-stage deviation principle for sequential equilibria Let (σ, μ) be a
consistent assessment in an extensive-form game � with perfect recall. Prove that
the assessment (σ, μ) is a sequential equilibrium if and only if for each player i ∈ N ,
and every information set Ui

ui(σ | Ui, μ) ≥ ui (̂σi, σ−i | Ui, μ), (7.51)

under every strategy σ̂i that differs from σi only at the information set Ui .
Guidance: To prove that if the condition holds then (σ, μ) is a sequential equilibrium,
consider a player i and any information set Ui of his, along with any strategy σ ′

i .
Show that ui(σ | Ui, μ) ≥ ui((σ ′

i , σ−i) | Ui, μ). The proof of this inequality can be
accomplished by induction on the number of information sets of player i over which
σ ′

i differs from σi .
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Chapter summary
This chapter introduces the concept of correlated equilibrium in strategic-form games.
The motivation for this concept is that players’ choices of pure strategies may be
correlated due to the fact that they use the same random events in deciding which pure
strategy to play. Consider an extended game that includes an observer who recommends
to each player a pure strategy that he should play. The vector of recommended
strategies is chosen by the observer according to a probability distribution over the set
of pure strategy vectors, which is commonly known among the players. This probability
distribution is called a correlated equilibrium if the strategy vector in which all players
follow the observer’s recommendations is a Nash equilibrium of the extended game.

The probability distribution over the set of strategy vectors induced by any Nash
equilibrium is a correlated equilibrium. The set of correlated equilibria is a polytope that
can be calculated as a solution of a set of linear equations.

In Chapters 4, 5, and 7 we considered strategic-form games and studied the concept of
equilibrium. One of the underlying assumptions of those chapters was that the choices
made by the players were independent. In practice, however, the choices of players may
well depend on factors outside the game, and therefore these choices may be correlated.
Players can even coordinate their actions among themselves.

A good example of such correlation is the invention of the traffic light: when a motorist
arrives at an intersection, he needs to decide whether to cross it, or alternatively to give
right of way to motorists approaching the intersection from different directions. If the
motorist were to use a mixed strategy in this situation, that would be tantamount to tossing
a coin and entering the intersection based on the outcome of the coin toss. If two motorists
approaching an intersection simultaneously use this mixed strategy, there is a positive
probability that both of them will try to cross the intersection at the same time – which
means that there is a positive probability that a traffic accident will ensue. In some states
in the United States, there is an equilibrium rule that requires motorists to stop before
entering an intersection, and to give right of way to whoever arrived at the intersection
earlier. The invention of the traffic light provided a different solution: the traffic light
informs each motorist which pure strategy to play, at any given time. The traffic light thus
correlates the pure strategies of the players. Note that the traffic light does not, strictly
speaking, choose a pure strategy for the motorist; it recommends a pure strategy. It is in the
interest of each motorist to follow that recommendation, even if we suppose there are no
traffic police watching, no cameras, and no possible court summons awaiting a motorist
who disregards the traffic light’s recommendation.

300
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The concept of correlated equilibrium, which is an equilibrium in a game where players’
strategies may be correlated, is the subject of this chapter. As we will show, correlation
can be beneficial to the players.

8.1 Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Example 8.1 Battle of the Sexes Consider the Battle of the Sexes game, as depicted in Figure 8.1 (see also

Example 4.21 on page 98). The game has three equilibria (verify that this is true):

1. (F,F ): the payoff is (2, 1).
2. (C,C): the payoff is (1, 2).
3. ([ 2

3 (F ), 1
3 (C)], [ 1

3 (F ), 2
3 (C)]): in this equilibrium, every player uses mixed strategies. The row

player plays [ 2
3 (F ), 1

3 (C)] – he chooses F with probability two-thirds, and T with probability
one-third. The column player plays [ 1

3 (F ), 2
3 (C)]. The expected payoff in this case is ( 2

3 , 2
3 ).

Player I

Player II

C

F

CF

0, 0

2, 1

1, 2

0, 0

Figure 8.1 The Battle of the Sexes

The first two equilibria are not symmetric; in each one, one of the players yields to the preference
of the other player. The third equilibrium, in contrast, is symmetric and gives the same payoff to
both players, but that payoff is less than 1, the lower payoff in each of the two pure equilibria.

The players can correlate their actions in the following way. They can toss a fair coin. If the coin
comes up heads, they play (F,F ), and if it comes up tails, they play (C,C). The expected payoff
is then (1 1

2 , 1 1
2 ). Since (F,F ) and (C,C) are equilibria, the process we have just described is an

equilibrium in an extended game, in which the players can toss a coin and choose their strategies
in accordance with the result of the coin toss: after the coin toss, neither player can profit by
unilaterally deviating from the strategy recommended by the result of the coin toss. �

The reasoning behind this example is as follows: if we enable the players to conduct a
joint (public) lottery, prior to playing the game, they can receive as an equilibrium payoff
every convex combination of the equilibrium payoffs of the original game. That is, if we
denote by V the set of equilibrium payoffs in the original game, every payoff in the convex
hull of V is an equilibrium payoff in the extended game in which the players can conduct
a joint lottery prior to playing the game.

The question naturally arises whether it is possible to create a correlation mechanism,
such that the set of equilibrium payoffs in the game that corresponds to this mechanism
includes payoffs that are not in the convex hull of V . The following examples show that
the answer to this question is affirmative.
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Example 8.2 Consider the three-player game depicted in Figure 8.2, in which Player I chooses the row

(T or B), Player II chooses the column (L or R), and Player III chooses the matrix (l, c, or r).

B

T

RL
l

1, 1, 1

0, 1, 3

1, 0, 0

0, 0, 0

B

T

RL
c

2, 2, 0

2, 2, 2

2, 2, 2

0, 0, 0

B

T

RL
r

1, 1, 1

0, 1, 0

1, 0, 3

0, 0, 0

Figure 8.2 The payoff matrix of Example 8.2

We will show that the only equilibrium payoff of this game is (1, 1, 1), but there exists a
correlation mechanism that induces an equilibrium payoff of (2, 2, 2). In other words, every player
gains by using the correlation mechanism. Since (1, 1, 1) is the only equilibrium payoff of the
original game, the vector (2, 2, 2) is clearly outside the convex hull of the original game’s set of
equilibrium payoffs.

Step 1: The only equilibrium payoff is (1, 1, 1).
We will show that every equilibrium is of the form (B,L, [α(l), (1 − α)(r)]), for some 0 ≤ α ≤ 1.
(Check that the payoff given by any strategy vector of this form is (1, 1, 1), and that each of these
strategy vectors is indeed an equilibrium.) To this end we eliminate strictly dominated strategies (see
definition 4.6 on page 86). We first establish that at every equilibrium there is a positive probability
that the pair of pure strategies chosen by Players II and III will not be (L, c). To see this, when
Player II plays L, strategy l strictly dominates strategy c for Player III, so it cannot be the case that
at equilibrium Player II plays L with probability 1 and Player III plays c with probability 1.

We next show that at every equilibrium, Player I plays strategy B. To see this, note that the
pure strategy B weakly dominates T (for Player I). In addition, if the probability of (L, c) is not 1,
strategy B yields a strictly higher payoff to Player I than strategy T . It follows that the pure strategy
T cannot be played at equilibrium.

Finally, we show that at every equilibrium Player II plays strategy L and Player III plays either l

or r . To see this, note that after eliminating strategy T , strategy r strictly dominates c for Player III,
hence Player III does not play c at equilibrium, and after eliminating strategy c, strategy L strictly
dominates R for Player II. We are left with only two entries in the matrix: (B,L, l) and (B,L, r),
both of which yield the same payoff, (1, 1, 1). Thus any convex combination of these two matrix
entries is an equilibrium, and there are no other equilibria.

Step 2: The construction of a correlation mechanism leading to the payoff (2, 2, 2).
Consider the following mechanism that the players can implement:

� Players I and II toss a fair coin, but do not reveal the result of the coin toss to Player III.
� Players I and II play either (T ,L) or (B,R), depending on the result of the coin toss.
� Player III chooses strategy c.

Under the implementation of this mechanism, the action vectors that are chosen (with equal
probability) are (T ,L, c) and (B,R, c), hence the payoff is (2, 2, 2).

Finally, we check that no player has a unilateral deviation that improves his payoff. Recall
that because the payoff function is multilinear, it suffices to check whether or not this is true for
a deviation to a pure strategy. If Player III deviates and chooses l or r , his expected payoff is
1
2 × 3 + 1

2 × 0 = 1 1
2 , and hence he cannot gain from deviating. Players I and II cannot profit from

deviating, because whatever the outcome of the coin toss is, the payoff to each of them is 2, the
maximal payoff in the game. �
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For the mechanism described in Figure 8.2 to be an equilibrium, it is necessary that
Players I and II know that Player III does not know the result of the coin toss. In other
words, while every payoff in the convex hull of the set of equilibrium payoffs can be
attained by a public lottery, to attain a payoff outside the convex hull of V it is necessary
to conduct a lottery that is not public, in which case different players receive different
partial information regarding the result of the lottery.

Example 8.3 The game of “Chicken” Consider the two-player non-zero-sum game depicted in Figure 8.3.

Player I

Player II

B

T

RL

0, 0

2, 7

7, 2

6, 6

Figure 8.3 The game of “Chicken”

The following background story usually accompanies this game. Two drivers are racing directly
towards each other down a single-lane road. The first to lose his nerve and swerve off the road
before the cars collide is the loser of the game, the “chicken.” In this case, the utility of the loser is
2, and the utility of the winner is 7. If neither player drives off the road, the cars collide, both players
are injured, and they each have a utility of 0. If they both swerve off the road simultaneously, the
utility of each of them is 6.

The game has three equilibria (check that this is true):

1. The players play (T ,R). The payoff is (2, 7).
2. The players play (B,L). The payoff is (7, 2).
3. The players play

([
2
3 (T ), 1

3 (B)
]
,
[

2
3 (L), 1

3 (R)
])

. The payoff is (4 2
3 , 4 2

3 ).

Consider the following mechanism, in which an outside observer gives each player a recom-
mendation regarding which action to take, but the observer does not reveal to either player what
recommendation the other player has received. The observer chooses between three action vectors,
(T ,L), (T ,R), and (B,L), with equal probability (see Figure 8.4).

L R

T 1
3

1
3

B 1
3 0

Figure 8.4 The distribution that the observer uses to choose the action vector

After conducting a lottery to choose one of the three action vectors, the observer provides Player
I with a recommendation to play the first coordinate of the vector that was chosen, and he provides
Player II with a recommendation to play the second coordinate of that vector. For example, if the
action vector (T ,L) has been chosen, the observer recommends T to Player I and L to Player
II. If Player I receives a recommendation to play T , the conditional probability that Player II has

received a recommendation to play L is
1
3

1
3 + 1

3
= 1

2 , which is also the conditional probability that

he has received a recommendation to play R. In contrast, if Player I receives a recommendation to
play B, he knows that Player II has received L as his recommended action.
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We now show that neither player can profit by a unilateral deviation from the recommendation
received from the observer. As we stated above, if the recommendation to Player I is to play T , Player
II has received a recommendation to play L with probability 1

2 , and a recommendation to play R with
probability 1

2 . Player I’s expected payoff if he follows the recommended strategy of T is therefore
1
2 × 6 + 1

2 × 2 = 4, while his expected payoff if he deviates and plays B is 1
2 × 7 + 1

2 × 0 = 3 1
2 .

In this case, Player I cannot profit by unilaterally deviating from the recommended strategy. If the
recommendation to Player I is to play B, then with certainty Player II has received a recommendation
to play L. The payoff to Player I in this case is then 7 if he plays the recommended strategy B,
and only 6 if he deviates to T . Again, in this case, Player I cannot profit by deviating from
the recommended strategy. By symmetry, Player II similarly cannot profit by not following his
recommended strategy. It follows that this mechanism induces an equilibrium in the extended game
with an outside observer. The expected equilibrium payoff is

1
3 (6, 6) + 1

3 (7, 2) + 1
3 (2, 7) = (5, 5), (8.1)

which lies outside the convex hull of the three equilibrium payoffs of the original game, (2, 7),
(7, 2), and (4 2

3 , 4 2
3 ). (A quick way to become convinced of this is to notice that the sum of the

payoffs in the vector (5, 5) is 10, while the sum of the payoffs in the three equilbrium payoffs is
either 9 or 9 1

3 , both of which are less than 10.) �

Examples 8.1 and 8.3 show that the way to attain a high payoffs for both players is
to avoid the “worst” payoff (0, 0). This cannot be accomplished if the players implement
independent mixed strategies; it requires correlating the players’ actions. We have made
the following assumptions regarding the extended game:

� The game includes an observer, who recommends strategies to the players.
� The observer chooses his recommendations probabilistically, based on a probability

distribution that is commonly known to the players.
� The recommendations are private, with each player knowing only the recommendation

addressed to him or her.
� The mechanism is common knowledge1 among the players: each player knows that

this mechanism is being used, each player knows that the other players know that this
mechanism is being used, each player knows that the other players know that the other
players know that this mechanism is being used, and so forth.

As we will see in the formal definition of correlated equilibria in the next section, the
fact that the recommendations are privately provided to each player does not exclude the
possibility that the recommendations may be public (in which case the recommendations
to each player are identical), or that a player can deduce which recommendations the
other players have received given the recommendation he has received, as we saw in
Example 8.3: in the correlated equilibrium of the game of “Chicken,” if Player I receives
the recommendation to play B, he can deduce that Player II’s recommended strategy is L.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 See Definition 4.9 (page 87). The formal definition of common knowledge is Definition 9.2 on page 321.
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8.2 Definition and properties of correlated equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The concept of correlated equilibrium formally captures the sort of correlation that we
saw in Example 8.3. In that example, we added an outside observer to the strategic game
G who chooses a pure strategy vector, and recommends that each player play his part
in this vector. We will now present the formal definition of this concept. To distinguish
between the strategies in the strategic-form game G and the strategies in the game that
includes the observer we will call pure strategies in G actions.

Let G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game, where N is the set of players,
Si is the set of actions of player i ∈ N , and ui : S → R is player i’s payoff function, where
S =×i∈N Si is the set of strategy vectors. For every probability distribution p over the
set S, define a game �∗(p) as follows:

� An outside observer probabilistically chooses an action vector from S, according to the
probability distribution p.

� To each player i ∈ N the observer reveals si , but not s−i . In other words, the observer
reveals to player i his coordinate in the action vector that was chosen; to be interpreted
as the recommended action to play.

� Each player i chooses an action s ′i ∈ Si (s ′i may be different from the action revealed by
the observer).

� The payoff of each player i is ui(s ′1, . . . , s
′
n).

This describes an extensive-form game with information sets.
A presentation of the extensive-form game corresponding to the game of “Chicken,”

with the addition of the correlation mechanism described above, is shown in Figure 8.5.
Near every chance move in the figure, we have noted the respective recommendation of
the observer for that choice. The actions T1 and T2 in the figure correspond to the action T

in the strategic-form game: T1 represents the possible action T when the observer’s recom-
mendation is T ; T2 represents the possible action T when the observer’s recommendation
is B. Actions B1 and B2 similarly correspond to action B, and so forth.

The information revealed by the observer to player i will be termed a recommendation:
the observer recommends that player i play the action si in the original game. The player
is not obligated to follow the recommendation he receives, and is free to play a different
action (or to use a mixed action, i.e., to conduct a lottery in order to choose between several
actions). A player’s pure strategy in an extensive-form game with information sets is a
function that maps each of that player’s information sets to a possible action. Since every
information set in the game �∗(p) is associated with a recommendation of the observer,
and the set of possible actions at each information set of player i is Si , we obtain the
following definition of a pure strategy in �∗(p).

Definition 8.4 A (pure) strategy of player i in the game �∗(p) is a function τi : Si → Si

mapping every recommendation si of the observer to an action τi(si) ∈ Si .

Suppose the observer has recommended that player i play the action si . This fact enables
player i to deduce the following regarding the recommendations that the other players
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0

I

I

II

II

(6, 6)

(2, 7)

(7, 2)

(0, 0)

(6, 6)

(2, 7)

(7, 2)

(0, 0)

(6, 6)

(2, 7)

(7, 2)

(0, 0)

(6, 6)

(2, 7)

(7, 2)

(0, 0)

1
3 (TL)

1
3 (BL)

1
3 (TR)

0(BR )

T1

B1

T2

B2

T1

B1

T2

B2

L 1

R1
L1

R1
L 1

R1
L1

R1

R 2

L2

R2

L 2
R 2

L2

R2

L 2

Figure 8.5 The game of “Chicken,” for the probability distribution p given in
Figure 8.1, in extensive form

have received: since the probability that player i receives recommendation si is∑
t−i∈S−i

p(si, t−i), (8.2)

the conditional probability that the observer has chosen the action vector s = (si, s−i) is

p(s−i | si) = p(si, s−i)∑
t−i∈S−i

p(si, t−i)
. (8.3)

The conditional probability in Equation (8.3) is defined when the denominator is posi-
tive, i.e., when the probability that player i receives recommendation si is positive. When∑

t−i∈S−i
p(si, t−i) = 0, the probability that player i receives recommendation si is zero,

and in this case the conditional probability p(s−i | si) is undefined.
One strategy available to player i is to follow the observer’s recommendation. For each

player i ∈ N , define a strategy τ ∗
i by:

τ ∗
i (si) = si, ∀si ∈ Si. (8.4)

Is the pure strategy vector τ ∗ = (τ ∗
1 , . . . , τ ∗

n ), in which each player i follows the observer’s
recommendation, an equilibrium? As might be expected, the answer to that question
depends on the probability distribution p, as specified in the following theorem.
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Theorem 8.5 The strategy vector τ ∗ is an equilibrium of the game �∗(p) if and only if∑
s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s ′i , s−i), ∀i, ∀si, s
′
i ∈ Si. (8.5)

Proof: The strategy vector τ ∗, in which each player follows the recommendation he
receives, is an equilibrium if and only if no player i can profit by deviating to a strategy
that differs from his recommendation. Equation (8.3) implies that the payoff that player i

has under the action vector τ ∗, when his recommended action is si , is∑
s−i∈S−i

(
p(si, s−i)∑

t−i∈S−i
p(si, t−i)

× ui(si, s−i)

)
. (8.6)

Suppose player i decides to deviate and play action s′i instead of si , while the other players
follow the recommendations (i.e., play τ ∗

−i). The distribution of the actions of the other
players is given by the conditional probability in Equation (8.3), and therefore player i’s
expected payoff if he deviates to action s ′i is

∑
s−i∈S−i

(
p(si, s−i)∑

t−i∈S−i
p(si, t−i)

× ui(s
′
i , s−i)

)
. (8.7)

This means that the strategy vector τ ∗ is an equilibrium if and only if for each player i ∈ N ,
for each action si ∈ Si for which

∑
s−i∈S−i

p(si, s−i) > 0, and for each action s ′i ∈ Si :

∑
s−i∈S−i

(
p(si, s−i)∑

t−i∈S−i
p(si, t−i)

× ui(si, s−i)

)

≥
∑

s−i∈S−i

(
p(si, s−i)∑

t−i∈S−i
p(si, t−i)

× ui(s
′
i , s−i)

)
. (8.8)

When the denominator of this equation is positive, we can reduce both sides of the
inequality to obtain Equation (8.5). When

∑
t−i∈S−i

p(si, t−i) = 0, Equation (8.5) holds
true with equality: since (p(si, t−i))t−i∈S−i

are nonnegative numbers, it is necessarily the
case that p(si, t−i) = 0 for each t−i ∈ S−i , and hence both sides of the inequality in
Equation (8.5) are identically zero. �

We can now define the concept of correlated equilibrium.

Definition 8.6 A probability distribution p over the set of action vectors S is called a
correlated equilibrium if the strategy vector τ ∗ is a Nash equilibrium of the game �∗(p).
In other words, for every player i ∈ N:∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i , s−i), ∀si, s

′
i ∈ Si. (8.9)

Every strategy vector σ induces a probability distribution pσ over the set of action
vectors S,

pσ (s1, . . . , sn) := σ1(s1) × σ2(s2) × · · · × σn(sn). (8.10)
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Under a Nash equilibrium σ ∗ the actions that each player chooses with positive probability
are only those that give him maximal payoffs given that the other players implement the
strategy vector σ ∗

−i ,

ui(si, σ
∗
−i) ≥ ui(s

′
i , σ

∗
−i), ∀si ∈ supp(σ ∗

i ), ∀s ′i ∈ Si. (8.11)

This leads to the following theorem (whose proof is left to the reader in Exercise 8.2).

Theorem 8.7 For every Nash equilibrium σ ∗, the probability distribution pσ ∗ is a corre-
lated equilibrium.

As Theorem 8.7 indicates, correlated equilibrium is in a sense an extension of the Nash
equilibrium concept. When we relate to a Nash equilibrium σ ∗ as a correlated equilibrium
we mean the probability distribution pσ ∗ given by Equation (8.10). For example, the
convex hull of the set of Nash equilibria is the set

conv{pσ ∗ : σ ∗ is a Nash equilibrium} ⊆ 
(S). (8.12)

Since every finite normal-form game has a Nash equilibrium, we deduce the following
corollary.

Corollary 8.8 Every finite strategic-form game has a correlated equilibrium.

Theorem 8.9 The set of correlated equilibria of a finite game is convex and compact.

Proof: Recall that a half-space in Rm is defined by a vector α ∈ Rm and a real number
β ∈ R, by the following equation:

H+(α, β) :=
{

x ∈ Rm :
m∑

i=1

αixi ≥ β

}
. (8.13)

A half-space is a convex and closed set. Equation (8.9) implies that the set of correlated
equilibria of a game is given by the intersection of a finite number of half-spaces. Since
an intersection of convex and closed spaces is convex and closed, the set of correlated
equilibria is convex and closed. Since the set of correlated equilibria is a subset of the set
of probability distributions S, it is a bounded set, and so we conclude that it is a convex
and compact set. �

Remark 8.10 A polytope in Rd is the convex hull of a finite number of points in Rd .
The minimal set of points satisfying the condition that the polytope is its convex hull is
called the set of extreme points of the polytope. (For the definition of the extreme points
of a general set see Definition 23.2 on page 917.) Every bounded set defined by the
intersection of a finite number of half-spaces is a polytope, from which it follows that the
set of correlated equilibria of a game is a polytope. Since there exist efficient algorithms
for finding the extreme points of a polytope (such as the simplex algorithm), it is relatively



309 8.2 Definition and properties of correlated equilibrium

easy to compute correlated equilibria, in contrast to computing Nash equilibria, which is
computationally hard. (See, for example, Gilboa and Zemel [1989].) �

Example 8.1 (Continued) Consider again the Battle of the Sexes, which is the two-player game shown in

Figure 8.6.

Player I

Player II

C

F

CF

2, 1

0, 0

0, 0

1, 2

Figure 8.6 Battle of the Sexes

We will compute the correlated equilibria of this game. Denote a probability distribution over
the action vectors by p = [α(F,F ), β(F,C), γ (C,F ), δ(C,C)]. Figure 8.7 depicts this distribution
graphically.

Player I

Player II

C

F

CF

γ

α

δ

β

Figure 8.7 Graphic representation of the probability distribution p

For a probability distribution p = [α(F,F ), β(F,C), γ (C,F ), δ(C,C)] to be a correlated equi-
librium, the following inequalities must be satisfied (see Equation (8.9)):

αu1(F,F ) + βu1(F,C) ≥ αu1(C,F ) + βu1(C,C), (8.14)

γ u1(C,F ) + δu1(C,C) ≥ γ u1(F,F ) + δu1(F,C), (8.15)

αu2(F,F ) + γ u2(C,F ) ≥ αu2(F,C) + γ u2(C,C), (8.16)

βu2(F,C) + δu2(C,C) ≥ βu2(F,F ) + δu2(C,F ), (8.17)

α + β + γ + δ = 1, (8.18)

α, β, γ, δ ≥ 0. (8.19)

Entering the values of the game matrix into these equations, we get

2α ≥ β, δ ≥ 2γ, 2δ ≥ β, α ≥ 2γ. (8.20)

In other words, both α and δ must be greater than 2γ and β
2 . The set of possible payoffs of the

game (the triangle formed by the coordinates (0, 0), (1, 2), and (2, 1)) is shown in Figure 8.8, with
the game’s three Nash equilibrium payoffs ((1, 2), (2, 1), ( 2

3 , 2
3 )) along with the set of correlated

equilibrium payoffs (the dark triangle formed by (1, 2), (2, 1), and ( 2
3 , 2

3 )). In this case, the set of
correlated equilibrium payoffs is the convex hull of the Nash equilibrium payoffs.
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0

2
3

1

2

0 2
3

21

Figure 8.8 The set of possible payoffs, the set of correlated equilibrium payoffs, and the Nash
equilibrium payoffs of the game in Figure 8.1 �

Example 8.3 (Continued) The payoff matrix of the game in this example is shown in Figure 8.9.

Player I

Player II

B

T

RL

0, 0

2, 7

7, 2

6, 6

Figure 8.9 The game of “Chicken”

A probability distribution over the set of action vectors is again denoted by p =
[α(T ,L), β(T ,R), γ (B,L), δ(B,R)] (see Figure 8.10).

Player I

Player II

B

T

RL

γ

α

δ

β

Figure 8.10 Graphic depiction of the probability distribution p

For the probability distribution p to be a correlated equilibrium (see Equation (8.9)), the following
inequalities must be satisfied:

6α + 2β ≥ 7α, 7γ ≥ 6γ + 2δ, 6α + 2γ ≥ 7α, 7β ≥ 6β + 2δ. (8.21)

The equations imply that both β and γ must be greater than 2δ and α
2 . The set of possible payoffs

of the game (the rhombus formed by the coordinates (0, 0), (7, 2), (2, 7), and (6, 6)) is shown
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in Figure 8.11, along with the game’s three Nash equilibrium payoffs ((7, 2), (2, 7), and (4 2
3 , 4 2

3 )),
with their convex hull (the dark triangle) and the set of correlated equilibrium payoffs (the dark-grey
rhombus formed by (3 2

5 , 3 2
5 ), (7, 2), (2, 7), and (5 1

4 , 5 1
4 )).

0

3 2
5

4 2
3

5 1
4

2

6

7

0 3 2
5 4 2

3 5 1
4

62 7

Figure 8.11 The set of possible payoffs (light rhombus), the Nash equilibrium payoffs, the convex
hull of the Nash equilibrium payoffs (dark triangle), and the correlated equilibrium payoffs (dark
rhombus) of the game in Figure 8.3 �

Example 8.11 Consider the two-player game depicted in Figure 8.12, which resembles the Battle of the

Sexes, but is not symmetric between the players. The game has three equilibria: (T ,L), (B,R), and
[ 3

5 (T ), 2
5 (B)], [ 2

3 (L), 1
3 (R)].

Player I

Player II

B

T

RL

0, 0

1, 2

2, 3

0, 0

Figure 8.12 The payoff matrix of the game in Example 8.11

We will compute the correlated equilibria of the game. For a probability distribution over the
set of action vectors p = [α(T ,L), β(T ,R), γ (B,L), δ(B,R)] to be a correlated equilibrium, the
following inequalities must be satisfied (see Equation (8.9)):

α ≥ 2β, (8.22)

2δ ≥ γ, (8.23)

2α ≥ 3γ, (8.24)

3δ ≥ 2β, (8.25)

α + β + γ + δ = 1, (8.26)

α, β, γ, δ ≥ 0. (8.27)
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Note that the constraint α + β + γ + δ = 1 implies that:

2δ ≥ γ ⇐⇒ α + β + 3
2γ ≤ 1, (8.28)

3δ ≥ 2β ⇐⇒ α + 5
3β + γ ≤ 1. (8.29)

Figure 8.13 shows the sets defined by each of the four inequalities in Equations (8.22)–(8.25),
along with the constraints that α, β, and γ be nonnegative, and that δ = 1 − α − β − γ ≥ 0. The
intersection of these four sets is the set of correlated equilibria. To find this set, we will seek
out its extreme points. The set of all the correlated equilibria is the subset of R3 defined by the
intersection of eight half-spaces (Equations (8.22)–(8.25), along with the constraints that α ≥ 0,
β ≥ 0, γ ≥ 0, and α + β + γ ≤ 1). Note that in this case, if α + 5

3β + γ ≤ 1 then α + β + γ ≤ 1,
and hence there is no need explicitly to require that α + β + γ ≤ 1. In addition, if we look at the
hyperplanes defining these half-spaces, we notice that three of them intersect at one point (there
are

(7
3

) = 35 such intersection points, some of them identical to each other). Each such intersection
point satisfying all the constraints is an extreme point.

β

γ

α
α ≥ 2β

(1, 0, 0)

(0, 1
2 , 0)

(0, 1
2 , 1)

(1, 0, 1)

(0, 0, 1)

β

γ

α
2α ≥ 3γ

(1, 0, 0)

(0, 1, 0)

(1, 1, 0)

(0, 0, 0)
(1, 0, 2

3 )

(1, 1, 2
3 )

β

γ

α
α + β + 3

2 γ ≤ 1

(1, 0, 0)

(0, 0, 2
3 )

(0, 1, 0)
β

γ

α
α + 5

3 β + γ ≤ 1

(1, 0, 0)

(0, 0, 1)

(0, 3
5 , 0)

Figure 8.13 The sets defined by the inequalities in Equations (8.22)–(8.25)
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A simple, yet tedious, calculation reveals that the set of all the correlated equilibria has five
extreme points (recall that δ = 1 − α − β − γ ):

(α, β, γ ) = (0, 0, 0), (8.30)

(α, β, γ ) = (1, 0, 0), (8.31)

(α, β, γ ) = (
6
11 , 3

11 , 0
)
, (8.32)

(α, β, γ ) = (
1
2 , 0, 1

3

)
, (8.33)

(α, β, γ ) = (
2
5 , 1

5 , 4
15

)
. (8.34)

It follows that the set of all the correlated equilibria is the smallest convex set containing these five
points (see Figure 8.14). The three equilibrium points are: (T ,L) corresponding to the point (1, 0, 0),
(B,R) corresponding to the point (0, 0, 0), and ([ 3

5 (T ), 2
5 (B)], [ 2

3 (L), 1
3 (R)]) corresponding to the

point ( 2
5 , 1

5 , 4
15 ). In general, the Nash equilibria need not correspond to extreme points of the set of

correlated equilibria.

(1, 0, 0)

( 1
2 , 0, 1

3 )

( 6
11 , 3

11 , 0)

(0, 0, 0)( 2
5 , 1

5 , 4
15 )

β

γ

α

Figure 8.14 The set of correlated equilibria of the game in Example 8.11 �

8.3 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

This chapter is based on Aumann [1974], a major work in which the concept of correlated
equilibrium was developed. The game in Exercise 8.21 was suggested by Yannick Viossat,
in response to a question posed by Ehud Lehrer.

8.4 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8.1 What is the set of possible payoffs of the following game (the Battle of the Sexes
game; see Example 8.1 on page 301) if:

(a) the players are permitted to decide, and commit to, the mixed strategies that each
player will use;
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(b) the players are permitted to make use of a public lottery that chooses a strategy
vector and instructs each player which pure strategy to choose.

Player I

Player II

C

F

CF

2, 1

0, 0

0, 0

1, 2

8.2 Prove Theorem 8.7 on page 308: for every Nash equilibrium σ ∗ in a strategic-form
game, the probability distribution pσ ∗ that σ ∗ induces on the set of action vectors S

is a correlated equilibrium.

8.3 The set of all probability distributions pσ over the set of action vectors S that are
induced by Nash equilibria σ is

W := {pσ : σ is a Nash equilibrium} ⊆ 
(S). (8.35)

Prove that any point in the convex hull of W is a correlated equilibrium.

8.4 Prove that in every correlated equilibrium, the payoff to each player i is at least his
maxmin value in mixed strategies.

vi = max
σi∈�i

min
σ−i∈�−i

Ui(σi, σ−i). (8.36)

8.5 Given a strategic-form game G = (N, (Si)i∈N, (ui)i∈N ), write out a linear program
whose set of solution vectors is the set of correlated equilibria of the game.

8.6 Let G = (N, (Si)i∈N, (ui)i∈N ) and Ĝ = (N, (Si)i∈N, (̂ui)i∈N ) be strategically equiv-
alent games (see Definition 5.34 on page 174). What is the relation between the
set of correlated equilibria of G and the set of correlated equilibria of Ĝ? What is
the relation between the set of correlated equilibrium payoffs of G and the set of
correlated equilibrium payoffs of Ĝ? Justify your answers.

8.7 Let G = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form, and let Ĝ be the game
derived from G by a process of iterated elimination of strictly dominated strategies.
What is the relation between the set of correlated equilibria of G and the set of
correlated equilibria of Ĝ? Justify your answer.

8.8 Find the correlated equilibrium that maximizes the sum of the players’ payoffs in
Example 8.1 (page 301), and in Example 8.3 (page 303).

8.9 Find a correlated equilibrium whose expected payoff is ( 40
9 , 36

9 ) in the game of
“Chicken” (Example 8.3 on page 303).
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8.10 In the following game, compute all the Nash equilibria, and find a correlated equi-
librium that is not in the convex hull of the Nash equilibria.

Player I

Player II

B

M

T

CL R

2, 4

4, 2

0, 0

4, 2

0, 0

2, 4

0, 0

2, 4

4, 2

8.11 Repeat Exercise 8.10 for the following game.

Player I

Player II

B

T

RL

1, 1

4, 9

9, 4

8, 8

8.12 In this exercise, we present an extension of the correlated equilibrium concept. Let
G = (N, (Si)i∈N, (ui)i∈N ) be a strategic-form game, and (Mi)i∈N be finite sets of
messages. For each probability distribution q over the product set M := ×i∈N Mi

define a game �∗
M (q) as follows:

� An outside observer chooses a vector of messages m = (mi)i∈N ∈ M probabilis-
tically, using the probability distribution q.

� The observer reveals mi to player i ∈ N , but not m−i . In other words, the
observer reveals to player i his coordinate in the vector of messages that has been
chosen.

� Each player i chooses an action si ∈ Si .
� Each player i has payoff ui(s1, . . . , sn).

This is a generalization of the game �∗(p), which is �∗
M (q) for the case Mi = Si for

every player i and q = p. Answer the following questions:

(a) What is the set of behavior strategies of player i in the game �∗
M (q)?

(b) Show that every vector of behavior strategies induces a probability distribution
over the set of action vectors S =×i∈N Si .

(c) Prove that at every Nash equilibrium of �∗
M (q), the probability distribution

induced on the set of pure strategy vectors S is a correlated equilibrium.

8.13 Show that there exists a unique correlated equilibrium in the following game, in
which a, b, c, d ∈ (− 1

4 ,
1
4 ). Find this correlated equilibrium. What is the limit of the

correlated equilibrium payoff as a, b, c, and d approach 0?
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Player I

Player II

B

T

RL

1 + a, b

c, 1 + d

0, 1

1, 0

8.14 Let si be a strictly dominated action of player i. Is there a correlated equilibrium
under which si is chosen with positive probability, i.e.,

∑
s−i∈S−i

p(si, s−i) > 0?
Justify your answer.

8.15 Prove that in a two-player zero-sum game, every correlated equilibrium payoff to
Player I is the value of the game in mixed strategies.

8.16 In this and the following exercise, we will show that the result of Exercise 8.15
partially obtains for equilibrium strategies. Prove that if p is a correlated equilibrium
of a two-player zero-sum game, then for every recommendation sI that Player I
receives with positive probability, the conditional probability (p(sII | sI))sII∈SII is an
optimal strategy for Player II. Deduce from this that the marginal distribution of p

over the set of actions of each of the players is an optimal strategy for that player.

8.17 In the following two-player zero-sum game, find the value of the game, the optimal
strategies of the two players, and the set of correlated equilibria. Does every corre-
lated equilibrium lie in the convex hull of the product distributions that correspond
to pairs of optimal strategies?

Player I

Player II

B

M

T

CL R

1

1

0

1

1

0

0

0

1

8.18 Prove that the set-valued function that assigns to every game its set of correlated
equilibria is an upper semi-continuous mapping.2 In other words, let (Gk)k∈N be
a sequence of games (Gk) = (N, (Si)i∈N, (uk

i )k∈N), all of which share the same set
of players N and the same sets of actions (Si)i∈N . Further suppose that for each
player i, the sequence of payoff functions (uk

i )k∈N converges to a limit ui ,

lim
k→∞

uk
i (s) = ui(s), ∀s ∈ S. (8.37)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 A set-valued function F : X → Y between two topological spaces is called upper semi-continuous if its graph
Graph(F ) = {(x, y) : y ∈ F (x)} is a closed set in the product space X × Y .
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Suppose that for each k ∈ N the probability distribution pk is a correlated equilibrium
of Gk , and the sequence (pk)k∈N converges to a limit p,

lim
k→∞

pk(s) = p(s), ∀s ∈ S. (8.38)

Prove that p is a correlated equilibrium of the game (N, (Si)i∈N, (ui)i∈N ).

8.19 A Nash equilibrium σ ∗ = (σ ∗
i )i∈N is called a strict equilibrium if for every player i

and every action si ∈ Si satisfying σ ∗
i (si) = 0,

ui(σ
∗) > ui(si, σ

∗
−i). (8.39)

In words, if player i deviates by playing an action that is not in the support of σ ∗
i

then he loses. A correlated equilibrium p is called a strict correlated equilibrium if
the strategy vector τ ∗ is a strict equilibrium in the game �∗(p).

Answer the following questions:

(a) Does every game in strategic form have a strict correlated equilibrium? If your
answer is yes, provide a proof. If your answer is no, provide a counterexample.

(b) Find all the strict correlated equilibria of the following two-player game.

Player I

Player II

B

T

RL

0, 0

3, 4

5, 1

4, 2

8.20 Harry (Player I) is to choose between the payoff vector (2, 1) and playing the
following game, as a row player, against Harriet (Player II), the column player:

Player I

Player II

B

T

RL

0, 0

1, 3

4, 2

0, 0

(a) What are Harry’s pure strategies in this game? What are Harriet’s?
(b) What are the Nash equilibria of the game?
(c) What is the set of correlated equilibria of the game?

8.21 Let x1, x2, . . . , xn and y1, y2, . . . , yn be positive numbers. Consider the two-player
strategic game with the following payoff matrix.
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Player I

Player II

x1 , 0

...

0, 0

0, 0

x1 , y1

x2 , 0

...

0, 0

x2 , y2

0, 0

x3 , 0

...

x3 , y3

0, 0

0, 0

...

...

...

...

...

xn , yn

...

0, y3

0, y2

0, y1

(a) Find the set of Nash equilibria of this game.
(b) Prove that the set of correlated equilibria of this game is the convex hull of the

set of Nash equilibria.

8.22 Let A and B be two sets in R2 satisfying:

� A ⊆ B;
� A is a union of a finite number of rectangles;
� B is the convex hull of a finite number of points.

Prove that there is a two-player strategic-form game satisfying the property that its
set of Nash equilibrium payoffs is A, and its set of correlated equilibrium payoffs
is B.
Hint: Make use of the game in Exercise 8.21, along with Exercise 5.44 in
Chapter 5.

8.23 Let x, y, a, b be positive numbers. Consider the two-player strategic-form game
with the following payoff matrix, in which Player I chooses a row, and Player II
chooses a column.

x, 0

0, 0

0, 0

x + 1, y − 1

x − 1, y + 1

x, 0

0, 0

x + 1,  y − 1

x − 1, y + 1

0, 0

x, 0

x + 1,  y − 1

x − 1,  y + 1

0, 0

0, 0

x, 0

x − 1, y + 1

0, 0

0, 0

x + 1,  y − 1

a, b

0, y

0, y

0, y

0, y

(a) Find the set of Nash equilibria of this game.
(b) Find the set of correlated equilibria of this game.



9 Games with incomplete information
and common priors

Chapter summary
In this chapter we study situations in which players do not have complete information
on the environment they face. Due to the interactive nature of the game, modeling such
situations involves not only the knowledge and beliefs of the players, but also the whole
hierarchy of knowledge of each player, that is, knowledge of the knowledge of the
other players, knowledge of the knowledge of the other players of the knowledge of
other players, and so on. When the players have beliefs (i.e. probability distributions) on
the unknown parameters that define the game, we similarly run into the need to
consider infinite hierarchies of beliefs. The challenge of the theory was to incorporate
these infinite hierarchies of knowledge and beliefs in a workable model.

We start by presenting the Aumann model of incomplete information, which models
the knowledge of the players regarding the payoff-relevant parameters in the situation
that they face. We define the knowledge operator, the concept of common knowledge,
and characterize the collection of events that are common knowledge among the
players.

We then add to the model the notion of belief and prove Aumann’s agreement
theorem: it cannot be common knowledge among the players that they disagree about
the probability of a certain event.

An equivalent model to the Aumann model of incomplete information is a Harsanyi
game with incomplete information. After presenting the game, we define two notions
of equilibrium: the Nash equilibrium corresponding to the ex ante stage, before players
receive information on the game they face, and the Bayesian equilibrium corresponding
to the interim stage, after the players have received information. We prove that in a
Harsanyi game these two concepts are equivalent.

Finally, using games with incomplete information, we present Harsanyi’s
interpretation of mixed strategies.

As we have seen, a very large number of real-life situations can be modeled and analyzed
using extensive-form and strategic-form games. Yet, as Example 9.1 shows, there are
situations that cannot be modeled using those tools alone.

319
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Example 9.1 Consider the Matching Pennies game, which is depicted in Figure 9.1 in both extensive form

and strategic form.

R
I II

(1, –1)

1, –1

1, –1–1, 1

–1, 1

(1, –1)
Player I

Player II
(–1, 1)

(–1, 1)

T

B

L

L

T

B

R

L

R

R
Figure 9.1 The game of Matching Pennies, in extensive form and strategic form

Suppose that Player I knows that he is playing Matching Pennies, but believes that Player II
does not know that the pure strategy R is available to her. In other words, Player I believes that
Player II is convinced that she has only one pure strategy, L. Suppose further that Player II does
in fact know that she (Player II) is playing Matching Pennies, with both pure strategies available.
How can we model this game? Neither the extensive-form nor the strategic-form descriptions of
the game enable us to model such a state of players’ knowledge and beliefs. If we try to analyze
this situation using only the depictions of the game appearing in Figure 9.1, we will not be able to
predict how the players will play, or recommend an optimal course of action.

For example, as we showed on page 52, the optimal strategy of Player I playing Matching
Pennies is the mixed strategy [ 1

2 (T ), 1
2 (B)]. But in the situation we have just described, Player I

believes that Player II will play L, so that his best reply is the pure strategy T .
Note that Player I’s optimal strategy depends only on how he perceives the game: what he knows

about the game and what he believes Player II knows about the game. The way that Player II really
perceives the game (which is not necessarily known to Player I) has no effect on the strategy chosen
by Player I.

Consider next a slightly more complicated situation, in which Player I knows that he is playing
Matching Pennies, he believes that Player II knows that she is playing Matching Pennies, and he
believes that Player II believes that Player I does not know that the pure strategy B is available to
him. Then Player I will believe that Player II believes that Player I will play strategy T , and he will
therefore conclude that Player II will select strategy R, and Player I’s best strategy will therefore
be B.

A similar situation obtains if there is incomplete information regarding some of the payoffs. For
example, suppose that Player I knows that his payoff under the strategy profile (T ,L) is 5 rather
than 1, but believes that Player II does not know this, and that she thinks the payoff is 1. How
should Player I play in this situation? Or consider an even more complicated situation, in which
both Player I and Player II know that Player I’s payoff under (T ,L) is 5, but Player II believes
Player I does not know that she (Player II) knows this; Player II believes Player I believes Player II
thinks the payoff is 1. �

Situations like those described in Example 9.1, in which players do not necessarily
know which game is being played, or are uncertain about whether the other players know
which game is being played, or are uncertain whether the other players know whether
the other players know which game is being played, and so on, are called situations of
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“incomplete information.” In this chapter we study such situations, and see how they can
be modeled and analyzed as games.

Notice that neither of the situations described in Example 9.1 is well defined, as we have
not precisely defined what the players know. For example, in the second case we did not
specify what Player I knows about what Player II knows about what Player I knows about
what Player II knows, and we did not touch upon what Player II knows. Consideration of
hierarchies of levels of knowledge leads to the concept of common knowledge, which we
touched upon in Section 4.5 (page 87). An informal definition of common knowledge is:

Definition 9.2 A fact F is common knowledge among the players of a game if all the
players know F , all the players know that all the players know F , all the players know
that all the players know that all the players know F , and so on (for every finite number
of levels).1

Definition 9.2 is incomplete, because we have not yet defined what we mean by a
“fact,” nor have we defined the significance of the expression “knowing a fact.” These
concepts will be modeled formally later in this chapter, but for now we will continue with
an informal exposition.

So far we have seen that in situations involving several players, incomplete knowledge
of the game that is being played leads us to consider infinite hierarchies of knowledge.
In decision-making situations with incomplete information, describing the information
that decision makers have usually cannot be captured by labeling a given fact as “known”
or “unknown.” Decision makers often have assessments or beliefs about the truthfulness
of various facts. For example, when a person takes out a variable-rate loan he never has
precise knowledge of the future fluctuations of the interest rate (which can significantly
affect the total amount of loan repayment), but he may have certain beliefs about future
rates, such as “I assign probability 0.7 to the event that there will be lower interest rates
over the term of the loan.” To take another example, a company bidding for oil exploration
rights in a certain geographical location has beliefs about the amount of oil likely to be
found there and the depth of drilling required (which affects costs and therefore expected
profits). A trial jury passing judgment on a defendant expresses certain collective beliefs
about the question: is the defendant guilty as charged? For our purposes in this chapter,
the source of such probabilistic assessments is of no importance. The assessments may be
based on “objective” measurements such as geological surveys (as in the oil exploration
example), on impressions (as in the case of a jury deliberating the judgment it will render in
a trial), or on personal hunches and information published in the media (as in the example
of the variable-rate loan). Thus, probability assessments may be objective or subjective.2

In our models, a decision maker’s beliefs will be expressed by a probability distribution
function over the possible values of parameters unknown to him.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 A simple example of a fact that is common knowledge is a public event: when a teacher is standing before a class,
that fact is common knowledge among the students, because every student knows that every student knows . . . that
the teacher is standing before the class.

2 A formal model for deriving an individual’s subjective probability from his preferences was first put forward by
Savage [1954], and later by Anscombe and Aumann [1963] (see also Section 2.8 on page 26).
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The most widely accepted statistical approach for dealing with decision problems in
situations of incomplete information is the Bayesian approach.3 In the Bayesian approach,
every decision maker has a probability distribution over parameters that are unknown to
him, and he chooses his actions based on his beliefs as expressed by that distribution.
When several decision makers (or players) interact, knowing the probability distribution
(beliefs) of each individual decision maker is insufficient: we also need to know what each
one’s beliefs are about the beliefs of the other decision makers, what they believe about
his beliefs about the others’ beliefs, and so on. This point is illustrated by the following
example.

Example 9.1 (Continued) Returning to the Matching Pennies example, suppose that Player I attributes

probability p1 to the event: “Player II knows that R is a possible action.” The action that Player I
will choose clearly depends on p1, because the entire situation hinges on the value of p1: if p1 = 1,
Player I believes that Player II knows that R is an action available to her, and if p1 = 0, he believes
that Player II does not know that R is possible at all. If 0 < p1 < 1, Player I believes that it is
possible that Player II knows that R is an available strategy. But the action chosen by Player I
also depends on his beliefs about the beliefs of Player II: because Player I’s action depends on
p1, it follows that Player II’s action depends on her beliefs about p1, namely, on her beliefs about
Player I’s beliefs. By the same reasoning, Player I’s action depends on his beliefs about Player II’s
beliefs about his own beliefs, p1. As in the case of hierarchy of knowledge, we see that determining
the best course of action of a Player requires considering an infinite hierarchy of beliefs. �

Adding beliefs to our model is a natural step, but it leads us to an infinite hierarchy
of beliefs. The concepts of knowledge and of beliefs are closely intertwined in games
of incomplete information. For didactic reasons, however, we will treat the two notions
separately, considering first hierarchies of knowledge and then hierarchies of beliefs.

9.1 The Aumann model of incomplete information and the
concept of knowledge
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we will provide a formal definition of the concept of “knowledge,” and then
construct hierarchies of knowledge: what each player knows about what the other players
know. We will start with an example to illustrate the basic elements of the model.

Example 9.3 Assume that racing cars are produced in three possible colors: gold, red, and purple. Color-blind

individuals cannot distinguish between red and gold. Everyone knows that John is color-blind, but
no one except Paul knows whether or not Paul is color-blind too. John and Paul are standing side
by side viewing a photograph of the racing car that has just won first prize in the Grand Prix, and
asking themselves what color it is. The parameter that is of interest in this example is the color of

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 The Bayesian approach is named after Thomas Bayes, 1702–1761, a British clergyman and mathematician who
formulated a special case of the rule now known as Bayes’ rule.
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the car, which will later be called the state of nature, and we wish to describe the knowledge that
the players possess regarding this parameter.

If the color of the car is purple, then both color-blind and non-color-blind individuals know that
fact, so that both John and Paul know that the car is purple, and each of them knows that the other
knows that the car is purple. If, however, the car is red or gold, then John knows that it is either red
or gold. As he does not know whether or not Paul is color-blind, he does not know whether Paul
knows the exact color of the car. Because Paul knows that John is color-blind, if the car is red or
gold he knows that John does not know what the precise color is, and John knows that Paul knows
this.

We therefore need to consider six distinct possibilities (three possibilities per car color times two
possibilities regarding whether or not Paul is color-blind):

� The car is purple and Paul is not color-blind. John and Paul both know that the car is purple, they
each know that the other knows that the car is purple, and so on.

� The car is purple and Paul is color-blind. Here, too, John and Paul both know that the car is
purple, they each know that the other knows that the car is purple, and so on.

� The car is red and Paul is not color-blind. Paul knows the car is red; John knows that the car is
red or gold; John does not know whether or not Paul knows the color of the car.

� The car is gold and Paul is not color-blind. Paul knows the car is gold; John knows that the car is
red or gold; John does not know whether or not Paul knows the color of the car.

� The car is red and Paul is color-blind. Paul and John know that the car is red or gold; John does
not know whether or not Paul knows the color of the car.

� The car is gold and Paul is color-blind. Paul and John know that the car is red or gold; John does
not know whether or not Paul knows the color of the car.

In each of these possibilities, both John and Paul clearly know more than we have explicitly
written above. For example, in the latter four situations, Paul knows that John does not know
whether Paul knows the color of the car. Each of the six cases is associated with what will be
defined below as a state of the world, which is a description of a state of nature (in this case, the
color of the car) and the state of knowledge of the players. Note that the first two cases describe
the same state of the world, because the difference between them (Paul’s color-blindness) affects
neither the color of the car, which is the parameter that is of interest to us, nor the knowledge of the
players regarding the color of the car. �

The definition of the set of states of nature depends on the situation that we are analyzing.
In Example 9.3 the color of the car was the focus of our interest – perhaps, for example,
because a bet has been made regarding the color. Since the most relevant parameters in
a game are the payoffs, in general we will want the states of nature to describe all the
parameters that affect the payoffs of the players (these are therefore also called “payoff-
relevant parameters”). For instance, if in Example 9.3 we were in a situation in which
Paul’s color-blindness (or lack thereof) were to affect his utility, then color-blindness
would be a payoff-relevant parameter and would comprise a part of the description of the
state of nature. In such a model there would be six distinct states of nature, rather than
three.

Definition 9.4 Let S be a finite set of states of nature. An Aumann model of incom-
plete information (over the set S of states of nature) consists of four components
(N, Y, (Fi)i∈N, s), where:
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� N is a finite set of players;
� Y is a finite set of elements called states of the world;4

� Fi is a partition of Y , for each i ∈ N (i.e., a collection of disjoint nonempty subsets of
Y whose union is Y );

� s : Y → S is a function associating each state of the world with a state of nature.

The interpretation is that if the “true” state of the world is ω∗, then each player i ∈
N knows only the element of his partition Fi that contains ω∗. For example, if Y =
{ω1, ω2, ω3} and Fi = {{ω1, ω2}, {ω3}}, then player i cannot distinguish between ω1 and
ω2. In other words, if the state of the world is ω1, player i knows that the state of
the world is either ω1 or ω2, and therefore knows that the state of the world is not
ω3. For this reason, the partition Fi is also called the information of player i. The
element of the partition Fi that contains the state of the world ω is denoted Fi(ω).
For convenience, we will use the expression “the information of player i” to refer both
to the partition Fi and to the partition element Fi(ω∗) containing the true state of the
world.

Definition 9.5 An Aumann situation of incomplete information over a set of states of
nature S is a quintuple (N, Y, (Fi)i∈N, s, ω∗), where (N, Y, (Fi)i∈N, s) is an Aumann
model of incomplete information and ω∗ ∈ Y .

The state ω∗ is the “true state of the world” and each player knows the partition element
Fi(ω∗) in his information partition that contains the true state. A situation of incomplete
information describes a knowledge structure at a particular state of the world, i.e., in a
particular reality. Models of incomplete information, in contrast, enable us to analyze all
possible situations.

Example 9.3 (Continued) An Aumann model of incomplete information for this example is as follows:

� N = {John, Paul}.
� S = {Purple Car, Red Car, Gold Car}.
� Y = {ωg,1, ωr,1, ωg,2, ωr,2, ωp}.
� John’s partition is FJ = {{ωg,1, ωg,2, ωr,1, ωr,2}, {ωp}}.
� Paul’s partition is FP = {{ωg,1, ωr,1}, {ωg,2}, {ωr,2}, {ωp}}.
� The function s is defined by

s(ωg,1) = s(ωg,2) = Gold Car, s(ωr,1) = s(ωr,2) = Red Car, s(ωp) = Purple Car.

The state of the world ωp is associated with the situation in which the car is purple, in which
case both John and Paul know that it is purple, and each of them knows that the other knows that
the car is purple. It represents the two situations in the two first bullets on page 323, which differ
only in whether Paul is color-blind or not. As we said before, these two situations are equivalent,
and can be represented by the same state of the world, as long as Paul’s color-blindness is not
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4 We will later examine the case where Y is infinite, and show that some of the results obtained in this chapter also
hold in that case.
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payoff relevant, and hence is not part of the description of the state of nature. The state of the world
ωg,1 is associated with the situation in which the car is gold and Paul is color-blind, while the state of
the world ωr,1 is associated with the situation in which the car is red and Paul is color-blind; in both
these situations, Paul cannot distinguish which state of the world holds, because he is color-blind
and cannot tell red from gold. The state of the world ωg,2 is associated with the situation in which
the car is gold and Paul is not color-blind, while the state of the world ωr,2 is associated with the
situation in which the car is red and Paul is not color-blind; in both these cases Paul knows the true
color of the car. Therefore, FP(ωg,2) = {ωg,2}, and FP(ωg,1) = {ωg,1, ωr,1}.

As for John, he is both color-blind and does not know whether Paul is color-blind. He therefore
cannot distinguish between the four states of the world {ωg,1, ωr,1, ωg,2, ωr,2}, so that FJ(ωg,1) =
FJ(ωg,2) = FJ(ωr,1) = FJ(ωr,2) = {ωg,1, ωr,1, ωg,2, ωr,2}.

The true state of the world is one of the possible states in the set Y . The Aumann model along
with the true state of the world describes the actual situation faced by John and Paul. �

Definition 9.6 An event is a subset of Y .

In Example 9.3 the event {ωg,1, ωg,2} is the formal expression of the sentence “the car
is gold,” while the event {ωg,1, ωg,2, ωp} is the formal expression of the sentence “the car
is either gold or purple.”

We say that an event A obtains in a state of the world ω if ω ∈ A. It follows that if event
A obtains in a state of the world ω and if A ⊆ B, then event B obtains in ω.

Definition 9.7 Let (N, Y, (Fi)i∈N, s) be an Aumann model of incomplete information, let
i be a player, let ω ∈ Y be a state of the world, and let A ⊆ Y be an event. Player i knows
A in ω if

Fi(ω) ⊆ A. (9.1)

If Fi(ω) ⊆ A, then in state of the world ω player i knows that event A obtains (even
though he may not know that the state of the world is ω), because according to his
information, all the possible states of the world, Fi(ω), are included in the event A.

Definition 9.8 Let (N, Y, (Fi)i∈N, s) be an Aumann model of incomplete information, let
i be a player, and let A ⊆ Y be an event. Define an operator Ki : 2Y → 2Y by5

Ki(A) := {ω ∈ Y : Fi(ω) ⊆ A}. (9.2)

We will often denote Ki(A), the set of all states of the world in which player i knows
event A, by KiA. Thus, player i knows event A in state of the world ω∗ if and only if
ω∗ ∈ KiA. The definition implies that the set KiA equals the union of all the elements in
the partition Fi contained in A. The event Kj (KiA) (which we will write as KjKiA for
short) is the event that player j knows that player i knows A:

KjKiA = {ω ∈ Y : Fj (ω) ⊆ KiA}. (9.3)
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5 The collection of all subsets of Y is denoted by 2Y .
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Example 9.3 (Continued) Denote A = {ωp}, B = {ωr,2}, and C = {ωr,1, ωr,2}. Then

KJA = {ωp} = A, KJB = ∅, KJC = ∅,

KPA = {ωp} = A, KPB = {ωr,2}, KPC = {ωr,2}.
The content of the expression KPB = {ωr,2} is that only in state of the world ωr,2 does Paul know
that event B obtains (meaning that only in that state of the world does he know that the car is red).
The content of KJB = ∅ is that there is no state of the world in which John knows that B obtains;
i.e., he never knows that the car is red and that Paul is not color-blind. From this we conclude that

KJKPC = KJB = ∅. (9.4)

This means that there is no state of the world in which John knows that Paul knows that the car
is red. In contrast, ωp ∈ KPKJA, which means that in state of the world ωp Paul knows that John
knows that the state of the world is ωp (and in particular, that the car is purple). �

We can now present some simple results that follow from the above definition of
knowledge. The first result states that if a player knows event A in state of the world ω,
then it is necessarily true that ω ∈ A. In other words, if a player knows the event A, then
A necessarily obtains (because the true state of the world is contained within it).6

Theorem 9.9 KiA ⊆ A for every event A ⊆ Y and every player i ∈ N .

Proof: Let ω ∈ KiA. From the definition of knowledge it follows that Fi(ω) ⊆ A. Since
ω ∈ Fi(ω) it follows that ω ∈ A, which is what we needed to prove. �

Our second result states that if event A is contained in event B, then the states of the
world in which player i knows event A form a subset of the states of the world in which
the player knows event B. In other words, in every state of the world in which a player
knows event A, he also knows event B.

Theorem 9.10 For every pair of events A, B ⊆ Y , and every player i ∈ N ,

A ⊆ B =⇒ KiA ⊆ KiB. (9.5)

Proof: We will show that ω ∈ KiA implies that ω ∈ KiB. Suppose that ω ∈ KiA. By
definition, Fi(ω) ⊆ A, and because A ⊆ B, one has Fi(ω) ⊆ B. Therefore, ω ∈ KiB,
which is what we need to show. �

Our third result7 says that if a player knows event A, then he knows that he knows event
A, and conversely, if he knows that he knows event A, then he knows event A.

Theorem 9.11 For every event A ⊆ Y and every player i ∈ N , we have KiKiA = KiA.

Proof: Theorems 9.9 and 9.10 imply that KiKiA ⊆ KiA. We will show that the opposite
inclusion holds, namely, if ω ∈ KiA then ω ∈ KiKiA. If ω ∈ KiA then Fi(ω) ⊆ A. There-
fore, for every ω′ ∈ Fi(ω), we have ω′ ∈ Fi(ω′) = Fi(ω) ⊆ A. It follows that ω′ ∈ KiA.
As this is true for every ω′ ∈ Fi(ω), we deduce that Fi(ω) ⊆ KiA, which implies that
ω ∈ KiKiA. Thus, KiA ⊆ KiKiA, which is what we wanted to prove. �
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6 In the literature, this is known as the “axiom of knowledge.”
7 One part of this theorem, namely, the fact that if a player knows an event, then he knows that he knows the event,

is known in the literature as the “axiom of positive introspection.”
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More generally, the knowledge operator Ki of player i satisfies the following five
properties, which collectively are called Kripke’s S5 System:

1. KiY = Y : the player knows that Y is the set of all states of the world.
2. KiA ∩ KiB = Ki(A ∩ B): if the player knows event A and knows event B then he

knows event A ∩ B.
3. KiA ⊆ A: if the player knows event A then event A obtains.
4. KiKiA = KiA: if the player knows event A then he knows that he knows event A, and

vice versa.
5. (KiA)c = Ki((KiA)c): if the player does not know event A, then he knows that he does

not know event A, and vice versa.8,9

Property 3 was proved in Theorem 9.9. Property 4 was proved in Theorem 9.11. The
proof that the knowledge operator satisfies the other three properties is left to the reader
(Exercise 9.1). In fact, Properties 1–5 characterize knowledge operators: for every operator
K : 2Y → 2Y satisfying these properties there exists a partition F of Y that induces K via
Equation (9.2) (Exercise 9.2).

Example 9.12 Anthony, Betty, and Carol are each wearing a hat. Hats may be red (r) or blue (b). Each one of

the three sees the hats worn by the other two, but cannot see his or her own hat, and therefore does
not know its color. This situation can be described by an Aumann model of incomplete information
as follows:

� The set of players is N = {Anthony, Betty, Carol}.
� The set of states of nature is

S = {(r, r, r), (r, r, b), (r, b, r), (r, b, b), (b, r, r), (b, r, b), (b, b, r), (b, b, b)}. A state of nature is
described by three hat colors: that of Anthony’s hat (the left letter), of Betty’s hat (the middle
letter), and of Carol (the right letter).

� The set of states of the world is
Y = {ωrrr , ωrrb, ωrbr , ωrbb, ωbrr , ωbrb, ωbbr , ωbbb}.

� The function s : Y → S that maps every state of the world to a state of nature is defined by

s(ωrrr ) = (r, r, r), s(ωrrb) = (r, r, b), s(ωrbr ) = (r, b, r), s(ωrbb) = (r, b, b),
s(ωbrr ) = (b, r, r), s(ωbrb) = (b, r, b), s(ωbbr ) = (b, b, r), s(ωbbb) = (b, b, b).

The information partitions of Anthony, Betty, and Carol are as follows:

FA = {{ωrrr , ωbrr }, {ωrrb, ωbrb}, {ωrbr , ωbbr}, {ωrbb, ωbbb}}, (9.6)

FB = {{ωrrr , ωrbr }, {ωrrb, ωrbb}, {ωbrr , ωbbr}, {ωbrb, ωbbb}}, (9.7)

FC = {{ωrrr , ωrrb}, {ωrbr , ωrbb}, {ωbrr , ωbrb}, {ωbbr , ωbbb}}. (9.8)

For example, when the state of the world is ωbrb, Anthony sees that Betty is wearing a red hat
and that Carol is wearing a blue hat, but does not know whether his hat is red or blue, so that he
knows that the state of the world is in the set {ωrrb, ωbrb}, which is one of the elements of his
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8 The first part of this property, i.e., the fact that if a player does not know an event, then he knows that he does not
know it, is known in the literature as the “axiom of negative introspection.”

9 For any event A, the complement of A is denoted by Ac := Y \ A.
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partition FA. Similarly, if the state of the world is ωbrb, Betty knows that the state of the world is
in her partition element {ωbrb, ωbbb}, and Carol knows that the state of the world is in her partition
element {ωbrr , ωbrb}.

Let R be the event “there is at least one red hat,” that is,

R = {ωrrr , ωrrb, ωrbr , ωrbb, ωbrr , ωbrb, ωbbr}. (9.9)

In which states of the world does Anthony know R? In which states does Betty know that Anthony
knows R? In which states does Carol know that Betty knows that Anthony knows R? To begin
answering the first question, note that in state of the world ωrrr , Anthony knows R, because

FA(ωrrr ) = {ωrrr , ωbrr} ⊆ R. (9.10)

Anthony also knows R in each of the states of the world ωrrb, ωrbr , ωbrb, ωbrr , and ωbbr . In
contrast, in the states ωrbb and ωbbb he does not know R, because

FA(ωrbb) = FA(ωbbb) = {ωrbb, ωbbb} �⊆ R. (9.11)

In summary,

KAR = {ω ∈ Y : FA(ω) ⊆ R} = {ωrrr , ωrbr , ωrrb, ωbrb, ωbrr , ωbbr}.
The analysis here is quite intuitive: Anthony knows R if either Betty or Carol (or both) is wearing

a red hat, which occurs in the states of the world in the set {ωrrr , ωrbr , ωrrb, ωbrb, ωbrr , ωbbr}. When
does Betty know that Anthony knows R? This requires calculating KBKAR.

KBKAR = {ω ∈ Y : FB(ω) ⊆ KAR}
= {ω ∈ Y : FB(ω) ⊆ {ωrrr , ωrbr , ωrrb, ωbrb, ωbrr , ωbbr}}
= {ωrrr , ωbrr , ωrbr , ωbbr}. (9.12)

For example, since FB(ωrbr ) = {ωrbr , ωrrr } ⊆ KAR we conclude that ωrbr ∈ KBKAR. On the other
hand, since FB(ωbrb) = {ωbrb, ωbbb} �⊆ KAR, it follows that ωbrb �∈ KBKAR. The analysis here is
once again intuitively clear: Betty knows that Anthony knows R only if Carol is wearing a red hat,
which only occurs in the states of the world {ωrrr , ωbrr , ωrbr , ωbbr}.

Finally, we answer the third question: when does Carol know that Betty knows that Anthony
knows R? This requires calculating KCKBKAR.

KCKBKAR = {ω ∈ Y : FC(ω) ⊆ KBKAR}
= {ω ∈ Y : FC(ω) ⊆ {ωrrr , ωbrr , ωrbr , ωbbr}} = ∅. (9.13)

For example, since FC(ωrbr ) = {ωrbr , ωrbb} �⊆ KBKAR, we conclude that ωrbr �∈ KCKBKAR. In
other words, there is no state of the world in which Carol knows that Betty knows that Anthony
knows R. This is true intuitively, because as we saw previously, Betty knows that Anthony knows
R only if Carol is wearing a red hat, but Carol does not know the color of her own hat.

This analysis enables us to conclude, for example, that in state of the world ωrrr Anthony knows
R, Betty knows that Anthony knows R, but Carol does not know that Betty knows that Anthony
knows R. �

Note the distinction in Example 9.12 between states of nature and states of the world.
The state of nature is the parameter with respect to which there is incomplete information:
the colors of the hats worn by the three players. The state of the world includes in addition
the mutual knowledge structure of the players regarding the state of nature. For example,
the state of the world ωrrr says a lot more than the fact that all three players are wearing red
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hats; for example, in this state of the world Carol knows there is at least one red hat, Carol
knows that Anthony knows that there is at least one red hat, and Carol does not know that
Betty knows that Anthony knows that there is at least one red hat. In Example 9.12 there
is a one-to-one correspondence between the set of states of nature S and the set of states
of the world Y . This is so since the mutual knowledge structure is uniquely determined
by the configuration of the colors of the hats.

Example 9.13 Arthur, Harry, and Tom are in a room with two windows, one facing north and the other

facing south. Two hats, one yellow and one brown, are placed on a table in the center of the room.
After Harry and Tom leave the room, Arthur selects one of the hats and places it on his head. Tom
and Harry peek in, each through a different window, watching Arthur (so that they both know the
color of the hat Arthur is wearing). Neither Tom nor Harry knows whether or not the other player
who has left the room is peeking through a window, and Arthur has no idea whether or not Tom or
Harry is spying on him as he places one of the hats on his head. An Aumann model of incomplete
information describing this situation is as follows:

� N = {Arthur, Harry, Tom}.
� S = {Arthur wears the brown hat, Arthur wears the yellow hat}.
� There are eight states of the world, each of which is designated by two indices:

Y = {ωb,∅, ωb,T, ωb,H, ωb,TH, ωy,∅, ωy,T, ωy,H, ωy,TH}. The left index of ω indicates the color of
the hat that Arthur is wearing (which is either brown or yellow), and the right index indicates
which of the other players has been peeking into the room (Tom (T), Harry (H), both (TH), or
neither(∅)).

� Arthur’s partition contains two elements, because he knows the color of the hat on his
head, but does not know who is peeking into the room: FA = {{ωb,∅, ωb,H, ωb,T, ωb,TH},
{ωy,∅, ωy,H, ωy,I, ωy,TH}}.

� Tom’s partition contains three elements, one for each of his possible situations of information:
Tom has not peeked into the room; Tom has peeked into the room and seen Arthur wearing the
brown hat; Tom has peeked into the room and seen Arthur wearing the yellow hat. His partition
is thus FT = {{ωb,∅, ωb,H, ωy,∅, ωy,H}, {ωb,T, ωb,TH}, {ωy,T, ωy,TH}}.

For example, if Tom has peeked and seen the brown hat on Arthur’s head, he knows that
Arthur has selected the brown hat, but he does not know whether he is the only player who
peeked (corresponding to the state of the world ωb,T) or whether Harry has also peeked (state of
the world ωb,TH).

� Similarly, Harry’s partition is
FH = {{ωb,∅, ωb,T, ωy,∅, ωy,T}, {ωb,H, ωb,TH}, {ωy,H, ωy,TH}}.

� The function s is defined by

s(ωb,∅) = s(ωb,T) = s(ωb,H) = s(ωb,TH) = Arthur wears the brown hat;

s(ωy,∅) = s(ωy,T) = s(ωy,H) = s(ωy,TH) = Arthur wears the yellow hat.

In this model, for example, if the true state of the world is ω∗ = ωb,TH, then Arthur is wearing
the brown hat, and both Tom and Harry have peeked into the room. The event “Arthur is wearing
the brown hat” is B = {ωb,∅, ωb,T, ωb,H, ωb,TH}. Tom and Harry know that Arthur’s hat is brown
only if they have peeked into the room. Therefore,

KTB = {ωb,T, ωb,TH}, KHB = {ωb,H, ωb,TH}. (9.14)

Given Equation (9.14), since the set KHB is not included in any of the elements in Tom’s partition,
we conclude that KTKHB = ∅. In other words, in any state of the world, Tom does not know
whether or not Harry knows that Arthur is wearing the brown hat, and therefore, in particular, this is
the case at the given state of the world, ωb,TH. We similarly conclude that KHKTB = ∅: in any state
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of the world, Harry does not know that Tom knows that Arthur is wearing the brown hat (and in
particular this is the case at the true state of the world, ωb,TH). This is all quite intuitive; Tom knows
that Arthur is wearing the brown hat only if he has peeked into the room, but Harry does not know
whether or not Tom has peeked into the room.

Note again the distinction between a state of nature and a state of the world. The objective fact
about which the players have incomplete information is the color of the hat atop Arthur’s head.
Each one of the four states of the world {ωy,∅, ωy,H, ωy,T, ωy,TH} corresponds to the state of nature
“Arthur wears the yellow hat,” yet they differ in the knowledge that the players have regarding the
state of nature. In the state of the world ωy,∅, Arthur wears the yellow hat, but Tom and Harry do
not know that, while in state of the world ωy,H, Arthur wears the yellow hat and Harry knows that,
but Tom does not know that. Note that in both of these states of the world Tom and Arthur do not
know that Harry knows the color of Arthur’s hat, Harry and Arthur do not know whether or not
Tom knows the color of the hat, and in each state of the world there are additional statements that
can be made regarding the players’ mutual knowledge of Arthur’s hat. �

The insights gleaned from these examples can be formulated and proven rigorously.

Definition 9.14 A knowledge hierarchy among players in state of the world ω over the
set of states of the world Y is a system of “yes” or “no” answers to each question of the
form “in a state of the world ω, does player i1 know that player i2 knows that player i3

knows . . . that player il knows event A”? for any event A ⊆ Y and any finite sequence
i1, i2, . . . , il of players10 in N .

The answer to the question “does player i1 know that player i2 knows that player i3

knows . . . that player il knows event A?” in a state of the world ω is affirmative if ω ∈
Ki1Ki2 · · ·KilA, and negative if ω �∈ Ki1Ki2 · · ·KilA. Since for every event A and every
sequence of players i1, i2, . . . , il the event Ki1Ki2 · · ·KilA is well defined and calculable in
an Aumann model of incomplete information, every state of the world defines a knowledge
hierarchy. We have therefore derived the following theorem.

Theorem 9.15 Every situation of incomplete information (N, Y, (Fi)i∈N, s, ω∗) uniquely
determines a knowledge hierarchy over the set of states of the world Y in state of the
world ω∗.

For every subset C ⊆ S of the set of states of nature, we can consider the event that
contains all states of the world whose state of nature is an element of C:

s−1(C) := {ω ∈ Y : s(ω) ∈ C}. (9.15)

For example, in Example 9.13 the set of states of nature {yellow} corresponds to the
event {ωy,∅, ωy,H, ωy,G, ωy,TH} in Y . Every subset of S is called an event in S. We define
knowledge of events in S as follows: in a state of the world ω player i knows event C

in S if and only if he knows the event s−1(C), i.e., if and only if ω ∈ Ki(s−1(C)). In the
same manner, in state of the world ω player i1 knows that player i2 knows that player i3

knows . . . that player il knows event C in S if and only if in state of the world ω player i1

knows that player i2 knows that player i3 knows . . . that player il knows s−1(C).
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 A player may appear several times in the chain i1, i2, . . . , il . For example, the chain player 2 knows that player 1
knows that player 3 knows that player 2 knows event A is a legitimate chain.
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Corollary 9.16 is a consequence of Theorem 9.15 (Exercise 9.10).

Corollary 9.16 Every situation of incomplete information (N, Y, (Fi)i∈N, s, ω∗) uniquely
determines a knowledge hierarchy over the set of states of nature S in state of the world
ω∗.

Having defined the knowledge operators of the players, we next turn to the definition
of the concept of common knowledge, which was previously defined informally (see
Definition 9.2).

Definition 9.17 Let (N, Y, (Fi)i∈N, s) be an Aumann model of incomplete information,
let A ⊆ Y be an event, and let ω ∈ Y be a state of the world. The event A is common
knowledge in ω if for every finite sequence of players i1, i2, . . . , il ,

ω ∈ Ki1Ki2 . . . Kil−1KilA. (9.16)

That is, event A is common knowledge at state of the world ω if in ω every player
knows event A, every player knows that every player knows event A, etc. In Examples
9.12 and 9.13 the only event that is common knowledge in any state of the world is Y

(Exercise 9.12). In Example 9.3 (page 322) the event {ωp} (and every event containing it)
is common knowledge in state of the world ωp, and the event {ωg,1, ωg,2, ωr,1, ωr,2} (and
the event Y containing it) is common knowledge in every state of the world contained in
this event.

Example 9.18 Abraham selects an integer from the set {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. He tells Jefferson

whether the number he has selected is even or odd, and tells Ulysses the remainder left over from
dividing that number by 4. The corresponding Aumann model of incomplete information depicting
the induced situation of Jefferson and Ulysses is:

� N = {Jefferson, Ulysses}.
� S = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}: the state of nature is the number selected by Abraham.
� Y = {ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12, ω13, ω14}.
� The function s : Y → S is given by s(ωk) = k for every k ∈ S.
� Since Jefferson knows whether the number is even or odd, his partition contains two elements,

corresponding to the subset of even numbers and the subset of odd numbers in the set Y :

FJ = {{ω5, ω7, ω9, ω11, ω13}, {ω6, ω8, ω10, ω12, ω14}}. (9.17)

� As Ulysses knows the remainder left over from dividing the number by 4, his partition contains
four elements, one for each possible remainder:

FU = {{ω8, ω12}, {ω5, ω9, ω13}, {ω6, ω10, ω14}, {ω7, ω11}}. (9.18)

In the state of the world ω6, the event that the selected number is even, i.e., A =
{ω6, ω8, ω10, ω12, ω14}, is common knowledge. Indeed, KJA = KUA = A, and therefore it fol-
lows that Ki1Ki2 . . . Kil−1Kil A = A for every finite sequence of players i1, i2, . . . , il . Since ω6 ∈ A,
it follows from Definition 9.17 that in state of the world ω6 the event A is common knowledge
among Jefferson and Ulysses. Similarly, in state of the world ω9, the event that the selected
number is odd, B = {ω5, ω7, ω9, ω11, ω13}, is common knowledge among Jefferson and Ulysses
(verify!). �
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Remark 9.19 From Definition 9.17 and Theorem 9.10 we conclude that if event A is
common knowledge in a state of the world ω, then every event containing A is also
common knowledge in ω. �

Remark 9.20 The definition of common knowledge can be expanded to events in S: an
event C in S is common knowledge in a state of the world ω if the event s−1(C) is common
knowledge in ω. For example, in Example 9.13 in state of the world ωb,TH the event (in the
set of states of nature) “Arthur selects the brown hat” is not common knowledge among
the players (verify!). �

Remark 9.21 If event A is common knowledge in a state of the world ω, then in particular
ω ∈ KiA and so Fi(ω) ⊆ A for each i ∈ N . In other words, all players know A in ω. �

Remark 9.22 We can also speak of common knowledge among a subset of the players
M ⊆ N : in a state of the world ω, event A is common knowledge among the players in
M if Equation (9.16) is satisfied for any finite sequence i1, i2, . . . , il of players in M . �

Theorem 9.23 states that if there is a player who cannot distinguish between ω and ω′,
then every event that is common knowledge in ω is also common knowledge in ω′.

Theorem 9.23 If event A is common knowledge in state of the world ω, and if ω′ ∈ Fi(ω)
for some player i ∈ N , then the event A is also common knowledge in state of the world
ω′.

Proof: Suppose that ω′ ∈ Fi(ω) for some player i ∈ N . As the event A is common
knowledge in ω, for any sequence i1, i2, . . . , il of players we have

ω ∈ KiKi1Ki2 . . . Kil−1KilA. (9.19)

Remark 9.21 implies that

Fi(ω) ⊆ Ki1Ki2 . . . Kil−1KilA. (9.20)

Since ω′ ∈ Fi(ω′) = Fi(ω) it follows that ω′ ∈ Ki1Ki2 . . . Kil−1KilA. As this is true for any
sequence i1, i2, . . . , il of players, the event A is common knowledge in ω′. �

We next turn to characterizing sets that are common knowledge. Given an Aumann
model of incomplete information (N, Y, (Fi)i∈N, s), define the graph G = (Y, V ) in which
the set of vertices is the set of states of the world Y , and there is an edge between vertices
ω and ω′ if and only if there is a player i such that ω′ ∈ Fi(ω). Note that the condition
defining the edges of the graph is symmetric: ω′ ∈ Fi(ω) if and only if Fi(ω) = Fi(ω′), if
and only if ω ∈ Fi(ω′); hence G = (Y, V ) is an undirected graph.

A set of vertices C in a graph is a connected component if the following two conditions
are satisfied:

� For every ω, ω′ ∈ C, there exists a path connecting ω with ω′, i.e., there exist ω =
ω1, ω2, . . . , ωK = ω′ such that for each k = 1, 2, . . . , K − 1 the graph contains an
edge connecting ωk and ωk+1.

� There is no edge connecting a vertex in C with a vertex that is not in C.
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The connected component of ω in the graph, denoted by C(ω), is the (unique) connected
component containing ω.

Theorem 9.24 Let (N, Y, (Fi)i∈N, s) be an Aumann model of incomplete information
and let G be the graph corresponding to this model. Let ω ∈ Y be a state of the world and
let A ⊆ Y be an event. Then event A is common knowledge in state of the world ω if and
only if A ⊇ C(ω).

Proof: First we prove that if A is common knowledge in ω, then C(ω) ⊆ A. Sup-
pose then that ω′ ∈ C(ω). We want to show that ω′ ∈ A. From the definition of a
connected component, there is a path connecting ω with ω′; we denote that path by
ω = ω1, ω2, . . . , ωK = ω′. We prove by induction on k that ωk ∈ A, and that A is com-
mon knowledge in ωk , for every 1 ≤ k ≤ K . For k = 1, because the event A is common
knowledge in ω, we deduce that ω1 = ω ∈ A. Suppose now that ωk ∈ A and A is com-
mon knowledge in ωk . We will show that ωk+1 ∈ A and that A is common knowledge
in ωk+1. Because there is an edge connecting ωk and ωk+1, there is a player i such that
ωk+1 ∈ Fi(ωk). It follows from Theorem 9.23 that the event A is common knowledge in
ωk+1. From Remark 9.21 we conclude that ωk+1 ∈ A. This completes the inductive step,
so that in particular ω′ = ωK ∈ A.

Consider now the other direction: if C(ω) ⊆ A, then event A is common knowledge in
state of the world ω. To prove this, it suffices to show that C(ω) is common knowledge
in ω, because from Remark 9.19 it will then follow that any event containing C(ω), and
in particular A, is also common knowledge in ω. Let i be a player in N . Because C(ω) is
a connected component of G, for each ω′ ∈ C(ω), we have Fi(ω′) ⊆ C(ω). It follows that

C(ω) ⊇
⋃

ω′∈C(ω)

Fi(ω
′) ⊇

⋃
ω′∈C(ω)

{ω′} = C(ω). (9.21)

In other words, for each player i the set C(ω) is the union of all the elements of Fi

contained in it. This implies that Ki(C(ω)) = C(ω). As this is true for every player i ∈ N ,
it follows that for every sequence of players i1, i2, . . . , il ,

ω ∈ C(ω) = Ki1Ki2 · · ·KilC(ω), (9.22)

and therefore C(ω) is common knowledge in ω. �
The following corollary follows from Theorem 9.24 and Remark 9.19.

Corollary 9.25 In every state of the world ω ∈ Y , the event C(ω) is common knowledge
among the players, and it is the smallest event that is common knowledge in ω.

For this reason, C(ω) is sometimes called the common knowledge component among
the players in state of the world ω.

Remark 9.26 The proof of Theorem 9.24 shows that for each player i ∈ N , the set
C(ω) is the union of the elements of Fi contained in it, and it is the smallest event
containing ω that satisfies this property. The set of all the connected components of the
graph G defines a partition of Y , which is called the meet of F1,F2, . . . ,Fn. This is the
finest partition that satisfies the property that each partition Fi is a refinement of it. We
can therefore formulate Theorem 9.24 equivalently as follows. Let (N, Y, (Fi)i∈N, s) be
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an Aumann model of incomplete information. Event A is common knowledge in state of
the world ω ∈ Y if and only if A contains the element of the meet containing ω. �

9.2 The Aumann model of incomplete information with beliefs
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following model extends the Aumann model of incomplete information presented in
the previous section.

Definition 9.27 An Aumann model of incomplete information with beliefs (over a set of
states of nature S) consists of five elements (N, Y, (Fi)i∈N, s, P), where:

� N is a finite set of players;
� Y is a finite set of states of the world;
� Fi is a partition of Y , for each i ∈ N;
� s : Y → S is a function associating a state of nature to every state of the world;
� P is a probability distribution over Y such that P(ω) > 0 for each ω ∈ Y .

Comparing this definition to that of the Aumann model of incomplete information
(Definition 9.4), we have added one new element, namely, the probability distribution P
over Y , which is called the common prior. In this model, a state of the world ω∗ is selected
by a random process in accordance with the common prior probability distribution P.
After the true state of the world has been selected by this random process, each player i

learns his partition element Fi(ω∗) that contains ω∗. Prior to the stage at which private
information is revealed, the players share a common prior distribution, which is interpreted
as their belief about the probability that any specific state of the world in Y is the true one.
After each player i has acquired his private information Fi(ω∗), he updates his beliefs.
This process of belief updating is the main topic of this section.

The assumption that all the players share a common prior is a strong assumption, and
in many cases there are good reasons to doubt that it obtains. We will return to this point
later in the chapter. In contrast, the assumption that P(ω) > 0 for all ω ∈ Y is not a strong
assumption. As we will show, a state of the world ω for which P(ω) = 0 is one to which
all the players assign probability 0, and it can be removed from consideration in Y .

In the following examples and in the rest of this chapter, whenever the states of nature
are irrelevant we will specify neither the set S nor the function s.

Example 9.28 Consider the following Aumann model:

� The set of players is N = {I, II}.
� The set of states of the world is Y = {ω1, ω2, ω3, ω4}.
� The information partitions of the players are

FI = {{ω1, ω2}, {ω3, ω4}}, FII = {{ω1, ω3}, {ω2, ω4}}. (9.23)

� The common prior P is

P(ω1) = 1
4 , P(ω2) = 1

4 , P(ω3) = 1
3 , P(ω4) = 1

6 . (9.24)
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A graphic representation of the players’ partitions and the prior probability distribution is provided
in Figure 9.2. Player I’s partition elements are marked by a solid line, while Player II’s partition
elements are denoted by a dotted line.

Player I:

Player II:

1
4

1
4

1
3

1
6

ω1 ω2

ω3 ω4

Figure 9.2 The information partitions and the prior distribution in Example 9.28

What are the beliefs of each player about the state of the world? Prior to the chance move
that selects the state of the world, the players have a common prior distribution over the states of
the world. When a player receives information that indicates that the true state of the world is in
the partition element Fi(ω∗), he updates his beliefs about the states of the world by calculating the
conditional probability given his information. For example, if the state of the world is ω1, Player I
knows that the state of the world is either ω1 or ω2. Player I’s beliefs are therefore

P(ω1 | {ω1, ω2}) = p(ω1)

p(ω1) + p(ω2)
=

1
4

1
4 + 1

4

= 1
2 , (9.25)

and similarly

P(ω2 | {ω1, ω2}) = p(ω2)

p(ω1) + p(ω2)
=

1
4

1
4 + 1

4

= 1
2 . (9.26)

In words, if Player I’s information is that the state of the world is in {ω1, ω2}, he attributes probability
1
2 to the state of the world ω1 and probability 1

2 to the state of the world ω2. The tables appearing in
Figure 9.3 are arrived at through a similar calculation. The upper table describes Player I’s beliefs,
as a function of his information partition, and the lower table represents Player II’s beliefs as a
function of his information partition.

Player I’s beliefs:
Player I’s Information ω1 ω2 ω3 ω4

ω1 ω2 ω3 ω4Player II’s Information
Player II’s beliefs:

{ω2, ω4} 00 3
5

2
5

{ω1, ω2} 01
2

1
2 0

{ω3, ω4} 1
3

2
30 0

{ω1, ω3} 03
7

4
7 0

Figure 9.3 The beliefs of the players in Example 9.28

For example, if Player II’s information is {ω2, ω4} (i.e., the state of the world is either ω2 or ω4), he
attributes probability 3

5 to the state of the world ω2 and probability 2
5 to the state of the world ω4.

A player’s beliefs will be denoted by square brackets in which states of the world appear alongside
the probabilities that are ascribed to them. For example, [ 3

5 (ω2), 2
5 (ω4)] represents beliefs in which

probability 3
5 is ascribed to state of the world ω2, and probability 2

5 is ascribed to state of the world
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ω4. The calculations performed above yield the first-order beliefs of the players at all possible states
of the world. These beliefs can be summarized as follows:

� In state of the world ω1 the first-order belief of Player I is [ 1
2 (ω1), 1

2 (ω2)] and that of Player II is
[ 3

7 (ω1), 4
7 (ω3)].

� In state of the world ω2 the first-order belief of Player I is [ 1
2 (ω1), 1

2 (ω2)] and that of Player II
is [ 3

5 (ω2), 2
5 (ω4)].

� In state of the world ω3 the first-order belief of Player I is [ 2
3 (ω3), 1

3 (ω4)] and that of Player II is
[ 3

7 (ω1), 4
7 (ω3)].

� In state of the world ω4 the first-order belief of Player I is [ 2
3 (ω3), 1

3 (ω4)] and that of Player II is
[ 3

5 (ω2), 2
5 (ω4)].

Given the first-order beliefs of the players over Y , we can construct the second-order beliefs, by
which we mean the beliefs each player has about the state of the world and the first-order beliefs
of the other player. In state of the world ω1 (or ω2) Player I attributes probability 1

2 to the state of
the world being ω1 and probability 1

2 to the state of the world being ω2. As we noted above, when
the state of the world is ω1, the first-order belief of Player II is [ 3

7 (ω1), 4
7 (ω3)], and when the state

of the world is ω2, Player II’s first-order belief is [ 3
5 (ω2), 2

5 (ω4)]. Therefore:

� In state of the world ω1 (or ω2) Player I attributes probability 1
2 to the state of the world being ω1

and the first-order belief of Player II being [ 3
7 (ω1), 4

7 (ω3)], and probability 1
2 to the state of the

world being ω2 and Player II’s first-order belief being [ 3
5 (ω2), 2

5 (ω4)].

We can similarly calculate the second-order beliefs of each of the players in each state of the world:

� In state of the world ω3 (or ω4) Player I attributes probability 2
3 to the state of the world being ω3

and the first-order belief of Player II being [ 3
7 (ω1), 4

7 (ω3)], and probability 1
3 to the state of the

world being ω4 and Player II’s first-order belief being [ 3
5 (ω2), 2

5 (ω4)].
� In state of the world ω1 (or ω3) Player II attributes probability 3

7 to the state of the world being
ω1 and the first-order belief of Player I being [ 1

2 (ω1), 1
2 (ω2)], and probability 4

7 to the state of the
world being ω3 and Player I’s first-order belief being [ 2

3 (ω3), 1
3 (ω4)].

� In state of the world ω2 (or ω4) Player II attributes probability 3
5 to the state of the world being

ω2 and the first-order belief of Player I being [ 1
2 (ω1), 1

2 (ω2)], and probability 2
5 to the state of the

world being ω4 and Player I’s first-order belief being [ 2
3 (ω3), 1

3 (ω4)].

These calculations can be continued to arbitrarily high orders in a similar manner to yield belief
hierarchies of the two players. �

Theorem 9.29 says that in an Aumann model, knowledge is equivalent to belief with
probability 1. The theorem, however, requires assuming that P(ω) > 0 for each ω ∈ Y ;
without that assumption the theorem’s conclusion does not obtain (Exercise 9.21). In
Example 9.36 we will see that the conclusion of the theorem also fails to hold when the
set of states of the world is infinite.

Theorem 9.29 Let (N, Y, (Fi)i∈N, s, P) be an Aumann model of incomplete information
with beliefs. Then for each ω ∈ Y , for each player i ∈ N , and for every event A ⊆ Y ,
player i knows event A in state of the world ω if and only if he attributes probability 1 to
that event:

P(A | Fi(ω)) = 1 ⇐⇒ Fi(ω) ⊆ A. (9.27)
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Notice that the assumption that P(ω) > 0 for every ω ∈ Y , together with ω ∈ Fi(ω)
for every ω ∈ Y , yields P(Fi(ω)) > 0 for each player i ∈ N and every state of the world
ω ∈ Y , so that the conditional probability in Equation (9.27) is well defined.

Proof: Suppose first that Fi(ω) ⊆ A. Then

P(A | Fi(ω)) ≥ P(Fi(ω) | Fi(ω)) = 1, (9.28)

so that P(A | Fi(ω)) = 1. To prove the reverse implication, if P(A | Fi(ω)) = 1 then

P(A | Fi(ω)) = P(A ∩ Fi(ω))

P(Fi(ω))
= 1, (9.29)

which yields P(A ∩ Fi(ω)) = P(Fi(ω)). From the assumption that P(ω′) > 0 for each
ω′ ∈ Y we conclude that A ∩ Fi(ω) = Fi(ω), that is, Fi(ω) ⊆ A. �

A situation of incomplete information with beliefs is a vector (N, Y, (Fi)i∈N, s, P, ω∗)
composed of an Aumann model of incomplete information with beliefs (N, Y,

(Fi)i∈N, s, P) together with a state of the world ω∗ ∈ Y . The next theorem follows natu-
rally from the analysis we performed in Example 9.28, and it generalizes Theorem 9.15
and Corollary 9.16 to situations of belief.

Theorem 9.30 Every situation of incomplete information with beliefs (N, Y, (Fi)i∈N,

s, P, ω∗) uniquely determines a mutual belief hierarchy among the players over the states
of the world Y , and therefore also a mutual belief hierarchy over the states of nature S.

The above formulation is not precise, as we have not formally defined what the term
“mutual belief hierarchy” means. The formal definition is presented in Chapter 11 where
we will show that each state of the world is in fact a pair, consisting of a state of nature
and a mutual belief hierarchy among the players over the states of nature S. The inductive
description of belief hierarchies, as presented in the examples above and the examples
below, will suffice for this chapter.

In Example 9.28 we calculated the belief hierarchy of the players in each state of the
world. A similar calculation can be performed with respect to events.

Example 9.28 (Continued) Consider the situation in which ω∗ = ω1 and the event A = {ω2, ω3}. As Player

I’s information in state of the world ω1 is {ω1, ω2}, the conditional probability that he ascribes to
event A in state of the world ω1 (or ω2) is

P(A | {ω1, ω2}) = P(A ∩ {ω1, ω2})
P({ω1, ω2}) = P({ω1})

P({ω1, ω2}) =
1
4

1
4 + 1

4

= 1
2 . (9.30)

Because Player II’s information in state of the world ω1 is {ω1, ω3}, the conditional probability that
he ascribes to event A in state of the world ω1 (or ω3) is

P(A | {ω1, ω3}) = P(A ∩ {ω1, ω3})
P({ω1, ω3}) = P({ω3})

P({ω1, ω3}) =
1
3

1
4 + 1

3

= 4
7 . (9.31)
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Second-order beliefs can also be calculated readily. In state of the world ω1, Player I ascribes
probability 1

2 to the true state being ω1, in which case the probability that Player II ascribes to event
A is 4

7 ; he ascribes probability 1
2 to the true state being ω2, in which case the probability that Player

II ascribes to event A is ( 1
4 )/( 1

4 + 1
6 ) = 2

5 . These are Player I’s second-order beliefs about event A

in state of the world ω1. We can similarly calculate the second-order beliefs of Player II, as well as
all the higher-order beliefs of the two players. �

Example 9.31 Consider again the Aumann model of incomplete information with beliefs presented in

Example 9.28, but now with the common prior given by

P(ω1) = P(ω4) = 1
6 , P(ω2) = P(ω3) = 1

3 . (9.32)

The partitions FI and FII are graphically depicted in Figure 9.4.

Player I:

Player II:

1
6

1
3

1
3

1
6

ω1 ω2

ω3 ω4

Figure 9.4 The information partitions and the prior distribution in Example 9.31

Since ω1 ∈ FI(ω2), ω2 ∈ FII(ω4), and ω4 ∈ FI(ω3) in the graph corresponding to this Aumann
model, all states in Y are connected. Hence the only connected component in the graph is Y

(verify!), and therefore the only event that is common knowledge in any state of the world ω is Y

(Theorem 9.24). Consider now the event A = {ω2, ω3} and the situation in which ω∗ = ω1. What
is the conditional probability that the players ascribe to A? Similarly to the calculation performed
in Example 9.28,

P(A | {ω1, ω2}) = P(A ∩ {ω1, ω2})
P({ω1, ω2}) = P({ω2})

P({ω1, ω2}) =
1
3

1
6 + 1

3

= 2
3 , (9.33)

and we can also readily calculate that both players ascribe probability 2
3 to event A in each state of

the world. Formally:{
ω : qI := P(A | FI(ω)) = 2

3

} = Y,
{
ω : qII := P(A | FII(ω)) = 2

3

} = Y. (9.34)

It follows from the definition of the knowledge operator that the event “Player I ascribes probability
2
3 to A” is common knowledge in each state of the world, and the event “Player II ascribes probability
2
3 to A” is also common knowledge in each state of the world. In other words, in this situation the
probabilities that the two players ascribe to event A are both common knowledge and equal to each
other. �

Is it a coincidence that the probabilities qI and qII that the two players assign to the
event A in Example 9.31 are equal (both being 2

3 )? Can there be a situation in which it
is common knowledge that to the event A, Player I ascribes probability qI and Player II
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ascribes probability qII, where qI �= qII? Theorem 9.32 asserts that this state of affairs is
impossible.

Theorem 9.32 Aumann’s Agreement Theorem (Aumann [1976]) Let (N, Y, (Fi)i∈N,

s, P) be an Aumann model of incomplete information with beliefs, and suppose that n = 2
(i.e., there are two players). Let A ⊆ Y be an event and let ω ∈ Y be a state of the world. If
the event “Player I ascribes probability qI to A” is common knowledge in ω, and the event
“Player II ascribes probability qII to A” is also common knowledge in ω, then qI = qII.

Let us take a moment to consider the significance of this theorem before proceeding
to its proof. The theorem states that if two players begin with “identical beliefs about the
world” (represented by the common prior P) but receive disparate information (represented
by their respective partition elements containing ω), then “they cannot agree to disagree”:
if they agree that the probability that Player I ascribes to a particular event is qI, then they
cannot also agree that Player II ascribes a probability qII to the same event, unless qI = qII.
If they disagree regarding a particular fact (for example, Player I ascribes probability qI

to event A and Player II ascribes probability qII to the same event), then the fact that
they disagree cannot be common knowledge. Since we know that people often agree
to disagree, we must conclude that either (a) different people begin with different prior
distributions over the states of the world, or (b) people incorrectly calculate conditional
probabilities when they receive information regarding the true state of the world.

Proof of Theorem 9.32: Let C be the connected component of ω in the graph correspond-
ing to the given Aumann model. It follows from Theorem 9.24 that event C is common
knowledge in state of the world ω. The event C can be represented as a union of partition
elements in FI; that is, C = ⋃

j F
j
I , where F

j
I ∈ FI for each j . Since P(ω′) > 0 for every

ω′ ∈ Y , it follows that P(F j
I ) > 0 for every j , and therefore P(C) > 0.

The fact that Player I ascribes probability qI to the event A is common knowledge in ω.
It follows that the event A contains the event C (Corollary 9.25), and therefore each one
of the events (F j

I )j . This implies that for each of the sets F
j
I the conditional probability

of A, given that Player I’s information is F
j
I , equals qI. In other words, for each j ,

P
(
A | F

j
I

) = P
(
A ∩ F

j
I

)
P
(
F

j
I

) = qI. (9.35)

As this equality holds for every j , and C = ⋃
j F

j
I , it follows from Equation (9.35) that

P(A ∩ C) =
∑

j

P
(
A ∩ F

j
I

) = qI

∑
j

P
(
F

j
I

) = qIP(C). (9.36)

We similarly derive that

P(A ∩ C) = qIIP(C). (9.37)

Finally, since P(C) > 0, Equations (9.36) and (9.37) imply that qI = qII, which is what
we wanted to show. �

How do players arrive at a situation in which the probabilities qI and qII that they ascribe
to a particular event A are common knowledge? In Example 9.31, each player calculates
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the conditional probability of A given a partition element of the other player, and comes
to the conclusion that no matter which partition element of the other player is used for
the conditioning, the conditional probability turns out to be the same. That is why qi is
common knowledge among the players for i = I, II.

In most cases the conditional probability of an event is not common knowledge, because
it varies from one partition element to another. We can, however, describe a process of
information transmission between the players that guarantees that these conditional proba-
bilities will become common knowledge when the process is complete (see Exercises 9.25
and 9.26). Suppose that each player publicly announces the conditional probability he
ascribes to event A given the information (i.e., the partition element) at his disposal. After
each player has heard the other player’s announcement, he can rule out some states of the
world, because they are impossible: possible states of the world are only those in which the
conditional probability that the other player ascribes to event A is the conditional proba-
bility that he publicly announced. Each player can then update the conditional probability
that he ascribes to event A following the elimination of impossible states of the world, and
again publicly announce the new conditional probability he has calculated. Following this
announcement, the players can again rule out the states of the world in which the updated
conditional probability of the other player differs from that which he announced, update
their conditional probabilities, and announce them publicly. This can be repeated again
and again. Using Aumann’s Agreement Theorem (Theorem 9.32), it can be shown that
at the end of this process the players will converge to the same conditional probability,
which will be common knowledge among them (Exercise 9.28).

Example 9.33 We provide now an example of the dynamic process just described. More examples can be

found in Exercises 9.25 and 9.26. Consider the following Aumann model of incomplete information:

� N = {I, II}.
� Y = {ω1, ω2, ω3, ω4}.
� The information partitions of the players are

FI = {{ω1, ω2}, {ω3, ω4}}, FII = {{ω1, ω2, ω3}, {ω4}}. (9.38)

� The prior distribution is

PII(ω1) = PII(ω4) = 1
3 , PII(ω2) = PII(ω3) = 1

6 . (9.39)

The partition elements FI and FII are as depicted graphically in Figure 9.5.

Player I:

Player II:

1
3

1
6

1
6

1
3

ω1 ω2

ω3 ω4

Figure 9.5 The information partitions and the prior distribution in Example 9.33
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Let A = {ω2, ω3}, and suppose that the true state of the world is ω3. We will now trace the dynamic
process described above. Player I announces the conditional probability P(A | {ω3, ω4}) = 1

3 that
he ascribes to event A, given his information. Notice that in every state of the world Player I ascribes
probability 1

3 to event A, so that this announcement does not add any new information to Player II.
Next, Player II announces the conditional probability P(A | {ω3, ω4}) = 1

2 that he ascribes to
A, given his information. This enables Player I to learn that the true state of the world is not ω4,
because if it were ω4, Player II would have ascribed conditional probability 0 to the event A.

Player I therefore knows, after Player II’s announcement, that the true state of the world is ω3,
and then announces that the conditional probability he ascribes to the event A is 1. This informs
Player II that the true state of the world is ω3, because if the true state of the world were ω1 or ω2

(the two other possible states, given Player II’s information), Player I would have announced that he
ascribed conditional probability 1

3 to the event A. Player II therefore announces that the conditional
probability he ascribes to the event A is 1, and this probability is now common knowledge among
the two players.

It is left to the reader to verify that if the true state of the world is ω1 or ω2, the dynamic process
described above will lead the two players to common knowledge that the conditional probability of
the event A is 1

3 . �

Aumann’s Agreement Theorem has important implications regarding the rationality of
betting between two risk-neutral players (or two players who share the same level of risk
aversion). To simplify the analysis, suppose that the two players bet that if a certain event
A occurs, Player II pays Player I one dollar, and if event A fails to occur, Player I pays
Player II one dollar instead. Labeling the probabilities that the players ascribe to event A

as qI and qII respectively, Player I should be willing to take this bet if and only if qI ≥ 1
2 ,

with Player II agreeing to the bet if and only if qII ≤ 1
2 . Suppose that Player I accepts the

bet. Then the fact that he has accepted the bet is common knowledge, which means that
the fact that qI ≥ 1

2 is common knowledge. By the same reasoning, if Player II agrees to
the bet, that fact is common knowledge, and therefore the fact that qII ≤ 1

2 is common
knowledge. Using a proof very similar to that of Aumann’s Agreement Theorem, we
conclude that it is impossible for both facts to be common knowledge unless qI = qII = 1

2 ,
in which case the expected payoff for each player is 0, and there is no point in betting (see
Exercises 9.29 and 9.30).

Note that the agreement theorem rests on two main assumptions:

� Both players share a common prior over Y .
� The probability that each of the players ascribes to event A is common knowledge

among them.

Regarding the first assumption, the common prior distribution P is part of the Aumann
model of incomplete information with beliefs and it is used to compute the players’ beliefs
given their partitions. As the following example shows, if each player’s belief is computed
from a different probability distribution, we obtain a more general model in which the
agreement theorem does not hold. We will return to Aumann models with incomplete
information and different prior distributions in Chapter 10.
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Example 9.34 In this example we will show that if the two players have different priors, Theorem 9.32 does

not hold. Consider the following Aumann model of incomplete information:

� N = {I, II}.
� Y = {ω1, ω2, ω3, ω4}.
� The information that the two players have is given by

FI = {{ω1, ω2}, {ω3, ω4}}, FII = {{ω1, ω4}, {ω2, ω3}}. (9.40)

� Player I calculates his beliefs based on the following prior distribution:

PI(ω1) = PI(ω2) = PI(ω3) = PI(ω4) = 1
4 . (9.41)

� Player II calculates his beliefs based on the following prior distribution:

PII(ω1) = PII(ω3) = 2
10 , PII(ω2) = PII(ω4) = 3

10 . (9.42)

The only connected component in the graph corresponding to this Aumann model is Y (verify!), so
that the only event that is common knowledge in any state of the world ω is Y . Let A = {ω1, ω3}.
A quick calculation reveals that in each state ω ∈ Y

PI(A | FI(ω)) = 1
2 , PII(A | FII(ω)) = 2

5 . (9.43)

That is, {
ω : qI := P(A | FI(ω)) = 1

2

} = Y,
{
ω : qII := P(A | FII(ω)) = 2

5

} = Y. (9.44)

From the definition of the knowledge operator it follows that the facts that qI = 1
2 and qII = 2

5
are common knowledge in every state of the world. In other words, it is common knowledge in
every state of the world that the players ascribe different probabilities to the event A. This does not
contradict Theorem 9.32 because the players do not share a common prior. In fact, this result is
not surprising; because the players start off by “agreeing” that their initial probability distributions
diverge (and that fact is common knowledge), it is no wonder that it is common knowledge among
them that they ascribe different probabilities to event A (after learning which partition element they
are in). �

Example 9.35 In this example we will show that even if the players share a common prior, if the fact

that “Player II ascribes probability qII to event A” is not common knowledge, Theorem 9.32 does
not hold; that is, it is possible that qI �= qII. Consider the following Aumann model of incomplete
information:

� N = {I, II}.
� Y = {ω1, ω2, ω3, ω4}.
� The players’ information partitions are

FI = {{ω1, ω2}, {ω3, ω4}}, FII = {{ω1, ω2, ω3}, {ω4}}. (9.45)

� The common prior distribution is

P(ω1) = P(ω2) = P(ω3) = P(ω4) = 1
4 . (9.46)
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The partitions FI and FII are depicted graphically in Figure 9.6.

Player I:

Player II:

1
4

1
4

1
4

1
4

ω1 ω2

ω3 ω4

Figure 9.6 The partitions of the players in Example 9.35 and the common prior

The only connected component in the graph corresponding to this Aumann model is Y (verify!).
Let A = {ω1, ω3}. In each state of the world, the probability that Player I ascribes to event A is
qI = 1

2 : {
w ∈ Y : qI = P (A | FI(ω)) = 1

2

} = Y, (9.47)

and therefore the fact that qI = 1
2 is common knowledge in every state of the world.

In states of the world ω1, ω2, and ω3, Player II ascribes probability 2
3 to event A:{

w ∈ Y : qII = P
(
A | FII(ω) = 2

3

)} = {ω1, ω2, ω3} �⊆ Y, (9.48)

and in state of the world ω4 he ascribes probability 0 to A. Since the only event that is common

knowledge in any state of the world is Y , the event “Player II ascribes probability 2
3 to A” is

not common knowledge in any state of the world. For that reason, the fact that qI �= qII does not
contradict Theorem 9.32.

Note that in state of the world ω1, Player I knows that the state of the world is in {ω1, ω2},
and therefore he knows that Player II’s information is {ω1, ω2, ω3}, and thus he (Player I) knows
that Player II ascribes probability qII = 2

3 to the event A. However, the fact that Player II ascribes
probability qII = 2

3 to event A is not common knowledge among the players in the state of the
world ω1. This is so because in that state of the world Player II cannot exclude the possibility
that the state of the world is ω3 (he ascribes to this probability 1

3 ). If the state of the world is ω3,
Player I knows that the state of the world is in {ω3, ω4}, and therefore he (Player I) cannot exclude
the possibility that the state of the world is ω4 (he ascribes to this probability 1

2 ), in which case
Player II knows that the state of the world is ω4, and then the probability that Player II ascribes to
event A is 0 (qII = 0). Therefore, in state of the world ω1 Player II ascribes probability 1

3 to the fact
that Player I ascribes probability 1

2 to Player II ascribing probability 0 to event A. Thus, in state
of the world ω1 Player I knows that qII = 2

3 , yet this event is not common knowledge among the
players. �

Before we proceed, let us recall that an Aumann model consists of two elements:

� The partitions of the players, which determine the information (knowledge) they possess.
� The common prior P that, together with the partitions, determines the beliefs of the

players.
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The knowledge structure in an Aumann model is independent of the common prior P.
Furthermore, as we saw in Example 9.34, even when there is no common prior, and
instead every player has a different subjective prior distribution, the underlying knowl-
edge structure and the set of common knowledge events are unchanged. Not surpris-
ingly, the Agreement Theorem (Theorem 9.32), which deals with beliefs, depends on the
assumption of a common prior, while the common knowledge characterization theorem
(Theorem 9.24, page 333) is independent of the assumption of a common prior.

9.3 An infinite set of states of the world
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Thus far in the chapter, we have assumed that the set of states of the world is finite. What
if this set is infinite? With regard to set-theoretic operations, in the case of an infinite set
of states of the world we can make use of the same operations that we implemented in the
finite case. On the other hand, dealing with the beliefs of the players requires using tools
from probability theory, which in the case of an infinite set of states of the world means
that we need to ensure that this set is a measurable space.

A measurable space is a pair (Y,F ), with Y denoting a set, and F a σ -algebra over Y .
This means that F is a family of subsets of Y that includes the empty set, is closed under
complementation (i.e., if A ∈ F then Ac = Y \ A ∈ F ), and is closed under countable
unions (i.e., if (An)∞n=1 is a family of sets inF then

⋃∞
n=1 An ∈ F ). An event is any element

of F . In particular, the partitions of the players, Fi , are composed solely of elements of F .
The collection of all the subsets of Y , 2Y , is a σ -algebra over Y , and therefore (Y, 2Y )

is a measurable space. This is in fact the measurable space we used, without specifically
mentioning it, in all the examples we have seen so far in which Y was a finite set. All the
infinite sets of states of the world Y that we will consider in the rest of the section will be
a subset of a Euclidean space, and the σ -algebra F will be the σ -algebra of Borel sets,
that is, the smallest σ -algebra that contains all the relatively open sets11 in Y .

The next example shows that when the set of states of the world is infinite, knowl-
edge is not equivalent to belief with probability 1 (in contrast to the finite case; see
Theorem 9.29 on page 336).

Example 9.36 Consider an Aumann model of incomplete information in which the set of players N = {I}
contains only one player, the set of states of the world is Y = [0, 1], the σ -algebra F is the σ -algebra
of Borel sets,12 and the player has no information, which means that FI = {Y }. The common prior
P is the uniform distribution over the interval [0, 1].

Since there is only one player and his partition contains only one element, the only event that
the player knows (in any state of the world ω) is Y . Let A be the set of irrational numbers in the
interval [0, 1], which is in F . As the set A does not contain Y , the player does not know A. But
P(A | FI(ω)) = P(A | Y ) = P(A) = 1 for all ω ∈ Y . �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 When Y ⊆ Rd , a set A ⊆ Y is relatively open in Y if it is equal to the intersection of Y with an open set in Rd .
12 In this case the σ -algebra of Borel sets is the smallest σ -algebra that contains all the open intervals in [0, 1], and

the intervals of the form [0, α) and (α, 1] for α ∈ (0, 1).
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Next we show that when the set of states of the world is infinite, the very notion of
knowledge hierarchy can be problematic. To make use of the knowledge structure, for
every event A ∈ F the event KiA must also be an element of F : if we can talk about the
event A, we should also be able to talk about the event that “player i knows A.”

Is it true that for every σ -algebra, every partition (Fi)i∈N representing the information
of the players, and every event A ∈ F , it is necessarily true that KiA ∈ F? When the set
of states of the world is infinite, the answer to that question is no. This is illustrated in
the next example, which uses the fact that there is a Borel set in the unit square whose
projection onto the first coordinate is not a Borel set in the interval [0, 1] (see Suslin
[1917]).

Example 9.37 Consider the following Aumann model of incomplete information:

� There are two players: N = {I, II}.
� The space of states of the world is the unit square: Y = [0, 1] × [0, 1], and F is the σ -algebra of

Borel sets in the unit square.
� For i = I, II, the information of player i is the i-th coordinate of ω; that is, for each x, y ∈ [0, 1]

denote

Ax = {(x, y) ∈ Y : 0 ≤ y ≤ 1}, By = {(x, y) ∈ Y : 0 ≤ x ≤ 1}. (9.49)

Ax is the set of all points in Y whose first coordinate is x, and By is the set of all points in Y

whose second coordinate is y. We then have

FI = {Ax : 0 ≤ x ≤ 1}, FII = {By : 0 ≤ y ≤ 1}. (9.50)

In words, Player I’s partition is the set of vertical sections of Y , and the partition of Player II is
the set of horizontal sections of Y . Thus, for any (x, y) ∈ Y Player I knows the x-coordinate and
Player II knows the y-coordinate.

Let E ⊆ Y be a Borel set whose projection onto the x-axis is not a Borel set, i.e., the set

F = {x ∈ [0, 1] : there exists y ∈ [0, 1] such that (x, y) ∈ E} (9.51)

is not a Borel set, and hence Fc = Y \ F is also not a Borel set in [0, 1]. Player I knows that the
event E does not obtain when the x-coordinate is not in F :

KI(E
c) = Fc × [0, 1]. (9.52)

This implies that despite the fact that the set Ec is a Borel set, the set of states of the world in which
Player I knows the event Ec is not a Borel set. �

In spite of the technical difficulties indicated by Examples 9.36 and 9.37, in Chapter 10
we develop a general model of incomplete information that allows infinite sets of states
of the world.

9.4 The Harsanyi model of games with incomplete information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In our treatment of the Aumann model of incomplete information, we concentrated on
concepts such as mutual knowledge and mutual beliefs among players regarding the true
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state of the world. Now we will analyze games with incomplete information, which are
models in which the incomplete information is about the game that the players play. In this
case, a state of nature consists of all the parameters that have a bearing on the payoffs, that
is, the set of actions of each player and his payoff function. This is why the state of nature
in this case is also called the payoff-relevant parameter of the game. This model was first
introduced by John Harsanyi [1967], nine years prior to the introduction of the Aumann
model of incomplete information, and was the first model of incomplete information used
in game theory.

The Harsanyi model consists of two elements. The first is the games in which the
players may participate, which will be called “state games,” and are the analog of states
of nature in Aumann’s model of incomplete information. The second is the beliefs that
the players have about both the state games and the beliefs of the other players.

Since the information the player has of the game is incomplete, a player is characterized
by his beliefs about the state of nature (namely, the state game) and the beliefs of the other
players. This characterization was called by Harsanyi the type of the player. In fact, as
we shall see, a player’s type in a Harsanyi model is equivalent to his belief hierarchy
in an Aumann model. Just as we did when studying the Aumann model of incomplete
information, we will also assume here that the space of states of the world is finite, so
that the number of types of each player is finite. We will further assume that every player
knows his own type, and that the set of types is common knowledge among the players.

Example 9.38 Harry (Player I, the row player) and William (Player II, the column player) are playing a game

in which the payoff functions are determined by one of the two matrices appearing in Figure 9.7.
William has two possible actions (t and b), while Harry has two or three possible actions (either T

and B, or T ,C, and B), depending on the payoff function.

William

State game G1

1, 0

1, 1

0, 2

1, 0

1, 0

1, 1

0, 20, 3

0, 2

1, 0
Harry

T

B

t b

William

State game G1

Harry

T

C

B

t b

Figure 9.7 The state games in the game in Example 9.38

Harry knows the payoff function (and therefore in particular knows whether he has two or three
actions available). William only knows that the payoff functions are given by either G1 or G2. He
ascribes probability p to the payoff function being given by G1 and probability 1 − p to the payoff
function being given by G2. This description is common knowledge among Harry and William.13

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

13 In other words, both Harry and William know that this is the description of the game, each one knows that the
other knows that this is the description of the game, and so on.
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(1, 0)t

T

B

T

B

C

G1

G2

I

II0

1 – p

p

I

b

t

b

t

b

t

b

t

b

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 0)

(0, 2)

(1, 1)

(1, 0)

(0, 2)

Figure 9.8 The game in Example 9.38 in extensive form

This situation can be captured by the extensive-form game appearing in Figure 9.8. In this game,
Nature chooses G1 or G2 with probability p or 1 − p, respectively, with the choice known to Harry
but not to William. In Figure 9.8 the state games are delineated by broken lines. Neither of the two
state games is a subgame (Definition 3.11, page 45), because there are information sets that contain
vertices from two state games. �

The game appearing in Figure 9.8 is the game that Harsanyi suggested as the model
for the situation described in Example 9.8. Such a game is called a Harsanyi game with
incomplete information and defined as follows.

Definition 9.39 A Harasanyi game with incomplete information is a vector
(N, (Ti)i∈N, p, S, (st )t∈×i∈NTi

) where:

� N is a finite set of players.
� Ti is a finite set of types for player i, for each i ∈ N . The set of type vectors is denoted

by T = ×i∈N Ti .
� p ∈ 
(T ) is a probability distribution over the set of type vectors14 that satisfies p(ti) :=∑

t−i∈T−i
p(ti , t−i) > 0 for every player i ∈ N and every type ti ∈ Ti .

� S is a set of states of nature, which will be called state games.15 Every state of nature
s ∈ S is a vector s = (N, (Ai)i∈N, (ui)i∈N ), where Ai is a nonempty set of actions of
player i and ui : ×i∈N Ai → R is the payoff function of player i.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

14 Recall that T−i = ×j �=iTj and t−i = (tj )j �=i .
15 For the sake of notational convenience, every state game will be represented by a game in strategic form. Everything

stated in this section also holds true in the case in which every state game is represented by a game in extensive
form.



348 Games with incomplete information and common priors

� st = (N, (Ai(ti))i∈N, (ui(t))i∈N ) ∈ S is the state game for the type vector t , for every
t ∈ T . Thus, player i’s action set in the state game st depends on his type ti only, and is
independent of the types of the other players.

A game with incomplete information proceeds as follows:

� A chance move selects a type vector t = (t1, t2, . . . , tn) ∈ T according to the probability
distribution p.

� Every player i knows the type ti that has been selected for him (i.e., his own type), but
does not know the types t−i = (tj )j �=i of the other players.

� The players select their actions simultaneously: each player i, knowing his type ti ,
selects an action ai ∈ Ai(ti).

� Every player i receives the payoff ui(t ; a), where a = (a1, a2, . . . , an) is the vector of
actions that have been selected by the players.

Player i, of type ti , does not know the types of the other players; he has a belief about
their types. This belief is the conditional probability distribution p(· | ti) over the set
T−i = ×j �=i Tj of the vectors of the types of the other players. The set of actions that
player i believes that he has at his disposal is part of his type, and therefore the set Ai(ti)
of actions available to player i in the state game st is determined by ti only, and not by the
types of other players. It is possible for a player, though, not to know the sets of actions
that the other players have at their disposal, as we saw in Example 9.38. He does have
beliefs about the action sets of the other players, which are derived from his beliefs about
their types. The payoff of player i depends on the state game st and on the vector of actions
a selected by the players, so that it depends on the vector of types t in two ways:

� The set of action vectors A(t) :=×i∈N Ai(ti) in the state game st depends on t .
� The payoff function ui(t) in the state game st depends on t ; even when the sets of action
Aj (tj ) do not depend on the players’ types, player i’s payoff depends on the types of all
players.

Because a player may not know for certain the types of the other players, he may not
know for certain the state of nature, which in turn implies that he may not know for
certain his own payoff function. In summary, a Harsanyi game is an extensive-form game
consisting of several state games related to each other through information sets, as depicted
in Figure 9.8.

Remark 9.40 The Harsanyi model, defined in Definition 9.39, provides a tool to describe
the incomplete information a player may have regarding the possible action sets of the
other players, their utility functions, and even the set of other players active in the game:
a player j who is not active in state game st has type tj such that Aj (tj ) contains only
one action. This interpretation makes sense because the set of equilibria in the game is
independent of the payoffs to such a type tj of player j (see Exercise 9.45). �

Remark 9.41 We note that in reality there is no chance move that selects one of the state
games: the players play one, and only one, of the possible state games. The Harsanyi
game is a construction we use to present the situation of interest to us, by describing the
beliefs of the players about the game that they are playing. For instance, suppose that
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in in Example 9.38 the players play the game G1. Since William does not know whether
the game he is playing is G1 or G2, from his standpoint he plays a state game that can
be either one of these games. Therefore, he constructs the extensive-form game that is
described in Figure 9.8, and the situation that he faces is a Harsanyi game with incomplete
information. �

In the economic literature the Harsanyi model is often referred to as the ex ante stage16

model as it captures the situation of the players before knowing their types. The situation
obtained after the chance move has selected the types of the players is referred to as the
interim stage model. This model corresponds to an Aumann situation of incomplete infor-
mation that captures the situation in a specific state of the world (Definition 9.5, page 324).

The next theorem generalizes Example 9.38, and states that any Harsanyi game with
incomplete information can be described as an extensive-form game. Its proof is left to
the reader (Exercise 9.35).

Theorem 9.42 Every (Harsanyi) game with incomplete information can be described as
an extensive-form game (with moves of chance and information sets).

9.4.1 Belief hierarchies
In any Aumann model of incomplete information we can attach a belief hierarchy to
every state of the world (Theorem 9.30, page 337). Similarly, in any Harsanyi game with
incomplete information we can attach a belief hierarchy to every type vector. We illustrate
this point by the following example.

Example 9.43 The residents of the town of Smallville live in a closed and supportive tight-knit community.

The personality characteristic that they regard as most important revolves around the question of
whether a person puts his family life ahead of his career, or his career ahead of his family. Kevin,
the local matchmaker, approaches two of the residents, Abe and Sarah, informing them that in
his opinion they would be well suited as a couple. It is well known in the community from past
experience that Kevin tends to match a man who stresses his career with a woman who emphasizes
family life, and a man who puts family first with a woman who is career-oriented, but there were
several instances in the past when Kevin did not stick to that rule. The distribution of past matches
initiated by Kevin is presented in the following diagram (Figure 9.9).

Family Woman

1
10

3

4
10

2
10

10
Family Man

Career Man

Career Woman

Figure 9.9 Player types with prior distribution

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

16 The Latin expression ex ante means “before.”
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The above verbal description can be presented as a Harsanyi model (without specifying the state
games) in the following way:

� The set of players is N = {Abe, Sarah}.
� Abe’s set of types is TA = {Careerist, Family}.
� Sarah’s set of types is TS = {Careerist, Family}.
� Because this match is one of Kevin’s matches, the probability distribution p over T = TA × TS

is calculated from past matches of Kevin; namely, it is the probability distribution given in
Figure 9.9.

� Since the state game corresponding to each pair of types is not specified, we denote the set of
states of nature by S = {sCC, sCF , sFC, sFF }, without specifying the details of each state game.
For each state game, the left index indicates the type of Abe (“C” for Career man, “F” for Family
man) and the right index indicates the type of Sarah (“C” for Career woman, “F” for Family
woman).

As each player knows his own type, armed with knowledge of the past performance of the match-
maker (the prior distribution in Figure 9.9), each player can calculate the conditional probability of
the type of the other player. For example, if Abe is a careerist, he can conclude that the conditional
probability that Sarah is also a careerist is

p(Sarah is a careerist | Abe is a careerist) =
2

10
2

10 + 4
10

= 1
3 ,

while if Abe is a family man he can conclude that the conditional probability that Sarah is a careerist
is

p(Sarah is a careerist | Abe is a family man) =
3

10
1

10 + 3
10

= 3
4 .

�

Given his type, every player can calculate the infinite belief hierarchy. The continuation
of our example illustrates this.

Example 9.43 (Continued) Suppose that Abe’s type is careerist. As shown above, in that case his

first-order beliefs about the state of nature is [ 2
3 (sCF ), 1

3 (sCC)]. His second-order beliefs are as
follows: he ascribes probability 2

3 to the state of nature being sCF , in which case Sarah’s beliefs
are [ 1

5 (sFF ), 4
5 (sFC)] (this follows from a similar calculation to the one performed above; verify!),

and he ascribes probability 1
3 to the state of nature being sCC , in which case Sarah’s beliefs are

[ 3
5 (sCF ), 2

5 (sCC )]. Abe’s higher-order beliefs can similarly be calculated. �

When we analyze a Harsanyi game without specifying the state game corresponding to
each state of nature, we will refer to it as a Harsanyi model of incomplete information.
Such a model is equivalent to an Aumann model of incomplete information in the sense
that every situation of incomplete information that can be analyzed using one model can
be analyzed using the other one: a partition element Fi(ω) of player i in an Aumann model
is his type in a Harsanyi model. Let (N, (Ti)i∈N, p, S, (st )t∈×i∈NTi

) be a Harsanyi model
of incomplete information. An Aumann model of incomplete information describing the
same structure of mutual information is the model in which the set of states of the world
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is the set of type vectors that have positive probability

Y = {t ∈ T : p(t) > 0}. (9.53)

The partition of each player i is given by his type: for every type ti ∈ Ti , there is a partition
element Fi(ti) ∈ Fi , given as follows:

Fi(ti) = {(ti , t−i) : t−i ∈ T−i , p(ti , t−i) > 0}. (9.54)

The common prior is P = p.
In the other direction, let (N, Y, (Fi)i∈N, s) be an Aumann model of incomplete infor-

mation over a set S of states of nature. A corresponding Harsanyi model of incomplete
information is given by the model in which the set of types of each player i is the set of
his partition elements Fi :

Ti = {Fi ∈ Fi}, (9.55)

and the probability distribution p is given by

p(F1, F2, . . . , Fn) = P

(⋂
i∈N

Fi

)
. (9.56)

Note that the intersection in this equation may be empty, or it may contain only one state
of the world, or it may contain several states of the world. If the intersection is empty,
the corresponding type vector is ascribed a probability of 0. If the intersection contains
more than one state of the world, then in the Aumann model of incomplete information no
player can distinguish between these states. The Harsanyi model identifies all these states
as one state, and ascribes to the corresponding type vector the sum of their probabilities.

This correspondence shows that a state of the world in an Aumann model of incomplete
information is a vector containing the state of nature and the type of each player. The
state of nature describes the payoff-relevant parameters, and the player’s type describes
his beliefs. This is why we sometimes write a state of the world ω in the following form
(we will expand on this in Chapter 11):

ω = (s(ω); t1(ω), t2(ω), . . . , tn(ω)), (9.57)

where s(ω) is the state of nature and ti(ω) is player i’s type in the state of the world ω.
The following conclusion is a consequence of Theorem 9.30 (page 337) and the equiv-

alence between the Aumann model and the Harsanyi model.

Theorem 9.44 In a Harsanyi model of incomplete information, every state of the world
ω = (s(ω); t1(ω), t2(ω), . . . , tn(ω)) uniquely determines the belief hierarchy of each player
over the state of nature and the beliefs of the other players.

9.4.2 Strategies and payoffs
In the presentation of a game with incomplete information as an extensive-form game,
each type ti ∈ Ti corresponds to an information set of player i. It follows that a pure
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strategy17 of player i is a function si : Ti →
⋃

ti∈Ti
Ai(ti) that satisfies

si(ti) ∈ Ai(ti), ∀ti ∈ Ti. (9.58)

In words, si(ti) is the action specified by the strategy si for player i of type ti (which is
an action available to him as a player of type ti). A mixed strategy of player i is, as usual,
a probability distribution over his pure strategies. A behavior strategy σi of player i is a
function mapping each type ti ∈ Ti to a probability distribution over the actions available
to that type. Notationally, σi : Ti →

⋃
ti∈Ti


(Ai(ti)) that satisfies

σi(ti) = (σi(ti ; ai))ai∈Ai (ti ) ∈ 
(Ai(ti)). (9.59)

In words, σi(ti ; ai) is the probability that player i of type ti chooses the action ai . A
Harsanyi game is an extensive-form game with perfect recall (Definition 9.39, page 347),
and therefore by Kuhn’s Theorem (Theorem 4.49, page 118) every mixed strategy is
equivalent to a behavior strategy. For this reason, there is no loss of generality in using
only behavior strategies, which is indeed what we do in this section.

Remark 9.45 Behavior strategy, as defined here, is a behavior strategy in a Harsanyi
game in which the state game corresponding to t is a strategic-form game. If the state
game is an extensive-form game, then Ai(ti) is the set of pure strategies in that game,
so that 
(Ai(ti)) is the set of mixed strategies of this state game. In this case, a strategy
σi : Ti →

⋃
ti∈Ti


(Ai(ti)) in which σi(ti) ∈ 
(Ai(ti)) is not a behavior strategy of the
Harsanyi game. Rather, a behavior strategy is a function σi : Ti →

⋃
ti∈Ti

Bi(ti) with
σi(ti) ∈ Bi(ti) for every ti ∈ Ti , where Bi(ti) is the set of behavior strategies of player i in
the state game s(ti ,t−i ), which is the same for all t−i ∈ T−i . The distinction between these
definitions is immaterial to the presentation in this section, and the results obtained here
apply whether the state game is given in strategic form or in extensive form. �

If the vector of the players’ behavior strategies is σ = (σ1, σ2, . . . , σn), and the vector
of types that is selected by the chance move is t = (t1, . . . , tn), then each vector of actions
(a1, . . . , an) is selected with probability

σ1(t1; a1) × σ2(t2; a2) × · · · × σn(tn; an). (9.60)

Player i’s expected payoff, which we denote by Ui(t ; σ ), is therefore

Ui(t ; σ ) := Eσ [ui(t)] =
∑

a∈A(t)

σ1(t1; a1) × · · · × σn(tn; an) × ui(t ; a). (9.61)

It follows that when the players implement strategy vector σ , the expected payoff in the
game for player i is

Ui(σ ) :=
∑
t∈T

p(t)Ui(t ; σ ). (9.62)

This is the expected payoff for player i at the ex ante stage, that is, before he has learned
what type he is. After the chance move, the vector of types has been selected, and the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

17 We use the notation si for a pure strategy of player i, and st for the state game that corresponds to the type
vector t .
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conditional expected payoff to player i of type ti is

Ui(σ | ti) :=
∑

t−i∈T−i

p(t−i | ti)Ui((ti , t−i); σ ), (9.63)

where

p(t−i | ti) = p(ti , t−i)∑
t ′−i∈T−i

p(ti , t ′−i)
= p(ti , t−i)

p(ti)
. (9.64)

This is the expected payoff of player i at the interim stage. The connection between
the ex ante (unconditional expected) payoff Ui(σ ) and the interim (conditional) payoff
(Ui(σ | ti))ti∈Ti

is given by the equation

Ui(σ ) =
∑
ti∈Ti

p(ti)Ui(σ | ti). (9.65)

Indeed, ∑
ti∈Ti

p(ti)Ui(σ | ti) =
∑
ti∈Ti

p(ti)
∑

t−i∈T−i

p(t−i | ti)Ui((ti , t−i); σ ) (9.66)

=
∑

t−i∈T−i

∑
ti∈Ti

p(ti)p(t−i | ti)Ui((ti , t−i); σ ) (9.67)

=
∑
t∈T

p(t)Ui(t ; σ ) (9.68)

= Ui(σ ). (9.69)

Equation (9.66) follows from Equation (9.63), Equation (9.67) is a rearrangement of
sums, Equation (9.68) is a consequence of the definition of conditional probability, and
Equation (9.69) follows from Equation (9.62).

9.4.3 Equilibrium in games with incomplete information
As we pointed out, Harsanyi games with incomplete information may be analyzed at two
separate points in time: at the ex ante stage, before the players know their types, and at the
interim stage, after they have learned what types they are. Accordingly, two different types
of equilibria can be defined. The first equilibrium concept, which is Nash equilibrium in
Harsanyi games, poses the requirement that no player can profit by a unilateral deviation
before knowing his type. The second equilibrium concept, called Bayesian equilibrium,
poses the requirement that no player i can profit by deviating at the interim stage, after
learning his type ti .

Definition 9.46 A strategy vector σ ∗ is a Nash equilibrium if 18 for each player i and
each strategy σi of player i,

Ui(σ
∗) ≥ Ui(σi, σ

∗
−i). (9.70)

As every game with incomplete information can be described as an extensive-form
game (Theorem 9.42), every finite extensive-form game has a Nash equilibrium in mixed

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

18 Recall that σ ∗
−i = (σ ∗

j )j �=i .
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strategies (Theorem 5.13, page 152), and every mixed strategy is equivalent to a behavior
strategy, we arrive at the following conclusion:

Theorem 9.47 Every game with incomplete information in which the set of types is finite
and the set of actions of each type is finite has a Nash equilibrium in behavior strategies.

Remark 9.48 When the set of player types is countable, a Nash equilibrium is still
guaranteed to exist (see Exercise 9.43). In contrast, when the set of player types is
uncountable, it may be the case that all the equilibria involve strategies that are not
measurable (see Simon [2003]). �
Definition 9.49 A strategy vector σ ∗ = (σ ∗

1 , σ ∗
2 , . . . , σ ∗

n ) is a Bayesian equilibrium if for
each player i ∈ N , each type ti ∈ Ti , and each possible19 action ai ∈ Ai(ti),

Ui(σ
∗ | ti) ≥ Ui((ai, σ

∗
−i) | ti). (9.71)

An equivalent way to define Bayesian equilibrium is by way of an auxiliary game,
called the agent-form game.

Definition 9.50 Let � = (N, (Ti)i∈N, p, S, (st )t∈T ) be a game with incomplete informa-
tion. The agent-form game �̂ corresponding to � is the following game in strategic form:

� The set of players is ∪i∈NTi: every type of each player in � is a player in �̂.
� The set of pure strategies of player ti in �̂ is Ai(ti), the set of available actions of that

type in the game �.
� The payoff function ûti of player ti in �̂ is given by

ûti (a) :=
∑

t−i∈T−i

p(t−i | ti)ui(ti , t−i ; (aj (tj ))j∈N ), (9.72)

where a = (aj (tj ))j∈N,tj∈Tj
denotes a vector of actions of all the players in �̂.

The payoff û(ti ; a) of player ti in �̂ equals the expected payoff of player i of type ti in
the game � when he chooses action ai(ti), and for any j �= i, player j of type tj chooses
action aj (tj ). The conditional probability in Equation (9.72) is well defined because we
have assumed that p(ti) > 0 for each player i and each type ti .

Note that every behavior strategy σi = (σi(ti))ti∈Ti
of player i in the game � naturally

defines a mixed strategy for the players in Ti in the agent-form game �̂. Conversely, every
vector of mixed strategies of the players in Ti in the agent-form game �̂ naturally defines
a behavior strategy σi = (σi(ti))ti∈Ti

of player i in the game �.
Theorem 9.51 relates Bayesian equilibria in a game � to the Nash equilibria in

the corresponding agent-form game �̂. The proof of the theorem is left to the reader
(Exercise 9.44).

Theorem 9.51 A strategy vector σ ∗ = (σ ∗
i )i∈N is a Bayesian equilibrium in a game �

with incomplete information if and only if the strategy vector (σ ∗
i (ti))i∈N,ti∈Ti

is a Nash
equilibrium in the corresponding agent-form game �̂.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

19 In Equation (9.71), Ui ((ai , σ
∗
−i ) | ti ) is the payoff of player i of type ti , when all other players use σ ∗, and he plays

action ai .
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As every game in strategic form in which the set of pure strategies available to each
player is finite has a Nash equilibrium (Theorem 5.13, page 152), we derive the next
theorem:

Theorem 9.52 Every game with incomplete information in which the set of types is finite
and the set of actions of each type is finite has a Bayesian equilibrium (in behavior
strategies).

As already noted, the two definitions of equilibrium presented in this section (Nash
equilibrium and Bayesian equilibrium) express two different perspectives on the game:
does each player regard the game prior to knowing his type or after knowing it?
Theorem 9.53 states that these two definitions are in fact equivalent.

Theorem 9.53 (Harsanyi [1967]) In a game with incomplete information in which the
number of types of each player is finite, every Bayesian equilibrium is also a Nash
equilibrium, and conversely every Nash equilibrium is also a Bayesian equilibrium.

In other words, no player has a profitable deviation after he knows which type he is
if and only if he has no profitable deviation before knowing his type. Recall that in the
definition of a game with incomplete information we required that p(ti) > 0 for each
player i and each type ti ∈ Ti . This is essential for the validity of Theorem 9.53, because
if there is a type that is chosen with probability 0 in a Harsanyi game, the action selected
by a player of that type has no effect on the payoff. In particular, in a Nash equilibrium a
player of this type can take any action. In contrast, because the conditional probabilities
p(t−i | ti) in Equation (9.64) are not defined for such a type, the payoff function of this
type is undefined, and in that case we cannot define a Bayesian equilibrium.

Proof of Theorem 9.53: The idea of the proof runs as follows. Because the expected payoff
of player i in a game with incomplete information is the expectation of the conditional
expected payoff of all of his types ti , and because the probability of each type is positive,
it follows that every deviation that increases the expected payoff of any single type of
player i also increases the overall payoff for player i in the game. In the other direction,
if there is a deviation that increases the total expected payoff of player i in the game, it
must necessarily increase the conditional expected payoff of at least one type ti .

Step 1: Every Bayesian equilibrium is a Nash equilibrium.
Let σ ∗ be a Bayesian equilibrium. Then for each player i ∈ N , each type ti ∈ Ti , and each
action ai ∈ Ai(ti),

Ui(σ
∗ | ti) ≥ Ui(ai, σ

∗
−i | ti). (9.73)

Combined with Equation (9.65) this implies that for each pure strategy si of player i we
have

Ui(si, σ
∗
−i) =

∑
ti∈Ti

p(ti)Ui(si(ti), σ
∗
−i | ti) ≤

∑
ti∈Ti

p(ti)Ui(σ
∗ | ti) = Ui(σ

∗). (9.74)
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As this inequality holds for any pure strategy si of player i, it also holds for any of his
mixed strategies. This implies that σ ∗

i is a best reply to σ ∗
−i . Since this is true for each

player i ∈ N , we conclude that σ ∗ is a Nash equilibrium.

Step 2: Every Nash equilibrium is a Bayesian equilibrium.
We will prove that if σ ∗ is not a Bayesian equilibrium, then it is also not a Nash equilibrium.
As σ ∗ is not a Bayesian equilibrium, there is at least one player i ∈ N , type ti ∈ Ti , and
action ai ∈ Ai(ti) satisfying

Ui(σ ∗ | ti) < Ui((ai, σ
∗
−i) | ti). (9.75)

Consider a strategy σ̂i of player i defined by

σ̂i(t
′
i ) =

{
σ ∗

i (t ′i ) when t ′i �= ti ,

ai when t ′i = ti .
(9.76)

In words: strategy σ̂i is identical to strategy σ ∗
i except in the case of type ti , who plays ai

instead of σ ∗
i (ti). Equations (9.65) and (9.75) then imply that

Ui (̂σi, σ
∗
−i) =

∑
t ′i∈Ti

p(t ′i )Ui (̂σi, σ
∗
−i | t ′i ) (9.77)

=
∑
t ′i �=ti

p(t ′i )Ui (̂σi, σ
∗
−i | t ′i ) + p(ti)Ui (̂σi, σ

∗
−i | ti) (9.78)

=
∑
t ′i �=ti

p(t ′i )Ui(σ ∗
i , σ ∗

−i | t ′i ) + p(ti)Ui(ai, σ
∗
−i | ti) (9.79)

>
∑
t ′i �=ti

p(t ′i )Ui(σ
∗
i , σ ∗

−i | t ′i ) + p(ti)Ui(σ
∗
i , σ ∗

−i | ti) (9.80)

=
∑
t ′i∈Ti

p(t ′i )Ui(σ
∗ | t ′i ) = Ui(σ

∗). (9.81)

Inequality (9.80) follows from Inequality (9.75) and the assumption that p(ti) > 0 for
each player i and every type ti ∈ Ti . From the chain of equations (9.77)–(9.81) we get

Ui (̂σi, σ
∗
−i) > Ui(σ ∗), (9.82)

which implies that σ ∗ is not a Nash equilibrium. �

We next present two examples of games with incomplete information and calculate
their Bayesian equilibria.
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Example 9.54 Consider the following game with incomplete information:

� N = {I, II}.
� TI = {I1, I2} and TII = {II}: Player I has two types and Player II has one type.
� p(I1, II) = p(I2, II) = 1

2 : the two types of Player I have equal probabilities.
� There are two states of nature corresponding to two state games in which each player has two

possible actions, and the payoff functions are given by the matrices shown in Figure 9.10.

Player II

Player I

The state game for  t = (I1, II) The state game for  t = (I2, II)

T1 1, 0 0, 2

0, 3 1, 0B1

L R

Player II

Player I
T2 0, 2 1, 1

1, 0 0, 2B2

L R

Figure 9.10 The state games in Example 9.54

Because the information each player has is his own type, Player I knows the payoff matrix, while
Player II does not know it (see Figure 9.11).

1, 0L

R

L

R

L

R

L

R

B2

T2

B1

T1

I1

II0

1
2

1
2 I2

0, 2

0, 3

1, 0

0, 2

1, 1

1, 0

0, 2

Figure 9.11 The game of Example 9.54 in extensive form

Turning to the calculation of Bayesian equilibria in this game, given such an equilibrium, denote
by [q(L), (1 − q)(R)] the equilibrium strategy of Player II, by [x(T1), (1 − x)(B1)] the equilibrium
strategy of Player I of type I1, and by [y(T2), (1 − y)(B2)] the equilibrium strategy of Player I of
type I2 (see Figure 9.12).

Player II

Player I

Strategies in state game t = (I1, II) Strategies in state game t = (I2, II)

x 1, 0 0, 2

0, 3 1, 01 – x

y

1 – y

q 1 – q q 1 – q

Player II

Player I
0, 2 1, 1

1, 0 0, 2

Figure 9.12 The strategies of the players in the game of Example 9.54
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We first show that 0 < q < 1.

� If q = 1, then type I1’s best reply is T (x = 1) and I2’s best reply is B (y = 0). But Player II’s
best reply to this strategy is R (q = 0). It follows that q = 1 is not part of a Bayesian equilibrium.

� If q = 0, then type I1’s best reply is B (x = 0) and I2’s best reply is T (y = 1). But Player II’s
best reply to this strategy is L (q = 1). It follows that q = 0 is not part of a Bayesian equilibrium.

The conclusion is therefore that in a Bayesian equilibrium Player II’s strategy must be completely
mixed, so that he is necessarily indifferent between L and R. This implies that

1
2 · 3(1 − x) + 1

2 · 2y = 1
2 · 2x + 1

2 (y + 2(1 − y)), (9.83)

giving us

x = 1 + 3y

5
. (9.84)

Is every pair (x, y) satisfying Equation (9.84) part of a Bayesian equilibrium? For (x, y) to be
part of a Bayesian equilibrium, it must be a best reply to q.

� If q < 1
2 , Player I’s best reply is x = 0, y = 1, which does not satisfy Equation (9.84).

� If q = 1
2 , Player I’s payoff is 1

2 irrespective of what he plays, so that every pair (x, y) is a best
reply to q = 1

2 .
� If q > 1

2 , Player I’s best reply is x = 1, y = 0, which does not satisfy Equation (9.84).

This leads to the conclusion that a pair of strategies (x, y; q) is a Bayesian equilibrium if and only
if q = 1

2 and Equation (9.84) is satisfied. Since x and y are both in the interval [0, 1] we obtain

1
5 ≤ x ≤ 4

5 , 0 ≤ y ≤ 1, x = 1+3y
5 . (9.85)

We have thus obtained a continuum of Bayesian equilibria (x, y; q), in all of which Player I’s payoff
(of either type) is 1

2 , and Player II’s payoff is

1
2 · 3(1 − x) + 1

2 · 2y = 12+y

10 . (9.86)

�

Example 9.55 Cournot duopoly competition with incomplete information Consider the duopoly com-

petition described in Example 4.23 (page 99) when there is incomplete information regarding
production costs. Two manufacturers, labeled 1 and 2, produce the same product and compete for
the same market of potential customers. The manufacturers simultaneously select their production
quantities, with demand determining the market price of the product, which is identical for both
manufacturers. Denote by q1 and q2 the quantities respectively produced by manufacturers 1 and
2. The total quantity of products in the market is therefore q1 + q2. Assume that when the supply
is q1 + q2 the price of each item is 2 − q1 − q2. The per-item production cost for Manufacturer 1
is c1 = 1, and it is common knowledge among the two manufacturers. The per-item production
cost for Manufacturer 2 is known only to him, not to Manufacturer 1. All that Manufacturer 1
knows about it is that it is either cL

2 = 3
4 (low cost) or cH

2 = 5
4 (high cost), with equal probability.

Note that the average production cost of Manufacturer 2 is 1, which is equal to Manufacturer 1’s
cost.
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Let us find a Bayesian equilibrium of this game. This is a game with incomplete information in
which the types of each manufacturer correspond to their production costs:20

� N = {1, 2}.
� T1 = {1}, T2 = {

3
4 , 5

4

}
.

� p(1, 3
4 ) = p(1, 5

4 ) = 1
2 .

� There are two states of nature, corresponding respectively to the type vectors (1, 3
4 ) and (1, 5

4 ).
Each one of these states of nature corresponds to a state game in which the action set of each
player is [0,∞) (each player can produce any nonnegative quantity of items), and the payoff
functions which we provide now.

Denote by ui(q1, q
H
2 , qL

2 ) the net profit of Manufacturer i as a function of the quantities of items
produced by each type, where q1 is the quantity produced by Manufacturer 1, qH

2 is the quantity
produced by Manufacturer 2 if his production costs are high, and qL

2 is the quantity produced by
Manufacturer 2 if his production costs are low. As Manufacturer 1 does not know the type of
Manufacturer 2, his expected profit is

u1
(
q1, q

H
2 , qL

2

) = 1
2q1

(
2 − q1 − qH

2

)+ 1
2q1

(
2 − q1 − qL

2

)− c1q1

= q1
(
2 − c1 − q1 − 1

2qH
2 − 1

2qL
2

)
. (9.87)

The net profit of Manufacturer 2’s two possible types is

uH
2

(
q1, q

H
2 , qL

2

) = qH
2

(
2 − q1 − qH

2

)− cH
2 qH

2 = qH
2

(
2 − cH

2 − q1 − qH
2

)
, (9.88)

uL
2

(
q1, q

H
2 , qL

2

) = qL
2

(
2 − q1 − qL

2

)− cL
2 qL

2 = qL
2

(
2 − cL

2 − q1 − qL
2

)
. (9.89)

Since each manufacturer has a continuum of actions, the existence of an equilibrium is not
guaranteed. Nevertheless, we will assume that an equilibrium exists, and try to calculate it. Denote by
q∗

1 the quantity of items produced by Manufacturer 1 at equilibrium, by q∗H
2 the quantity produced by

Manufacturer 2 at equilibrium if his production costs are high, and by q∗L
2 the quantity he produces

at equilibrium under low production costs. At equilibrium, every manufacturer maximizes his
expected payoff given the strategy of the other manufacturer: q∗

1 maximizes u1(q1, q
∗H
2 , q∗L

2 ), q∗H
2

maximizes uH
2 (q∗

1 , qH
2 , q∗L

2 ), and q∗L
2 maximizes uL

2 (q∗
1 , q∗H

2 , qL
2 ). Since uH

2 is a quadratic function
of qH

2 , and the coefficient of (qH
2 )2 is negative, it has a maximum at the point where its derivative

with respect to qH
2 vanishes. This results in

qH
2 =

3
4 − q1

2
. (9.90)

Similarly, we differentiate uL
2 with respect to qL

2 , set the derivative to zero, and get

qL
2 =

5
4 − q1

2
. (9.91)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

20 Similar to remarks we made with respect to the Aumann model regarding the distinction between states of nature
and states of the world, the type t2 = 3

4 in this Harsanyi model contains far more information than the simple fact
that the per-unit production cost of Manufacturer 2 is 3

4 ; it contains the entire belief hierarchy of Manufacturer 2
with respect to the production costs of both manufacturers. Production costs are states of nature, with respect to
which there is incomplete information.
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Finally, differentiate u1 with respect to q1 and set the derivative to zero, obtaining

q1 = 1 − 1
2qH

2 − 1
2qL

2

2
. (9.92)

Insert Equations (9.90) and (9.91) in Equation (9.92) to obtain

q1 = 1 − 1−q1

2

2
, (9.93)

or, in other words,

q∗
1 = 1

3 . (9.94)

This leads to

q∗H
2 =

3
4 − 1

3

2
= 5

24 , (9.95)

q∗L
2 =

5
4 − 1

3

2
= 11

24 . (9.96)

The conclusion is that (q∗
1 , q∗H

2 , q∗L
2 ) = ( 1

3 , 5
24 , 11

24 ) is the unique Bayesian equilibrium of the game.
Note that q∗H

2 < q∗
1 < q∗L

2 : the high (inefficient) type produces less than Manufacturer 1, and the
low (more efficient) type produces more than Manufacturer 1, whose production costs are the
average of the production costs of the two types of Manufacturer 2.

The profits gained by the manufacturers are

u1
(

1
3 , 5

24 , 11
24

) = 1
3

(
2 − 1 − 1

3 − 8
24

) = 1
9 , (9.97)

uH
2

(
1
3 , 5

24 , 11
24

) = 5
24

(
3
4 − 1

3 − 5
24

) = (
5

24

)2
, (9.98)

uL
2

(
1
3 , 5

24 , 11
24

) = 11
24

(
5
4 − 1

3 − 11
24

) = (
11
24

)2
. (9.99)

Therefore Manufacturer 2’s expected profit is

1
2

(
5

24

)2 + 1
2

(
11
24

)2 ≈ 0.127. (9.100)

The case in which Manufacturer 2 also does not know his exact production cost (but knows
that the cost is either 3

4 or 5
4 with equal probability, and thus knows that his average pro-

duction cost is 1) is equivalent to the case we looked at in Example 4.23 (page 99). In that
case we derived the equilibrium q∗

1 = q∗
2 = 1

3 , with the profit of each manufacturer being 1
9 .

Comparing that figure with Equation (9.97), we see that relative to the incomplete informa-
tion case, Manufacturer 1’s profit is the same. Using Equations (9.98)–(9.99) and the fact that
0.127 > 1

9 , we see that Manufacturer 2’s profit when he does not know his own type is smaller
than his expected profit when he knows his type; the added information is advantageous to
Manufacturer 2.

We also gain insight by comparing this situation to one in which the production cost of Manu-
facturer 2 is common knowledge among the two manufacturers. In that case, after the selection of
Manufacturer 2’s type by the chance move, we arrive at a game similar to a Cournot competition
with complete information, which we solved in Example 4.23 (page 99). With probability 1

2 the
manufacturers face a Cournot competition in which c1 = 1 and c2 = cH

2 = 5
4 , and with probability
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1
2 they face a Cournot competition in which c1 = 1 and c2 = cL

2 = 3
4 . In the first case, equilibrium

is attained at q∗
1 = 5

12 and q∗
2 = 1

6 , with profits of u1 = (
1
6

)2
and u2 = (

5
12

)2
(verify!). In the second

case, equilibrium is attained at q∗
1 = 1

4 and q∗
2 = 1

2 , corresponding to profits of u1 = (
1
4

)2
and

u2 = (
1
2

)2
(verify!). The expected profits prior to the selection of the types is

u1 = 1
2

(
1
4

)2 + 1
2

(
5
12

)2 = 1
8 , (9.101)

u2 = 1
2

(
1
6

)2 + 1
2

(
1
2

)2 = 5
36 . (9.102)

For comparison, we present in table form the profits attained by the manufacturers in each of the
three cases dealt with in this example (with respect to the production costs of Manufacturer 2):

Knowledge regarding Manufacturer 1’s Manufacturer 2’s
Manufacturer 2’s type profit profit

Unknown to both manufacturers 1
9

1
9

Known only to Manufacturer 2 1
9 ≈ 0.127

Known to both manufacturers 1
8

5
36

Note the following:

� Both manufacturers have an interest in Manufacturer 2’s type being common knowledge, as
opposed to the situation in which that type is unknown to both manufacturers, because 1

8 > 1
9

and 5
36 > 1

9 .
� Both manufacturers have an interest in Manufacturer 2’s type being common knowledge, as

opposed to the situation in which that type is known solely to Manufacturer 2, because 1
8 > 1

9

and 5
36 > 0.127.

This last conclusion may look surprising, because it says that Manufacturer 2 prefers that his private
information regarding his production cost be exposed and made public knowledge. �

9.5 Incomplete information as a possible interpretation
of mixed strategies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

There are cases in which it is difficult to interpret or justify the use of mixed strategies
in equilibria. Consider for example the following two-player game in which the payoff
functions are given by the matrix in Figure 9.13.

This game has only one Nash equilibrium, with Player I playing the mixed strategy
[ 3

4 (T ), 1
4 (B)] and Player II playing the mixed strategy [ 1

2 (L), 1
2 (R)]. The payoff at equilib-

rium is 0 for both players. When Player II plays strategy [1
2 (L), 1

2 (R)] Player I is indifferent
between T and B. If that is the case, why should he stick to playing a mixed strategy?
And even if he does play a mixed strategy, why the mixed strategy [ 3

4 (T ), 1
4 (B)]? If he

plays, for example, the pure strategy T , he guarantees himself a payoff of 0 without going
through the bother of randomizing strategy selection.
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Player II

Player I
T 0, 0 0, –1

1, 0 –1, 3B

L R

Figure 9.13 The payoff matrix of a strategic-form game

Player II

Player I
T εα, εβ εα, −1

1, εβ −1, 3B

L R

Figure 9.14 The payoff matrix of Figure 9.13 with “noise”

As we now show, this equilibrium can be interpreted as the limit of a sequence of
Bayesian equilibria of games in which the players play pure strategies. The idea is to
add incomplete information by injecting “noise” into the game’s payoffs; each player will
know his own payoffs, but will be uncertain about the payoffs of the other player. To
illustrate this idea, suppose the payoff function, rather than being known with certainty,
is given by the matrix of Figure 9.14.

In Figure 9.14, ε (the amplitude of the noise) is small and α and β are independently
and identically distributed random variables over the interval [−1, 1], with the uniform
distribution. Note that for ε = 0 the resulting game is the original game appearing in
Figure 9.13.

Suppose that Player I knows the value of α and Player II knows the value of β; i.e.,
each player has precise knowledge of his own payoff function. This game can be depicted
as a game with incomplete information and a continuum of types, as follows:

� The set of players is N = {I, II}.
� The type space of Player I is TI = [−1, 1].
� The type space of Player II is TII = [−1, 1].
� The prior distribution over T is the uniform distribution over the square [−1, 1]2.
� The state game corresponding to the pair of types (α, β) ∈ T := TI × TII is given by the

matrix in Figure 9.14.

The Harsanyi game that we constructed here has a continuum of types. The definition
of a Harsanyi game is applicable also in this case, provided the set of type vectors is a
measurable space, so that a common prior distribution can be defined. In the example
presented here, the set of type vectors is [−1, 1]2, which is a measurable space (with the
σ -algebra of Borel sets), and the common prior distribution is the uniform distribution.
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The expected payoff and the conditional expected payoff are defined analogously to the
definitions in Equations (9.62) and (9.63), by replacing the summation over T (in Equation
(9.62)) or on T−i (in Equation (9.63)) with integration. To ensure that the expressions in
these equations are meaningful, we need to require the strategies of the players to be
measurable functions of their type, and the payoff functions have to be measurable as well
(so that the expected payoffs are well defined). The definitions of Nash equilibrium and
Bayesian equilibrium remain unchanged (Definitions 9.46 and 9.49).

Since each player has a continuum of types, the existence of a Bayesian equilibrium
is not guaranteed. We will, nevertheless, assume that there exists a Bayesian equilibrium
and try to identify it. In fact, we will prove that there exists an equilibrium in which the
strategies are threshold strategies: the player plays one action if his type is less than or
equal to a particular threshold, and he plays the other action if his type is greater than this
threshold.

� Let α0 ∈ [−1, 1], and let s
α0
I be the following strategy:

s
α0
I =

{
T when α > α0,

B when α ≤ α0.
(9.103)

In words, if Player I’s type is “high” (α > α0) he plays T , and if his type is “low”
(α ≤ α0) he plays B.

� Let β0 ∈ [−1, 1] and let s
α0
II be the following strategy:

s
β0

II =
{

L when β > β0,

R when β ≤ β0.
(9.104)

In words, if Player II’s type is “high” (β > β0) he plays L, and if his type is “low”
(β ≤ β0) he plays R.

Next, we will identify two values, α0 and β0, for which the pair of strategies (sα0
I , s

β0
II )

form a Bayesian equilibrium.
Since P(β > β0) = 1−β0

2 and P(β ≤ β0) = 1+β0

2 , the expected payoff of Player I of type

α facing strategy s
β0

II of Player II is

UI
(
T , s

β0
II

∣∣α) = εα, (9.105)

if he plays T ; and it is

UI
(
B, s

β0
II

∣∣α) = 1
1 − β0

2
+ (−1)

1 + β0

2
= −β0, (9.106)

if he plays B. In order for s
α0
I to be a best reply to s

β0
II the following conditions must hold:

α > α0 =⇒ UI
(
T , s

β0

II

∣∣α) ≥ UI
(
B, s

β0

II

∣∣α) ⇐⇒ εα ≥ −β0, (9.107)

α ≤ α0 =⇒ UI
(
T , s

β0
II

∣∣α) ≤ UI
(
B, s

β0
II

∣∣α) ⇐⇒ εα ≤ −β0. (9.108)

From this we conclude that at equilibrium,

εα0 = −β0. (9.109)
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We can similarly calculate that the expected payoff of Player II of type β facing strategy
s
α0
I of Player I is

UII
(
s
α0
I , L

∣∣β) = εβ, (9.110)

UII
(
s
α0
I , R

∣∣β) = (−1)
1 − α0

2
+ 3

1 + α0

2
= 1 + 2α0. (9.111)

In order for s
β0
II to be a best reply against s

α0
I , the following needs to hold:

β > β0 =⇒ UII
(
s
α0
I , L

∣∣β) ≥ UII
(
s
α0
I , R

∣∣β) ⇐⇒ εβ ≥ 1 + 2α0,

β ≤ β0 =⇒ UII
(
s
α0
I , L

∣∣β) ≤ UII
(
s
α0
I , R

∣∣β) ⇐⇒ εβ ≤ 1 + 2α0.

From this we further deduce that at equilibrium

εβ0 = 1 + 2α0 (9.112)

must hold. The solution of Equations (9.109) and (9.112) is

α0 = − 1

2 + ε2
, β0 = ε

2 + ε2
. (9.113)

The probability that Player I will play B is therefore

Pε(B) = P
(

α ≤ − 1

2 + ε2

)
= 1 − 1

2+ε2

2
= 1 + ε2

4 + 2ε2
, (9.114)

and the probability that Player II will play R is

Pε(R) = P
(

β ≤ ε

2 + ε2

)
= 1 + ε

2+ε2

2
= 2 + ε + ε2

4 + 2ε2
. (9.115)

When ε approaches 0, that is, when we reduce the uncertainty regarding the payoffs down
towards zero, we get

lim
ε→0

Pε(B) = 1
4 , (9.116)

lim
ε→0

Pε(R) = 1
2 , (9.117)

which is the mixed strategy equilibrium in the original game that began this discussion.
It follows that in the equilibrium (sα0

I , s
β0
II ) each player implements a pure strategy.

Moreover, for α �= α0, the action chosen by Player I of type α yields a strictly higher
payoff than the action not chosen by him. Similarly, when β �= β0, the action chosen by
Player II of type is β yields a strictly higher payoff than the action not chosen by him.
Harsanyi [1973] proposed this sort of reasoning as a basis for a new interpretation of mixed
strategies. According to Harsanyi, a mixed strategy can be viewed as a pure strategy of a
player that can be of different types. Each type chooses a pure strategy, and different types
may choose different pure strategies. From the perspective of other players, who do not
know the player’s type but rather have a belief (probability distribution) about the player’s
type, it is as if the player chooses his pure strategy randomly; that is, he is implementing
a mixed strategy. It is proved in Harsanyi [1973] that this result can be applied to n-player
strategic-form games in which the set of pure strategies is finite. That paper also identifies
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conditions guaranteeing that each equilibrium is the limit of equilibria in “games with
added noise,” similar to those presented in the above example, as the amplitude of the
noise approaches zero.

We note that the same result obtains when the distribution of noise is not necessarily
uniform over the interval [−1, 1]. Any probability distribution that is continuous over a
compact, nonempty interval can be used (an example of such a probability distribution
appears in Exercise 9.47).

9.6 The common prior assumption: inconsistent beliefs
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As noted above, in both the Aumann and Harsanyi models, a situation of incomplete
information can be assessed from two different perspectives: the ex ante stage, prior to
the chance move selecting the state of the world (in the Aumann model) or the type vector
(in the Harsanyi model), and the interim stage, after the chance move has selected the
type vector and informed each player about his type, but before the players choose their
actions. Prior to the selection of the state of the world, no player knows which information
(the partition element in the Aumann model; the type in the Harsanyi model) he will
receive; he only knows the prior distribution over the outcomes of the chance move. After
the chance move, each player receives information, and updates his beliefs about the state
of the world in the Aumann model (the distribution P conditioned on Fi(ω)) or about the
types of the other players in the Harsanyi model (the distribution p conditioned on ti).

The concept of interim beliefs is straightforward: a player’s interim beliefs are his beliefs
after they have been updated in light of new information he has privately received. In real-
life situations, a player’s beliefs may not be equal to his updated conditional probabilities
for various reasons: errors in the calculation of conditional probability, lack of knowledge
of the prior distribution, psychologically induced deviations from calculated probabilities,
or in general any “subjective feeling” regarding the probability of any particular event,
apart from any calculations. It therefore appears to be natural to demand that the interim
beliefs be part of the fundamental data of the game, and not necessarily derived from
prior distributions (whether or not those prior distributions are common). This is not the
case in the Aumann and Harsanyi models: the fundamental data in these models includes
a common prior distribution, with the interim beliefs derived from the common prior
through the application of Bayes’ rule. Assuming the existence of a common prior means
adopting a very strong assumption. Can this assumption be justified? What is the exact
role of the prior distribution p? Who, or what, makes that selection of the type vector (in
the Harsanyi model) or the state of the world (in the Aumann model) at the beginning of
the game? And how are the players supposed to “know” the prior distribution p that forms
part of the game data?

When player beliefs in the interim stage are derived from one common prior by way
of Bayes’ rule, given the private information that the players receive, those beliefs are
termed consistent beliefs. They are called consistent because they imply that the play-
ers’ beliefs about the way the world works are identical; the only thing that distin-
guishes players from each other is the information each has received. In that case there is
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“no difference” between the Harsanyi depiction of the game and its depiction in the interim
stage. Theorem 9.53 (page 355) states that the sets of equilibria in both depictions are
identical (when the set of type vectors is finite). This means that the Aumann and Harsanyi
models may be regarded as “convenient tools” for analyzing the interim stage, which is
the stage in which we are really interested.

If we propose that the most relevant stage for analyzing the game is the interim stage, in
which each player is equipped with his own (subjective) interim beliefs, the next question
is: can every system of interim stage beliefs be described by a Harsanyi game? In other
words, given a system of interim stage beliefs, can we find a prior distribution p such that
the beliefs of each player’s type is the conditional probability derived from p, given that
the player is of that type? The next example shows that the answer to this question may
be negative.

Example 9.56 Consider a model of incomplete information in which:

� there are two players: N = {I, II}, and
� each player has two types: TI = {I1, I2}, TII = {II1, II2}, and T = TI × TII = {I1II1, I1II2,

I2II1, I2II2}.
Suppose that in the interim stage, before actions are chosen by the players, the mutual beliefs of

the players’ types are given by the tables in Figure 9.15.

II1

Player I’s beliefs

I1 3/7 4/7
2/3 1/3I2

Player II’s beliefs

I1 1/2 4/5
1/2 1/5I2

II2 II1 II2

Figure 9.15 The mutual beliefs of the various types in the interim stage in Example 9.56

The tables in Figure 9.15 have the following interpretation. The table on the left describes the
beliefs of the two possible types of Player I: Player I of type I1 ascribes probability 3

7 to the type of
Player II being II1 and probability 4

7 to the type of Player II being II2. Player I of type I2 ascribes
probability 2

3 to the type of Player II being II1 and probability 1
3 to the type of Player II being II2.

The table on the right describes the beliefs of the two possible types of Player II. For example,
Player II of type II1 ascribes probability 1

2 to the type of Player I being I1 and probability 1
2 to the

type of Player I being I2.
There is no common prior distribution p over T = TI × TII that leads to the beliefs described

above. This can readily be seen with the assistance of Figure 9.16.

II1

I1 2x 4x
2x xI2

II2

Figure 9.16 Conditions that must be satisfied in order for a common prior in Example 9.56 to exist
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In Figure 9.16, we have denoted x = p(I2, II2). In order for the beliefs of type I2 to correspond
with the data in Figure 9.15, it must be the case that p(I2, II1) = 2x (because according to Figure 9.15
type I2 believes that the probability that Player II’s type II1 is twice the probability that his type is
II2). In order for the beliefs of type II1 to correspond with the data in Figure 9.15, it must be the case
that p(I1, II1) = 2x, and in order for the beliefs of type II2 to correspond with the data in Figure 9.15,
it must be the case that p(I1, II2) = 4x. But then the beliefs of type I1 are [ 3

7 (II1), 4
7 (II2)], while

according to Figure 9.16, these beliefs are [ 1
3 (II1), 2

3 (II2)]. �

The incomplete information situation described in the last example is a situation of
inconsistent beliefs. Such a situation cannot be described by a Harsanyi model, and it
therefore cannot be described by an Aumann model. Analyzing such situations requires
extending the Harsanyi model, which is what we will do in the next chapter, where we
will construct a model of incomplete information in which the beliefs of the types are part
of the data of the game. The question is what can be said about models of situations with
inconsistent beliefs. For one thing, the concept of Bayesian equilibrium is still applicable,
also when players’ beliefs are inconsistent. In the definition of Bayesian equilibrium, the
prior p has significance only in establishing the beliefs p(t−i | ti) in Equation (9.63). That
means that the definition is meaningful also when beliefs are not derived from a common
prior. In the next chapter we will return to the topic of consistency, provide a formal
definition of the concept, and define Bayesian equilibrium in general belief structures.

9.7 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Kripke’s S5 system was defined in Kripke [1963] (see also Geanakoplos [1992]). The
concept of common knowledge first appeared in Lewis [1969] and was independently
defined in Aumann [1976]. Theorem 9.32 (page 339) is proved in Aumann [1976], in
which he also proves the Characterization Theorem 9.24 (page 333) in a formulation that
is equivalent to that appearing in Remark 9.26 (page 333). The same paper presents a
dynamic process that leads to a posterior probability that is common knowledge. A formal
description of that dynamic process is given by Geanakoplos and Polemarchakis [1982].
Further developments of this idea can be found in many papers, including Geanakoplos
and Sebenius [1983], McKelvey and Page [1986], and Parikh and Krasucki [1990].

John Harsanyi proposed the Harsanyi model of incomplete information in a series
of three papers titled “Games of incomplete information played by Bayesian players”
(Harsanyi [1967, 1968a, 1968b]), for which he was awarded the Nobel Memorial Prize
in Economics in 1994. Harsanyi also proposed the interpretation of the concept of mixed
strategies and mixed equilibria as the limit of Bayesian equilibria (in Harsanyi [1973]), as
explained in Section 9.5 (page 361).

For further discussions on the subject of the distinction between knowledge and
probability-one belief, the reader is directed to Monderer and Samet [1989] and Vas-
silakis and Zamir [1993].

Exercise 9.14 is based on a question suggested by Ronen Eldan. Geanakoplos [1992]
notes that the riddles on which Exercises 9.23 and 9.31 are based first appeared in Bollobás
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[1953]. Exercise 9.25 is proved in Geanakoplos and Polemarchakis [1982], from which
Exercise 9.28 is also taken. Exercise 9.26 was donated to the authors by Ayala Mashiah-
Yaakovi. Exercises 9.29 and 9.30 are from Geanakoplos and Sebenius [1983]. Exercise
9.33 is taken from Geanakoplos [1992]. Exercise 9.34 is the famous “coordinated attack
problem,” studied in the field of distributed computing. The formulation of the exercise is
from Halpern [1986]. Exercise 9.39 is from Harsanyi [1968a]. Exercise 9.40 is based on
Spence [1974]. Exercise 9.41 is based on Akerlof [1970]. Exercise 9.46 is the “Electronic
Mail game” of Rubinstein [1989]. Exercise 9.53 is based on Aumann [1987].

The authors thank Yaron Azrieli, Aviad Heifetz, Dov Samet, and Eran Shmaya for their
comments on this chapter.

9.8 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the exercises in this chapter, all announcements made by the players are consid-
ered common knowledge, and the game of each exercise is also considered common
knowledge among the players.

9.1 Prove that the knowledge operator Ki (Definition 9.8, page 325) of each player i

satisfies the following properties:

(a) KiY = Y : player i knows that Y is the set of all states.
(b) KiA ∩ KiB = Ki(A ∩ B): player i knows event A and knows event B if and

only if he knows event A ∩ B.
(c) (KiA)c = Ki((KiA)c): player i does not know event A if and only if he knows

that he does not know event A.

9.2 This exercise shows that the Kripke S5 system characterizes the knowledge operator.
Let Y be a finite set, and let K : 2Y → 2Y be an operator that associates with

each subset A of Y a subset K(A) of Y . Suppose that the operator K satisfies the
following properties:

(i) K(Y ) = Y .
(ii) K(A) ∩ K(B) = K(A ∩ B) for every pair of subsets A, B ⊆ Y .
(iii) K(A) ⊆ A for every subset A ⊆ Y .
(iv) K(K(A)) = K(A) for every subset A ⊆ Y .
(v) (K(A))c = K((K(A))c) for every subset A ⊆ Y .

Associate with each ω ∈ Y a set F (ω) as follows:

F (ω) :=
⋂

{A ⊆ Y, ω ∈ K(A)}. (9.118)

(a) Prove that ω ∈ F (ω) for each ω ∈ Y .
(b) Prove that if ω′ ∈ F (ω), then F (ω) = F (ω′). Conclude from this that the family

of sets F := {F (ω), ω ∈ Y } is a partition of Y .
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(c) Let K ′ be the knowledge operator defined by the partition F :

K ′(A) = {ω ∈ Y : F (ω) ⊆ A}. (9.119)

Prove that K ′ = K .
(d) Which of the five properties listed above did you use in order to prove that

K ′ = K?

9.3 Prove that in Kripke’s S5 system (see page 327), the fourth property, KiKiA = KiA,
is a consequence of the other four properties.

9.4 Consider an Aumann model of incomplete information in which

N = {1, 2},
Y = {1, 2, 3, 4, 5, 6, 7},
F1 = {{1}, {2, 3}, {4, 5}, {6, 7}},
F2 = {{1, 2}, {3, 4}, {5, 6}, {7}}.
Let A = {1} and B = {1, 2, 3, 4, 5, 6}. Identify the events K1A, K2A, K2K1A,
K1K2A, K1B, K2B, K2K1B, K1K2B, K1K2K1B, K2K1K2B.

9.5 Emily, Marc, and Thomas meet at a party to which novelists and poets have been
invited. Every attendee at the party is either a novelist or a poet (but not both). Every
poet knows all the other poets, but every novelist does not know any of the other
attendees, whether they are poets or novelists. What do Emily, Marc, and Thomas
know about each other’s professions? Provide an Aumann model of incomplete
information that describes this situation (there are several ways to do so).

9.6 I love Juliet, and I know that Juliet loves me, but I do not know if Juliet knows
that I love her. Provide an Aumann model of incomplete information that describes
this situation, and specify a state of the world in that model that corresponds to this
situation (there are several possible ways of including higher-order beliefs in this
model).

9.7 Construct an Aumann model of incomplete information for each of the following
situations, and specify a state of the world in that model which corresponds to the
situation (there are several possible ways of including higher-order beliefs in each
model):

(a) Mary gave birth to a baby, and Herod knows it.
(b) Mary gave birth to a baby, and Herod does not know it.
(c) Mary gave birth to a baby, Herod knows it, and Mary knows that Herod

knows it.
(d) Mary gave birth to a baby, Herod knows it, but Mary does not know that Herod

knows it.
(e) Mary gave birth to a baby, Herod does not know it, and Mary does not know

whether Herod knows it or not.

9.8 Romeo composes a letter to Juliet, and gives it to Tybalt to deliver to Juliet. While
on the way, Tybalt peeks at the letter’s contents. Tybalt gives Juliet the letter, and
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Juliet reads it immediately, in Tybalt’s presence. Neither Romeo nor Juliet knows
that Tybalt has read the letter.

Answer the following questions relating to this story:

(a) Construct an Aumann model of incomplete information in which all the elements
of the story above regarding the knowledge possessed by Romeo, Tybalt, and
Juliet regarding the content of the letter hold true (there are several possible
ways to do this). Specify a state of the world in the model that corresponds to
the situation described above.

(b) In the state of the world you specified above, does Romeo know that Juliet has
read the letter? Justify your answer.

(c) In the state of the world you specified above, does Tybalt know that Romeo
knows that Juliet has read the letter? Justify your answer.

(d) Construct an Aumann model of incomplete information in which, in addition to
the particulars of the story presented above, the following also holds: “Tybalt
does not know that Juliet does not know that Tybalt read the letter,” and specify
a state of the world in your model that corresponds to this situation.

9.9 George, John, and Thomas are standing first, second, and third in a line, respectively.
Each one sees the persons standing in front of him. James announces: “I have three
red hats and two white hats. I will place a hat on the head of each one of you.” After
James places the hats, he asks Thomas (who can see the hats worn by John and
George) if he knows the color of the hat on his own head. Thomas replies “no.” He
then asks John (who sees only George’s hat) whether he knows the color of the hat
on his own head, and he also replies “no.” Finally, he asks George (who cannot see
any of the hats) if he knows the color of the hat on his own head.

(a) Construct an Aumann model of incomplete information that contains 7 states of
the world and describes this situation.

(b) What are the partitions of George, John, and Thomas after James’s announcement
and before he asked Thomas whether he knows the color of his hat?

(c) What are the partitions of George and John after Thomas’s response and before
John responded to James’s question?

(d) What is George’s partition after hearing John’s response?
(e) What is George’s answer to James’s question? Does this answer depend on the

the state of the world, that is, on the colors of the hats that the three wear?

9.10 Prove Corollary 9.16 (page 331): every situation of incomplete information
(N, Y, (Fi)i∈N, s, ω∗) over a set of states of nature S uniquely determines a knowl-
edge hierarchy among the players over the set of states of nature S in state of the
world ω∗.

9.11 Consider an Aumann model of incomplete information in which N = {I, II},
Y = {1, 2, 3, 4, 5, 6, 7, 8, 9}, FI = {{1}, {2, 3}, {4, 5}, {6}, {7}, {8, 9}}, and FII =
{{1}, {2, 5}, {3}, {4, 7}, {6, 9}, {8}}. What are the connected components in the graph
corresponding to this Aumann model? Which events are common knowledge in state
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of the world ω = 1? Which events are common knowledge in state of the world
ω = 9? Which events are common knowledge in state of the world ω = 5?

9.12 Show that in Examples 9.12 (page 327) and 9.13 (page 329), in each state of the
world, the only event that is common knowledge is Y .

9.13 Consider an Aumann model of incomplete information in which
N = {I, II}, Y = {1, 2, 3, 4, 5, 6, 7, 8, 9}, FI = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
and FII = {{1, 5}, {2, 6}, {3, 4}, {7}, {8, 9}}. Answer the following questions:

(a) What are the connected components in the graph corresponding to the Aumann
model?

(b) Which events are common knowledge in state of the world ω = 1? In ω = 7?
In ω = 8?

(c) Denote by A the event {1, 2, 3, 4, 5}. Find the shortest sequence of players
i1, i2, . . . , ik such that in the state of the world ω = 1 it is not the case that i1

knows that i2 knows that . . . ik−1 knows that ik knows event A.

9.14 A digital clock showing the hours between 00:00 to 23:59 hangs on a wall; the digits
on the clock are displayed using straight lines, as depicted in the accompanying
figure.

William and Dan are both looking at the clock. William sees only the top half of
the clock (including the midline) while Dan sees only the bottom half of the clock
(including the midline). Answer the following questions:

(a) At which times does William know the correct time?
(b) At which times does Dan know the correct time?
(c) At which times does William know that Dan knows the correct time?
(d) At which times does Dan know that William knows the correct time?
(e) At which times is the correct time common knowledge among William and Dan?
(f) Construct an Aumann model of incomplete information describing this situation.

How many states of nature, and how many states of the world, are there in your
model?

9.15 Prove that if in an Aumann model of incomplete information the events A and B

are common knowledge among the players in state of the world ω, then the event
A ∩ B is also common knowledge among the players in ω.

9.16 Given an Aumann model of incomplete information, prove that event A is common
knowledge in every state of the world in A if and only if K1K2 · · ·KnA = A, where
N = {1, 2, . . . , n} is the set of players.

9.17 Prove that in an Aumann model of incomplete information with n players, every
event that is common knowledge among the players in state of the world ω is
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also common knowledge among any subset of the set of players (Remark 9.22,
page 332).

9.18 Give an example of an Aumann model of incomplete information with a set of
players N = {1, 2, 3} and an event A that is not common knowledge among all the
players N , but is common knowledge among players {2, 3}.

9.19 (a) In state of the world ω, Andrew knows that Sally knows the state of nature. Does
this imply that Andrew knows the state of nature in ω? Is the fact that Sally
knows the state of nature common knowledge among Andrew and Sally in ω?

(b) In every state of the world, Andrew knows that Sally knows the state of nature.
Does this imply that Andrew knows the state of nature in every state of the
world? Is the fact that Sally knows the state of nature common knowledge
among Andrew and Sally in every state of the world?

(c) In state of the world ω, Andrew knows that Sally knows the state of the world.
Does this imply that Andrew knows the state of the world in ω? Is the fact that
Sally knows the state of the world common knowledge among Andrew and Sally
in ω?

9.20 Let (N, Y, (Fi)i∈N, s, P) be an Aumann model of incomplete information with
beliefs, and let W ⊆ Y be an event. Prove that (N, W, (Fi ∩ W )i∈N, P(· | W )) is
also an Aumann model of incomplete information with beliefs, where for each
player i ∈ N

Fi ∩ W = {F ∩ W : F ∈ Fi} (9.120)

is the partition Fi restricted to W , and P(· | W ) is the conditional distribution of P
over W .

9.21 Prove that without the assumption that P(ω) > 0 for all ω ∈ Y , Theorem 9.29
(page 336) does not obtain.

9.22 This exercise generalizes Aumann’s Agreement Theorem to a set of players of
arbitrary finite size. Given an Aumann model of incomplete information with beliefs
(N, Y, (Fi)i∈N, s, P) with n players, suppose that for each i ∈ N , the fact that player
i ascribes probability qi to an event A is common knowledge among the players.
Prove that q1 = q2 = · · · = qn.
Hint: Use Theorem 9.32 on page 339 and Exercise 9.17.

9.23 Three individuals are seated in a room. Each one of them is wearing a hat, which
may be either red or white. Each of them sees the hats worn by the others, but cannot
see his own hat (and in particular does not know its color). The true situation is that
every person in the room is wearing a red hat.

(a) Depict this situation as a Harsanyi model of incomplete information, where a
player’s type is the color of his hat, and specify the vector of types corresponding
to the true situation.

(b) Depict this situation as an Aumann model of incomplete information, and specify
the state of the world corresponding to the true situation.
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(c) A stranger enters the room, holding a bell. Once a minute, he rings the bell while
saying “If you know that the color of the hat on your head is red, leave this room
immediately.” Does anyone leave the room after a few rings? Why?

(d) At a certain point in time, the announcer says, “At least one of you is wearing a
red hat.” He continues to ring the bell once a minute and requesting that those
who know their hat to be red to leave. Use the Aumann model of incomplete
information to prove that after the third ring, all three hat-wearers will leave the
room.

(e) What information did the announcer add by saying that at least one person in
the room was wearing a red hat, when this was known to everyone before the
announcement was made?
Hint: See Example 9.12 on page 327.

(f) Generalize this result to n individuals (instead of 3).

9.24 Prove that in an Aumann model of incomplete information with a common prior
P, if in a state of the world ω Player 1 knows that Player 2 knows A, then P(A |
F1(ω)) = 1.

9.25 Consider an Aumann model of incomplete information with beliefs in which

N = {I, II},
Y = {1, 2, 3, 4, 5, 6, 7, 8, 9},
FI = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
FII = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}},
P(ω) = 1

9 , ∀ω ∈ Y.

Let A = {1, 5, 9}, and suppose that the true state of the world is ω∗ = 9. Answer the
following questions:

(a) What is the probability that Player I (given his information) ascribes to the
event A?

(b) What is the probability that Player II ascribes to the event A?
(c) Suppose that Player I announces the probability you calculated in item (a) above.

How will that affect the probability that Player II now ascribes to the event A?
(d) Suppose that Player II announces the probability you calculated in item (c). How

will that affect the probability that Player I ascribes to the event A, after hearing
Player II’s announcement?

(e) Repeat the previous two questions, with each player updating his conditional
probability following the announcement of the other player. What is the sequence
of conditional probabilities the players calculate? Does the sequence converge,
or oscillate periodically (or neither)?

(f) Repeat the above, with ω∗ = 8.
(g) Repeat the above, with ω∗ = 6.
(h) Repeat the above, with ω∗ = 4.
(i) Repeat the above, with ω∗ = 1.
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9.26 Repeat Exercise 9.25, using the following Aumann model of incomplete information
with beliefs:

N = {I, II},
Y = {1, 2, 3, 4, 5},
FI = {{1, 2}, {3, 4}, {5}},
FII = {{1, 3, 5}, {2}, {4}},
P(ω) = 1

5 , ∀ω ∈ Y.

for A = {1, 4} and ω∗ = 3.

9.27 Repeat Exercise 9.25 when the two players have different priors over Y :

PI(ω) = ω

45
, ∀ω ∈ Y, (9.121)

PII(ω) = 10 − ω

45
, ∀ω ∈ Y. (9.122)

9.28 This exercise generalizes Exercise 9.25. Let (N, Y,FI,FII, s, P) be an Aumann
model of incomplete information with beliefs in which N = {I, II} and let A ⊆ Y

be an event. Consider the following process:

� Player I informs Player II of the conditional probability P(A | FI(ω)).
� Player II informs Player I of the conditional probability that he ascribes to event
A given the partition element FII(ω) and Player I’s announcement.

� Player I informs Player II of the conditional probability that he ascribes to event
A given the partition element FI(ω) and all the announcements so far.

� Repeat indefinitely.

Answer the following questions:

(a) Prove that the sequence of conditional probabilities that Player I announces
converges; that the sequence of conditional probabilities that Player II announces
also converges; and that both sequences converge to the same limit.

(b) Prove that after at most 2|Y | announcements the sequence of announcements
made by the players becomes constant.

9.29 The “No Trade Theorem” mentioned on page 341 is proved in this exercise. Let
(N, Y,FI,FII, s, P) be an Aumann model of incomplete information with beliefs
where N = {I, II}, let f : Y → R be a function, and let ω∗ ∈ Y be a state of
the world in Y . Suppose21 that the fact that E[f | FI](ω) ≥ 0 is common knowl-
edge in ω∗, and that the fact that E[f | FII](ω) ≤ 0 is also common knowledge in
ω∗. In other words, the events AI := {ω : E[f | FI](ω) ≥ 0} and AII := {ω : E[f |
FII](ω) ≤ 0} are common knowledge in ω∗. Prove that the event D := {ω ∈
Y : E[f | FI](ω) = E[f | FII](ω) = 0} is common knowledge in the state of the
world ω∗.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

21 Recall that the conditional expectation E[f | FI] is the function on Y that is defined by E[f | FI](ω) :=
E[f | FI(ω)] for each ω ∈ Y .
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9.30 This exercise is similar to Exercise 9.25, but instead of announcing the probability
of a particular event given their private information, the players announce whether
or not the expectation of a particular random variable is positive or not, given
their private information. This is meant to model trade between two parties to an
agreement, as follows. Suppose that Ralph (Player 2) owns an oil field. He expects
the profit from the oil field to be negative, and therefore intends to sell it. Jack is
of the opinion that the oil field can yield positive profits, and is therefore willing to
purchase it (for the price of $0). Jack and Ralph arrive at different determinations
regarding the oil field because they have different information. We will show that no
trade can occur under these conditions, because of the following exchange between
the parties:

� Jack: I am interested in purchasing the oil field; are you interested in selling?
� Ralph: Yes, I am interested in selling; are you interested in purchasing?
� Jack: Yes, I am interested in purchasing; are you still interested in selling?
� And so on, until one of the two parties announces that he has no interest in a deal.

The formal description of this process is as follows. Let (N, Y,F1,F2, s, P) be
an Aumann model of incomplete information with beliefs where N = {I, II}, let
f : Y → R be a function, and let ω ∈ Y be a state of the world. f (ω) represents the
profit yielded by the oil field at the state of the world ω. At each stage, Jack will be
interested in the deal only if the conditional expectation of f given his information is
positive, and Ralph will be interested in the deal only if the conditional expectation
of f given his information is negative. The process therefore looks like this:

� Player I states whether or not E[f | FI](ω) > 0 (implicitly doing so by expressing
or not expressing interest in purchasing the oil field). If he says “no” (i.e., his
expectation is less than or equal to 0), the process ends here.

� If the process gets to the second stage, Player II states whether his expectation of
f , given the information he has received so far, is negative or not. The information
he has includes FII(ω) and the affirmative interest of Player I in the first stage. If
Player II now says “no” (i.e., his expectation is greater than or equal to 0), the
process ends here.

� If the process has not yet ended, Player I states whether his expectation of f ,
given the information he has received so far, is positive or not. The information he
has includes FI(ω) and the affirmative interest of Player II in the second stage. If
Player I now says “no” (i.e., his expectation is less than or equal to 0), the process
ends here.

� And so on. The process ends the first time either Player I’s expectation of f ,
given his information, is not positive, or Player II’s expectation of f , given his
information, is not negative.

Show that this process ends after a finite number of stages. In fact, show that the
number of stages prior to the end of the process is at most max{2|FI| − 1, 2|FII| − 1}.

9.31 Peter has two envelopes. He puts 10k euros in one and 10k+1 euros in the other,
where k is the outcome of the toss of a fair die. Peter gives one of the envelopes to
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Mark and one to Luke (neither Mark nor Luke knows the outcome of the toss). Mark
and Luke both go to their respective rooms, open the envelopes they have received,
and observe the amounts in them.

(a) Depict the situation as a model with incomplete information, where the state of
nature is the amounts in Mark and Luke’s envelopes.

(b) Mark finds 1,000 euros in his envelope, and Luke finds 10,000 euros in his
envelope. What is the true state of the world in your model?

(c) According to the information Mark has, what is the expected amount of money
in Luke’s envelope?

(d) According to the information Luke has, what is the expected amount of money
in Mark’s envelope?

(e) Peter enters Mark’s room and asks him whether he would like to switch envelopes
with Luke. If the answer is positive, he goes to Luke’s room and informs him:
“Mark wants to switch envelopes with you. Would you like to switch envelopes
with him?” If the answer is positive, he goes to Mark’s room and tells him:
“Luke wants to switch envelopes with you. Would you like to switch envelopes
with him?” This process repeats itself as long as the answer received by Peter
from Mark and Luke is positive.

Use your model of incomplete information to show that the answers of Mark
and Luke will be positive at first, and then one of them will refuse to switch
envelopes. Who will be the first to refuse? Assume that each of the two would
like to change envelopes if the conditional expectation of the amount of money
in the other’s envelope is higher than the amount in his envelope.

9.32 The setup is just as in the previous exercise, but now Peter tells Mark and Luke
that they can switch the envelopes if and only if both of them have an interest in
switching envelopes: each one gives Peter a sealed envelope with “yes” or “no”
written in it, and the switch is effected only if both envelopes read “yes”. What will
be Mark and Luke’s answers after having properly analyzed the situation? Justify
your answer.

9.33 The setup is again as in Exercise 9.31, but this time Peter chooses the integer
k randomly according to a geometric distribution with parameter 1

2 , that is, P(k =
n) = 1

2n for each n ∈ N. How does this affect your answers to the questions in
Exercise 9.31?

9.34 Two divisions of Napoleon’s army are camped on opposite hillsides, both overlook-
ing the valley in which enemy forces have massed. If both divisions attack their
enemy simultaneously, victory is assured, but if only one division attacks alone, it
will suffer a crushing defeat. The division commanders have not yet coordinated a
joint attack time. The commander of Division A wishes to coordinate a joint attack
time of 6 am the following day with the commander of Division B. Given the stakes
involved, neither commander will give an order to his troops to attack until he is
absolutely certain that the other commander is also attacking simultaneously. The
only way the commanders can communicate with each other is by courier. The travel
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time between the two camps is an hour’s trek through enemy-held territory, exposing
the courier to possible capture by enemy patrols. It turns out that on that night no
enemy patrols were scouting in the area. How much time will pass before the two
commanders coordinate the attack? Justify your answer.

9.35 Prove Theorem 9.42 on page 349: every game with incomplete information can be
described as an extensive-form game.

9.36 Describe the following game with incomplete information as an extensive-form
game. There are two players N = {I, II}. Each player has three types, TI = {I1, I2, I3}
and TII = {II1, II2, II3}, with common prior:

p(Ik, IIl) = k(k + l)

78
, 1 ≤ k, l ≤ 3. (9.123)

The number of possible actions available to each type is given by the index of that
type: the set of actions of Player I of type Ik contains k actions {1, 2, . . . , k}; the
set of actions of Player II of type IIl contains l actions {1, 2, . . . , l}. When the type
vector is (Ik, IIl), and the vector of actions chosen is (aI, aII), the payoffs to the
players are given by

uI(Ik, IIl; aI, aII) = (k + l)(aI − aII), (9.124)
uII(Ik, IIl; aI, aII) = (k − l)aIaII.

For each player, and each of his types, write down the conditional probability that
the player ascribes to each of the types of the other player, given his own type.

9.37 Find a Bayesian equilibrium in the game described in Example 9.38 (page 346).
Hint: To find a Bayesian equilibrium, you may remove weakly dominated strategies.

9.38 Find a Bayesian equilibrium in the following game with incomplete information:

� N = {I, II}.
� TI = {I1, I2} and TII = {II1}: Player I has two types, and Player II has one type.
� p(I1, II1) = 1

3 , p(I2, II1) = 2
3 .

� Every player has two possible actions, and state games are given by the following
matrices:

Player II

Player I

The state game for  t = (I1, II1) The state game for  t = (I2, II1)

T 2, 0 0, 3

0, 4 1, 0B

L R

Player II

Player I

T 0, 3 3, 1

2, 0 0, 1B

L R
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9.39 Answer the following questions for the zero-sum game with incomplete information
with two players I and II, in which each player has two types, TI = {I1, I2} and
TII = {II1, II2}, the common prior over the type vectors is

p(I1, II1) = 0.4, p(I1, II2) = 0.1, p(I2, II1) = 0.2, p(I2, II2) = 0.3,

and the state games are given by

Player II

Player I

The state game for  t = (I1, II1) The state game for  t = (I1, II2)

T 2 5

–1 20B

L R

Player II

Player I

T –24 –36

0 24B

L R

Player II

Player I

The state game for  t = (I2, II1) The state game for  t = (I2, II2)

T 28 15

40 4B

L R

Player II

Player I

T 12 20

2 13B

L R

(a) List the set of pure strategies of each player.
(b) Depict the game in strategic form.
(c) Calculate the value of the game and find optimal strategies for the two players.

9.40 Signaling games This exercise illustrates that a college education serves as a form of
signaling to potential employers, in addition to expanding the knowledge of students.
A young person entering the job market may be talented or untalented. Suppose that
one-quarter of high school graduates are talented, and the rest untalented. A recent
high school graduate, who knows whether or not he is talented, has the option of
spending a year traveling overseas or enrolling at college (we will assume that he
or she cannot do both) before applying for a job. An employer seeking to fill a job
opening cannot know whether or not a job applicant is talented; all he knows is that
the applicant either went to college or traveled overseas. The payoff an employer
gets from hiring a worker depends solely on the talents of the hired worker (and not
on his educational level), while the payoff to the youth depends on what he chose to
do after high school, on his talents (because talented students enjoy their studies at
college more than untalented students), and on whether or not he gets a job. These
payoffs are described in the following tables (where the employer is the row player
and the youth is the column player, so that a payoff vector of (x, y) represents a
payoff of x to the employer and y to the youth).
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Youth

Payoff matrix
if youth is untalented

Travel

Hire 0, 6 0, 2

3, 3 3, –3Don’t Hire
Employer

Study

Youth

Payoff matrix
if youth is talented

Travel

Hire 8, 6 8, 4

3, 3 3, 1Don’t Hire
Employer

Study

(a) Depict this situation as a Harsanyi game with incomplete information.
(b) List the pure strategies of the two players.
(c) Find two Bayesian equilibria in pure strategies.

9.41 Lemon Market This exercise illustrates that in situations in which a seller has more
information than a buyer, transactions might not be possible. Consider a used car
market in which a fraction q of the cars (0 ≤ q ≤ 1) are in good condition and 1 − q

are in bad condition (lemons). The seller (Player 2) knows the quality of the car he
is offering to sell while the buyer (Player 1) does not know the quality of the car
that he is being offered to buy. Each used car is offered for sale at the price of $p (in
units of thousands of dollars). The payoffs to the seller and the buyer, depending on
whether or not the transaction is completed, are described in the following tables:

Sell

State game
if car in good condition

Buy 6 – p, p

0, 5

0, 5

0, 5Don’t Buy

Don’t Sell Sell

State game
if car in bad condition

Buy 4 – p, p

0, 0

0, 0

0, 0Don’t Buy

Don’t Sell

Depict this situation as a Harsanyi game with incomplete information, and for each
pair of parameters p and q, find all the Bayesian equilibria.

9.42 Nicolas would like to sell a company that he owns to Marc. The company’s true value
is an integer between 10 and 12 (including 10 and 12), in millions of dollars. Marc
has to make a take-it-or-leave-it offer, and Nicolas has to decide whether to accept
the offer or reject it. If Nicolas accepts the offer, the company is sold, Nicolas’s
payoff is the amount that he got, and Marc’s payoff is the difference between the
company’s true value and the amount that he paid. If Nicolas rejects the offer, the
company is not sold, Nicolas’s payoff is the value of the company, and Marc’s
payoff is 0. For each one of the following three information structures, describe the
situation as a game with incomplete information, and find all the Bayesian equilibria
in the corresponding game. In each case, the description of the situation is common
knowledge among the players. In determining Nicolas’s action set, note that Nicolas
knows what Marc’s offer is when he decides whether or not to accept the offer.
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(a) Neither Nicolas nor Marc knows the company’s true value; both ascribe proba-
bility 1

3 to each possible value.
(b) Nicolas knows the company’s true value, whereas Marc does not know it, and

ascribes probability 1
3 to each possible value.

(c) Marc does not know the company’s worth and ascribes probability 1
3 to each

possible value. Marc further ascribes probability p to the event that Nicolas
knows the value of the company, and probability 1 − p to the event that Nicolas
does not know the value of the company, and instead ascribes probability 1

3 to
each possible value.

9.43 Prove that in each game with incomplete information with a finite set of players,
where the set of types of each player is a countable set, and the set of possible actions
of each type is finite, there exists a Bayesian equilibrium (in behavior strategies).

Guidance: Suppose that the set of types of player i, Ti , is the set of natural num-
bers N. Denote T k

i := {1, 2, . . . , k} and T k = ×i∈N T k
i . Let pk be the probability

distribution p conditioned on the set T k:

pk(t) =
{

p(t)
p(T k) t ∈ T k,

0 t �∈ T k.
(9.125)

Prove that for a sufficiently large k, the denominator p(T k) is positive and therefore
the probability distribution pk is well defined. Show that for each k, the game in
which the probability distribution over the types is pk has an equilibrium, and any
accumulation point of such equilibria, as k goes to infinity, is an equilibrium of the
original game.

9.44 Prove Theorem 9.51 on page 354: a strategy vector σ ∗ = (σ ∗
i )i∈N is a Bayesian

equilibrium in a game � with incomplete information if and only if the strategy
vector (σ ∗

i (ti))i∈N,ti∈Ti
is a Nash equilibrium in the agent-form game �̂. (For the

definition of an agent-form game, see Definition 9.50 on page 354.)

9.45 This exercise shows that in a game with incomplete information, the pay-
off function of an inactive type has no effect on the set of equilibria. Let
� = (N, (Ti)i∈N, p, S, (st )t∈×i∈NTi

), where st = (N, (Ai(ti), ui(t))i∈N ) for each t ∈
×i∈N Ti , be a game with incomplete information in which there exists a player j

and a type t∗j of player j such that |Aj (t∗j )| = 1. Let �̂ be a game with incomplete
information that is identical to �, except that the payoff function ûj (t∗j ) of player j

of type t∗j may be different from uj (t∗j ), that is, ûi(t ; a) = ui(t ; a) if tj �= t∗j or i �= j .
Show that the two games � and �̂ have the same set of Bayesian equilibria.

9.46 Electronic Mail game Let L > M > 0 be two positive real numbers. Two players
play a game in which the payoff function is one of the following two, depending on
the value of the state of nature s, which may be 1 or 2:
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Player II

Player I

The state game for  s = 1 The state game for  s = 2

A M, M 1, –L

–L, 0 0, 0B

A B

Player II

Player I
A 0, 0 0, –L

–L, 1 M, MB

A B

The probability that the state of nature is s = 2 is p < 1
2 . Player I knows the

true state of nature, and Player II does not know it. The players would clearly
prefer to coordinate their actions and play (A, A) if the state of nature is s = 1
and (B, B) if the state is s = 2, which requires that both of them know what the
true state is. Suppose the players are on opposite sides of the globe, and the sole
method of communication available to them is e-mail. Due to possible technical
communications disruptions, there is a probability of ε > 0 that any e-mail message
will fail to arrive at its destination. In order to transfer information regarding the state
of nature from Player I to Player II, the two players have constructed an automated
system that sends e-mail from Player I to Player II if the state of nature is s = 2,
and does not send any e-mail if the state is s = 1. To ensure that Player I knows that
Player II received the message, the system also sends an automated confirmation of
receipt of the message (by e-mail, of course) from Player II to Player I the instant
Player I’s message arrives at Player II’s e-mail inbox. To ensure that Player II knows
that Player I received the confirmation message, the system also sends an automated
confirmation of receipt of the confirmation message from Player I to Player II the
instant Player II’s confirmation arrives at Player I’s e-mail inbox. The system then
proceeds to send an automated confirmation of the receipt of the confirmation of
the receipt of the confirmation, and so forth. If any of these e-mail messages fail
to arrive at their destinations, the automated system stops sending new messages.
After communication between the players is completed, each player is called upon
to choose an action, A or B.

Answer the following questions:

(a) Depict the situation as a game with incomplete information, in which each
type of each player is indexed by the number of e-mail messages he has
received.

(b) Prove that the unique Bayesian equilibrium where Player I plays A when s = 1
is for both players to play A under all conditions.

(c) How would you play if you received 100 e-mail confirmation messages? Explain
your answer.

9.47 In the example described in Section 9.5 (page 361), for each ε ∈ [0, 1] find Bayesian
equilibria in threshold strategies, where α has uniform distribution over the interval[

1
4 ,

1
2

]
and β has uniform distribution over the interval

[− 1
3 ,

2
3

]
.

9.48 In each of the two strategic-form games whose matrices appear below, find all the
equilibria. For each equilibrium, describe a sequence of games with incomplete
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information in which the amplitude of the noise converges to 0, and find Bayesian
equilibria in pure strategies in each of these games, such that when the amplitude
of the noise converges to 0, the probability that each of the players will choose a
particular action converges to the corresponding probability in the equilibrium of
the original game (see Section 9.5 on page 361).

Player II

Player I

Game A Game B

T 1, 5 4, 1

2, 1 0, 3B

L R

Player II

Player I
T 3, 4 2, 2

1, 1 2, 1B

L R

9.49 Consider a Harsanyi game with incomplete information in which N = {I, II}, TI =
{I1, I2}, and TII = {II1, II2}. The mutual beliefs of the types in this game in the
interim stage, before actions are chosen, are

II1

Player I’s beliefs

Player II

L

T 0 1

0 0

1 0

0 0B

T

B
Player I

The state game for t = (I1, II1) The state game for t = (I1, II2)

Player I

R L R

Player II

Player II

L

T 0 0

0 1

0 0

1 0B

T

B
Player I

The state game for t = (I2, II1) The state game for t = (I2, II2)

Player I

R L R

Player II

and the state games are given by

Player II’s beliefs

I1 1/4 3/4
2/3 1/3I2

II2 II1

I1 3/11 9/13
8/11 4/13I2

II2

Are the beliefs of the players consistent? In other words, can they be derived from
common prior beliefs? If you answer no, justify your answer. If you answer yes,
find the common prior, and find a Bayesian equilibrium in the game.

9.50 Repeat Exercise 9.49, with the following mutual beliefs:
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II1

I1
I2

I1
I2

1/3 2/3
3/4

II2 II1 II2

Player I’s beliefs Player II’s beliefs

1/4
3/5 1/6
2/5 5/6

9.51 Two or three players are about to play a game: with probability 1
2 the game involves

Players 1 and 2 and with probability 1
2 the game involves Players 1, 2, and 3. Players

2 and 3 know which game is being played. In contrast, Player 1, who participates in
the game under all conditions, does not know whether he is playing against Player
2 alone, or against both Players 2 and 3. If the game involves Players 1 and 2 the
game is given by the following matrix, where Player 1 chooses the row, and Player
2 chooses the column:

L

T 0, 0 2, 1

2, 1 0, 0B

R

with Player 3 receiving no payoff. If the game involves all three players, the game
is given by the following two matrices, where Player 1 chooses the row, Player 2
chooses the column, and Player 3 chooses the matrix:

W

L R

T 1, 2, 4 0, 0, 0

0, 0, 0 2, 1, 3

2, 1, 3 0, 0, 0

0, 0, 0 1, 2, 4B

E

L R

T

B

(a) What are the states of nature in this game?
(b) How many pure strategies does each player have in this game?
(c) Depict this game as a game with incomplete information.
(d) Describe the game in extensive form.
(e) Find two Bayesian equilibria in pure strategies.
(f) Find an additional Bayesian equilibrium by identifying a strategy vector in which

all the players of all types are indifferent between their two possible actions.

9.52 This exercise generalizes Theorems 9.47 (page 354) and 9.53 (page 355) to the case
where the prior distributions of the players differ.

Let (N, (Ti)i∈N, (pi)i∈N, S, (st )t∈×i∈N Ti
) be a game with incomplete information

where each player has a different prior distribution: for each i ∈ N , player i’s prior
distribution is pi . For each strategy vector σ , define the payoff function Ui as

Ui(σ ) :=
∑
t∈T

pi(t)Ui(t ; σ ), (9.126)
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and the payoff of player i of type ti by

Ui(σ | ti) :=
∑

t−i∈T−i

pi(t−i | ti)Ui((ti , t−i); σ ). (9.127)

A strategy vector σ ∗ is a Nash equilibrium if for every player i ∈ N and every
strategy σi of player i,

Ui(σ
∗) ≥ Ui(σi, σ

∗
−i), (9.128)

and it is a Bayesian equilibrium if for every player i ∈ N , every type ti ∈ Ti , and
every strategy σi of player i,

Ui(σ
∗ | ti) ≥ Ui(σi, σ

∗
−i | ti). (9.129)

(a) Prove that a Nash equilibrium exists when the number of players is finite and
each player has finitely many types and actions.

(b) Prove that if each player assigns positive probability to every type of every player,
i.e., if pi(tj ) := ∑

t−j∈T−j
pi(tj , t−j ) > 0 for every i, j ∈ N and every tj ∈ Tj ,

then every Nash equilibrium is a Bayesian equilibrium, and every Bayesian
equilibrium is a Nash equilibrium.

9.53 In this exercise, we explore the connection between correlated equilibrium (see
Chapter 8) and games with incomplete information.

(a) Let � = (N, (Ti)i∈N, p, S, (st )t∈×i∈N Ti
) be a game with incomplete information,

where the set of states of nature S contains only one state, which is a game in
strategic form G = (N, (Ai)i∈N, (ui)i∈N ); that is, st = G for every t ∈ ×i∈N Ti .
The game G is called “the base game” of �. Denote the set of action vectors by
A =×i∈N Ai . Every strategy vector σ in � naturally induces a distribution μσ

over the vectors in A:

μσ (a) =
∑
ω∈�

p(ω) × σ1(t1; a1) × σ2(t2; a2) × · · · × σn(tn; an). (9.130)

Prove that if a strategy vector σ ∗ is a Bayesian equilibrium of �, then the
distribution μσ ∗ defined in Equation (9.130) is a correlated equilibrium in the
base game G.

(b) Prove that for every strategic-form game G = (N, (Ai)i∈N, (ui)i∈N ), and every
correlated equilibrium μ in this game there exists a game with incomplete infor-
mation � = (N, (Ti)i∈N, p, S, (st )t∈×i∈NTi

) in which the set of states of nature
S contains only one state, and that state corresponds to the base game, st = G

for every t ∈ ×i∈N Ti , and there exists a Bayesian equilibrium σ ∗ in the game
�, such that μ(a) = ∑

ω∈� p(ω) × σ ∗
1 (t1; a1) × σ ∗

2 (t2; a2) × · · · × σ ∗
n (tn; an) for

every a ∈ A.

9.54 Carolyn and Maurice are playing the game “Chicken” (see Example 8.3 on
page 303). Both Carolyn and Maurice know that Maurice knows who won the
Wimbledon tennis tournament yesterday (out of three possible tennis players, Jim,
John, and Arthur, who each had a probability of one-third of winning the tourna-
ment), but Carolyn does not know who won the tournament.
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(a) Describe this situation as a game with incomplete information, and find the set
of Bayesian equilibria of this game.

(b) Answer the first two questions of this exercise, under the assumption that both
Carolyn and Maurice only know whether or not Jim has won the tournament.

(c) Answer the first two questions of this exercise, under the assumption that Maurice
only knows whether or not Jim has won the tournament, while Carolyn only
knows whether or not John has won the tournament.



10 Games with incomplete information:
the general model

Chapter summary
In this chapter we extend Aumann’s model of incomplete information with beliefs in
two ways. First, we do not assume that the set of states of the world is finite, and allow
it to be any measurable set. Second, we do not assume that the players share a common
prior, but rather that the players’ beliefs at the interim stage are part of the data of the
game. These extensions lead to the concept of a belief space. We also define the concept
of a minimal belief subspace of a player, which represents the model that the player
“constructs in his mind” when facing the situation with incomplete information. The
notion of games with incomplete information is extended to this setup, along with the
concept of Bayesian equilibrium. We finally discuss in detail the concept of consistent
beliefs, which are beliefs derived from a common prior and thus lead to an Aumann or
Harsanyi model of incomplete information.

Chapter 9 focused on the Aumann model of incomplete information, and on Harsanyi
games with incomplete information. In both of those models, players share a common
prior distribution, either over the set of states of the world or over the set of type vectors.
As noted in that chapter, there is no compelling reason to assume that such a common
prior exists. In this chapter, we will expand the Aumann model of incomplete information
to deal with the case where players may have heterogeneous priors, instead of a common
prior.

The equilibrium concept we presented for analyzing Harsanyi games with incomplete
information and a common prior was the Nash equilibrium. This is an equilibrium in a
game that begins with a chance move that chooses the type vector. As shown in Chapter 9,
every Nash equilibrium in a Harsanyi game is a Bayesian equilibrium, and conversely every
Bayesian equilibrium is a Nash equilibrium. When there is no common prior, we cannot
postulate a chance move choosing a type vector; hence the concept of Nash equilibrium is
not applicable in this case. However, as we will show, the concept of Bayesian equilibrium
is still applicable. We will study the properties of this concept in Section 10.5 (page 407).

10.1 Belief spaces
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Recall that an Aumann model of incomplete information is given by a set of players N , a
finite set Y of states of the world, a partition Fi of Y for each player i ∈ N , a set of states
of nature S, a function s : Y → S mapping each state of the world to a state of nature,

386
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and a common prior P over Y . The next definition extends this model to the case in which
there is no common prior.

Definition 10.1 Let N be a finite set of players, and let (S,S) be a measurable space of
states of nature.1 A belief space of the set of players N over the set of states of nature is
an ordered vector � = (Y,Y, s, (πi)i∈N ), where:

� (Y,Y) is a measurable space of states of the world.
� s : Y → S is a measurable function,2 mapping each state of the world to a state of

nature.
� For each player i ∈ N , a function πi : Y → 
(Y ) mapping each state of the world
ω ∈ Y to a probability distribution over Y . We will denote the probability that player i

ascribes to event E, according to the probability distribution πi(ω), by πi(E | ω). We
require the function (πi)i∈N to satisfy the following conditions:
1. Coherency: for each player i ∈ N and each ω ∈ Y , the set {ω′ ∈ Y : πi(ω′) = πi(ω)}

is measurable in Y , and

πi({ω′ ∈ Y : πi(ω
′) = πi(ω)} | ω) = 1. (10.1)

2. Measurability: for each player i ∈ N and each measurable set E ∈ Y , the function
πi(E | ·) : Y → [0, 1] is a measurable function.

As in the Aumann model of incomplete information, belief spaces describe situations in
which there is a true state of the world ω∗ but the players may not know which state is the
true state. At the true state of the world ω∗ each player i ∈ N believes that the true state of
the world is distributed according to the probability distribution πi(ω∗). This probability
distribution is called player i’s belief at the state of the world ω∗. We assume that each
player knows his own belief and therefore if at the state of the world ω∗ player i believes
that the state of the world might be ω, then his beliefs at ω∗ and ω must coincide. Indeed,
if his beliefs at ω differed from his beliefs at ω∗, then he would be able to distinguish
between these states, and therefore at ω∗ he could not ascribe a positive probability to
the state of the world ω. It follows that at the state of the world ω∗ player i ascribes
probability 1 to the set of states of the world at which his beliefs equal his belief at ω∗,
and therefore the support of πi(ω) is contained in the set {ω′ ∈ Y : πi(ω′) = πi(ω)}, for
each state of the world ω ∈ Y . This is the reason we demand coherency in Definition 10.1.
The measurability condition is a technical condition that is required for computing the
expected payment in games in which incomplete information games are modeled using
belief spaces.

The concept “belief space” generalizes the concept “Aumann model of incomplete
information” that was presented in Definition 9.27 (page 334). Every Aumann model of
incomplete information is a belief space. To see this, let � = (N, Y, (Fi)i∈N, s, P) be an
Aumann model of incomplete information. Let Y = 2Y be the collection of all subsets

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 A measurable space is a pair (X,X ), where X is a set and X is a σ -algebra over X; i.e., X is a collection of subsets
of X that includes the empty set, is closed under complementation, and is closed under countable intersections. A
set in X is called a measurable set. This definition was mentioned on page 344.

2 A function f : X → Y is measurable if the inverse image under f of every measurable set in Y is a measurable set
in X. In other words, for each measurable set C in Y , the set f−1(C) := {x ∈ X : f (x) ∈ C} is measurable in X.
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of Y . For each player i ∈ N and every ω ∈ Y , let πi(ω) = P(· | Fi(ω)); i.e., player i’s
belief at state ω is the common prior P, conditioned on his information. It follows that
(Y,Y, s, (πi)i∈N ) is a belief space equivalent to the original Aumann model: for every
event A ⊆ Y , the probability that player i ascribes at every state of the world ω to event
A is equal in both models (verify!).

Since every Harsanyi model of incomplete information is equivalent to an Aumann
model of incomplete information (see page 350), every Harsanyi model of incomplete
information can be represented by a belief space.

Belief spaces generalize Aumann models of incomplete information with belief in the
following ways:

1. The set of states of the world in an Aumann model of incomplete information is finite,
while the set of states of the world in a belief space may be any measurable space.

2. The beliefs (πi)i∈N in a belief space are not necessarily derived from a prior P common
to all the players.

In most of the examples in this chapter, the set of states of the world Y is finite. In
those examples, we assume that Y = 2Y : the σ -algebra over Y is the collection of all the
subsets of Y .

Example 10.2 Let the set of players be N = {I, II}, and let the set of states of nature be S = {s1, s2}. Consider

a belief space Y = {ω1, ω2, ω3}, where:

State of the world s(·) πI(·) πII(·)

ω1 s1
[

2
3 (ω1), 1

3 (ω2)
]

[1(ω1)]

ω2 s1
[

2
3 (ω1), 1

3 (ω2)
] [

1
2 (ω2), 1

2 (ω3)
]

ω3 s2 [1(ω3)]
[

1
2 (ω2), 1

2 (ω3)
]

The states of the world appear in the left-hand column of the table, the next column displays the
state of nature associated with each state of the world, and the two right-hand columns display the
beliefs of the players at each state of the world.

At the state of the world ω1, Player II ascribes probability 1 to the state of nature being s1, while
at the states ω2 and ω3 he ascribes probability 1

2 to each of the two states of nature. At each state
of the world, Player I ascribes probability 1 to the true state of nature. As for the beliefs of Player
I about the beliefs of Player II about the state of nature, at the state of the world ω3 he ascribes
probability 1 to Player II ascribing equal probabilities to the two states of nature, while at the states
of the world ω1 and ω2 he ascribes probability 2

3 to Player II ascribing probability 1 to the true state
of nature, and probability 1

3 to Player II ascribing probability 1
2 to the true state of nature.

The beliefs of the players can be calculated from the following common prior P:

P(ω1) = 1
2 , P(ω2) = 1

4 , P(ω3) = 1
4 , (10.2)

and the following partitions of the two players (verify that this is true)

FI = {{ω1, ω2}, {ω3}}, FII = {{ω1}, {ω2, ω3}}. (10.3)

It follows that the belief space of this example is equivalent to an Aumann model of incomplete
information. �
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As the next example shows, however, it is not true that every belief space is equivalent
to an Aumann model of incomplete information; in other words, there are cases in which
the beliefs of the players (πi)i∈N cannot be calculated as conditional probabilities of a
common prior.

Example 10.3 Let the set of players be N = {I, II}, and let the set of states of nature be S = {s1, s2}. Consider

a belief space Y = {ω1, ω2} where:

State of the world s(·) πI(·) πII(·)

ω1 s1
[

2
3 (ω1), 1

3 (ω2)
] [

1
2 (ω1), 1

2 (ω2)
]

ω2 s2
[

2
3 (ω1), 1

3 (ω2)
] [

1
2 (ω1), 1

2 (ω2)
]

In this space, at every state of the world Player I ascribes probability 2
3 to the state of nature

being s1, while Player II ascribes probability 1
2 to the state of nature being s1. There is no common

prior over Y that enables both of these statements to be true (verify that this is true).
Since each player has the same belief at both states of the world, if there is an Aumann model

of incomplete information describing this situation, the partition of each player must be the trivial
partition: Fi = {Y } for all i ∈ N . �

As the next example shows, it is possible for the support of πi(ω) to be contained in the
set {ω′ ∈ Y : πi(ω′) = πi(ω)}, but not equal to it.

Example 10.4 Let the set of players be N = {I, II}, and let the set of states of nature be S = {s1, s2}. Consider

a belief space Y = {ω1, ω2, ω3}, where:

State of the world s(·) πI(·) πII(·)

ω1 s1 [1(ω1)]
[

1
2 (ω1), 1

2 (ω2)
]

ω2 s2 [1(ω1)]
[

1
2 (ω1), 1

2 (ω2)
]

ω3 s2 [1(ω3)]
[

1
2 (ω1), 1

2 (ω2)
]

At both states of the world ω1 and ω2, Player I believes that the true state is ω1: the support of
πI(ω1) is the set {ω1}, which is a proper subset of {ω′ ∈ Y : πI(ω′) = πI(ω1)} = {ω1, ω2}. Note that
at the state of the world ω2, the state of nature is s2, but Player I believes that the state of nature
is s1. �

The belief spaces described in Examples 10.3 and 10.4 are not equivalent to Aumann
models of incomplete information, but they can be described as Aumann models in which
every player has a prior distribution of his own. In Example 10.3, in both states of the
world, Player I has a prior distribution [ 2

3 (ω1), 1
3 (ω2)], and Player II has a prior distribution

[ 1
2 (ω1), 1

2 (ω2)]. The beliefs of the players in the belief space of Example 10.4 can also be
computed as being derived from prior distributions in the following way (verify!). The
beliefs of Player II can be derived from the prior

PII(ω1) = 1
2 , PII(ω2) = 1

2 , PII(ω3) = 0 (10.4)
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and the partition

FII = {Y }. (10.5)

The beliefs of Player I can be derived from any prior of the form

PI(ω1) = x, PI(ω2) = 0, PI(ω3) = 1 − x, (10.6)

where x ∈ (0, 1), and the partition

FI = {{ω1, ω2}, {ω3}}. (10.7)

This is not coincidental: every belief space with a finite set of states of the world is an
Aumann model of incomplete information in which every player has a prior distribution
whose support is not necessarily all of Y , and the priors of the players may be heteroge-
neous.3 To see this, for the case that Y is finite define, for each player i, a partition Fi of
Y based on his beliefs:

Fi(ω) = {ω′ ∈ Y : πi(ω
′) = πi(ω)}. (10.8)

For each ω, the partition element Fi(ω) is the set of all states of the world at which the
beliefs of player i equal his beliefs at ω: player i’s beliefs do not distinguish between the
states of the world in Fi(ω).

Define, for each player i ∈ N a probability distribution Pi ∈ 
(Y ) as follows (verify
that this is indeed a probability distribution):

Pi(A) =
∑
ω∈Y

1

|Y |πi(A | ω). (10.9)

Then the belief πi(ω) of player i at the state of the world ω is the probability distribu-
tion Pi , conditioned on Fi(ω), which is his information at that state of the world (see
Exercise 10.3):

πi(A | ω) = Pi(A | Fi(ω)), ∀ω ∈ Y, ∀A ∈ Y . (10.10)

It follows that every belief space � = (Y,Y, s, (πi)i∈N ), where Y is a finite set, is equiva-
lent to an Aumann model of incomplete information (N, Y, (Fi)i∈N, s, (Pi)i∈N ) in which
every player has a prior of his own.

Example 10.4 (Continued) Using Equation (10.9), we have

PI =
[

2
3 (ω1), 0(ω2), 1

3 (ω3)
]
, PII =

[
1
2 (ω1), 1

2 (ω2), 0(ω3)
]
. (10.11)

In fact, the definition of Pi in Equation (10.9) can be replaced with any weighted average of the
beliefs (πi(· | ω))ω∈Y , where all the weights are positive. The probability distribution of Equation
(10.6) corresponds to the weights (y, x − y, 1 − x), where y ∈ (0, x) (verify!). �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 When the space of states of the world is infinite, additional technical assumptions are needed to ensure the existence
of a prior distribution from which each player’s beliefs can be derived.
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Just as in an Aumann model of incomplete information, we can trace all levels of
beliefs for each player at any state of the world in a belief space. For example, consider
Example 10.4 and write out Player 1’s beliefs at the state of the world ω3. At that state,
Player 1 ascribes probability 1 to the state of nature being s2; this is his first-order belief.
He ascribes probability 1 to the state of nature being s2 and to Player 2 ascribing equal
probability to the two possible states of nature; this is his second-order belief. Player 1’s
third-order belief at the state of the world ω3 is as follows: Player 1 ascribes probability 1
to the state of nature being s2, to Player 2 ascribing equal probability to the two states of
nature, and to Player 2 believing that Player 1 ascribes probability 1 to the state of nature
s1. We can similarly describe the beliefs of every player, at any order, at every state of the
world.

10.2 Belief and knowledge
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

One of the main elements of the Aumann model of incomplete information is the partitions
(Fi)i∈N defining the players’ knowledge operators. In an Aumann model, the players’
beliefs are derived from a common prior, given the information that the player has (i.e.,
the partition element Fi(ω)). In contrast, in a belief space, a player’s beliefs are given by
the model itself. Since an Aumann model of incomplete information is a special case of
a belief space, it is natural to ask whether a knowledge operator can be defined generally,
in all belief spaces. As we saw in Equation (10.8), the beliefs (πi)i∈N of the players
define partitions (Fi)i∈N of Y . A knowledge operator can then be defined using these
partitions. When player i knows what the belief space � is, he can indeed compute his
partitions (Fi)i∈N and the knowledge operators corresponding to these partitions. As the
next example shows, knowledge based on these knowledge operators is not equivalent to
belief with probability 1.

Example 10.5 Consider the belief space � of a single player N = {I} over a set of states of the world

S = {s1, s2}, shown in Figure 10.1.

II State of the world

ω1 s1 [1(ω1)]
[1(ω1)]s2ω2

(·) πI (·)

Figure 10.1 The belief space � in Example 10.5

In the belief space �, the partition defined by Equation (10.8) contains a single element, and
therefore the minimal knowledge element of Player I at every state of the world is {ω1, ω2}. In other
words, at the state of the world ω1 Player I does not know that the state of the world is ω1. Thus,
despite the fact that at the state of the world ω1 Player I ascribes probability 1 to the state of the
world ω1, he does not know that this is the true state of the world. �

The assumption that a player knows the belief space � is a strong assumption: at the
state of the world ω1 in Example 10.5 the player ascribes probability 1 to the state of the
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world ω1. Perhaps he does not know that there is a state of the world ω2? We will assume
that the only information that a player has is his belief, and that he does not know what
the belief space is. In particular, different players may have different realities. In such a
case, when a player does not know �, he cannot compute the partitions (Fi)i∈N and the
knowledge operators corresponding to these partitions, and therefore cannot compute the
events that he knows.

Under these assumptions the natural operator to use in belief spaces is a belief operator
and not a knowledge operator. Under a knowledge operator, if a player knows a certain
fact it must be true. This requirement may not be satisfied by belief operators; a player
may ascribe probability 1 to a ‘fact’ that is actually false. After we define this operator
and study its properties we will relate it to the knowledge operator in Aumann models of
incomplete information.

Definition 10.6 At the state of the world ω ∈ Y , player i ∈ N believes that an event A

obtains if πi(A | ω) = 1. Denote

BiA := {ω ∈ Y : πi(A | ω) = 1}. (10.12)

At the state of the world ω player i believes that event A obtains if he ascribes probability
1 to A. The event BiA is the set of all states of the world at which player i believes event
A obtains. The belief operator Bi satisfies four of the five properties of Kripke that a
knowledge operator must satisfy (see page 327 and Exercise 10.8).

Theorem 10.7 For each player i ∈ N , the belief operator Bi satisfies the following four
properties:

1. BiY = Y : At each state of the world, player i believes that Y is the set of states of the
world.

2. BiA ∩ BiC = Bi(A ∩ C): If player i believes that event A obtains and he believes that
event C obtains, then he believes that event A ∩ C obtains.

3. Bi(BiA) = BiA: If player i believes that event A obtains, then he believes that he
believes that event A obtains.

4. (BiA)c = Bi((BiA)c): If player i does not believe that event A obtains, then he believes
that he does not believe that event A obtains.

The knowledge operator Ki satisfies a fifth property: KiA ⊆ A. This property is not
necessarily satisfied by a belief operator: it is not always the case that BiA ⊆ A. In other
words, it is possible that ω ∈ BiA but ω �∈ A. This means that a player may believe that
the event A obtains despite the fact that the true state of the world is not in A; i.e., A does
not obtain. This is the case in Example 10.4: for A = {ω1}, B1A = {ω1, ω2}: at the state
of the world ω2 the player believes that A obtains, despite the fact that ω2 �∈ A.

The belief operator does satisfy the following additional property (Exercise 10.13). The
analogous property for the knowledge operator is stated in Theorem 9.10 (page 326).

Theorem 10.8 For each player i ∈ N , and any pair of events A, C ⊆ Y , if A ⊆ C, then
BiA ⊆ BiC.

In words, when a player believes that event A obtains, he also believes that every event
containing A obtains.
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Just as we defined the concept of common knowledge (Definition 9.2 on page 321), we
can define the concept of common belief.

Definition 10.9 Let A ⊆ Y be an event and let ω ∈ Y . The event A is common belief
among the players at the state of the world ω if at that state of the world every player
believes that A obtains, every player believes that every player believes that A obtains,
and so on. In other words, for every finite sequence i1, i2, . . . , il of players in N ,

ω ∈ Bi1Bi2 . . . Bil−1BilA. (10.13)

It follows from Definition 10.9, and Theorem 10.7(1) that, in particular, the event Y is
common belief among the players at every state of the world ω ∈ Y . The next theorem
presents a sufficient condition for an event to be common belief among the players at a
particular state of the world.

Theorem 10.10 Let ω ∈ Y be a state of the world. Let A ∈ Y be an event satisfying the
following two conditions:

� πi(A | ω) = 1 for every player i ∈ N .
� πi(A | ω′) = 1 for every player i ∈ N and every ω′ ∈ A.

Then A is common belief among the players at ω.

Proof: The first condition implies that ω ∈ BiA, and the second condition implies that
A ⊆ BiA, for each player i ∈ N . From this, and from repeated application of Theorem
10.8, we get for every finite sequence i1, i2, . . . , il of players:

ω ∈ Bi1A ⊆ Bi1Bi2A ⊆ · · · ⊆ Bi1Bi2 . . . Bil−1A ⊆ Bi1Bi2 . . . Bil−1Bil A.

It follows that at the state of the world ω event A is common belief among the
players. �

When a belief space is equivalent to an Aumann model of incomplete information,
the concept of knowledge is a meaningful one, and the question naturally arises as to
whether there is a relation between knowledge and belief in this case. As we now show,
the answer to this question is positive. Let � = (Y,Y, s, (πi)i∈N ) (where Y is a finite
set of states of the world) be a belief space that is equivalent to an Aumann model of
incomplete information. In particular, there exists a probability distribution P over Y

satisfying P(ω) > 0 for all ω ∈ Y , and there exist partitions (Fi)i∈N of Y such that

πi(ω) = P(· | Fi(ω)), ∀i ∈ N, ∀ω ∈ Y. (10.14)

The partition Fi in the Aumann model coincides with the partition defined by Equation
(10.8) for the belief space � (Exercise 10.14); hence the knowledge operator in the
Aumann model is the same operator as the belief operator in the belief space. We therefore
have the following theorem:

Theorem 10.11 Let � be a belief space equivalent to an Aumann model of incomplete
information. Then the belief operator in the belief space is the same operator as the
knowledge operator in the Aumann model: For every i ∈ N , at the state of the world ω

player i believes that event A obtains (in the belief space) if and only if he knows that
event A obtains (in the Aumann model).
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Note that for this result to obtain, it must be the case that P (ω) > 0 for every state of
the world ω ∈ Y (Exercise 10.11).

If � = (Y,Y, s, (πi)i∈N ) is a belief space satisfying the condition that for player i ∈ N ,
BiA ⊆ A for every event A ⊆ Y , then the operator Bi satisfies the five properties of
Kripke, and is therefore a knowledge operator: there exists a partition Gi of Y such that
Bi is the knowledge operator defined by Gi via Equation (9.2) on page 325 (Exercise 9.2,
Chapter 9). Since this partition is simply the partition defined by Equation (10.8) (Exercise
10.9), the conclusion of Theorem 10.11 obtains in this case as well. We stress that this
case is more general than the case in which a belief space is equivalent to an Aumann
model of incomplete information, because this condition can be met in an Aumann
model of incomplete information in which the players do not share a common prior (see
Example 10.3). Nevertheless, in this case, the belief operator is also the same operator as
the knowledge operator.

10.3 Examples of belief spaces
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As stated above, the information that player i has at the state of the world ω is given by
his belief πi(ω). We shall refer to this belief at the player’s type. A player’s type is thus a
probability distribution over Y .

Definition 10.12 Let � = (Y,Y, s, (πi)i∈N ) be a belief space. The type of player i at the
state of the world ω is πi(ω). The set of all types of player i in a belief space � is denoted
by Ti and called the type set of player i.

Ti := {πi(ω) : ω ∈ Y } ⊆ 
(Y ). (10.15)

The coherency requirement in Definition 10.1, and the definition of the belief operator
Bi , together imply that at each state of the world ω, every player i ∈ N believes that his
type is πi(ω):

πi({ω′ ∈ Y : πi(ω
′) = πi(ω)} | ω) = 1. (10.16)

We next present examples showing how situations of incomplete information can be
modeled by belief spaces. We start with situations that can be modeled both by Aumann
models of incomplete information, and by belief spaces.

Example 10.13 Complete information Suppose that a state of nature s0 ∈ S is common belief among the

players in a finite set N = {1, 2, . . . , n}. The following belief space corresponds to this situation,
where the set of states of the world, Y = {ω}, contains only one state, and all the players have the
same beliefs:

State of the world s(·) π1(·), · · · , πn(·)
ω s0 [1(ω)]
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In this space, every player i ∈ N has only one type, Ti = {[1(ω)]}. The beliefs of the players can be
calculated from the common prior P defined by P(ω) = 1, hence this belief space is also an Aumann
model of incomplete information, with the trivial partition Fi = {{ω}}, for every player i ∈ N .

This situation can also be modeled by the following belief space, where Y = {ω1, ω2}:
State of the world s(·) π1(·), · · · , πn(·)

ω1 s0 [1(ω1)]
ω2 s0 [1(ω2)]

The two states of the world ω1 and ω2 are distinguished only by their names; they are identical
from the perspective both of the state of nature associated with them and of the beliefs of the players
about the state of nature: at both states of the world, the state of nature is s0, and at both states that
fact is common belief. This is an instance of redundancy: two states of the world describe the same
situation. If we eliminate the redundancy, we recapitulate the former belief space. �

Example 10.14 Known lottery The set of players is N = {1, . . . , n}. The set of states of nature, S = {s1, s2},
contains two elements; a chance move chooses s1 with probability 1

3 , and s2 with probability 2
3 . This

probability distribution is common belief among the players. The following belief space, where
Y = {ω1, ω2}, corresponds to this situation:

State of the world s(·) π1(·), · · · , πn(·)

ω1 s1
[

1
3 (ω1), 2

3 (ω2)
]

ω2 s2
[

1
3 (ω1), 2

3 (ω2)
]

In this space, each player i ∈ N has only one type, Ti = {[ 1
3 (ω1), 2

3 (ω2)]}, and this fact is therefore
common belief among the players. The beliefs of the players can be calculated from a common
prior P defined by P(ω1) = 1

3 and P(ω2) = 2
3 , and the partitions derived from the beliefs of the

types, i.e., Fi = {{ω1, ω2}} for every player i ∈ N ; hence this belief space is also an Aumann model
of incomplete information. �

Example 10.15 Incomplete information on one side There are two players, N = {I, II}, and two states of

nature, S = {s1, s2}; a chance move chooses s1 with probability p, and s2 with probability 1 − p.
The state of the world that is chosen is known to Player I, but not to Player II. This description of
the situation is common belief among the players. The following belief space, where Y = {ω1, ω2},
corresponds to this situation:

State of the world s(·) πI(·) πII(·)
ω1 s1 [1(ω1)] [p(ω1), (1 − p)(ω2)]
ω2 s2 [1(ω2)] [p(ω1), (1 − p)(ω2)]

In this belief space, Player II has only one type, TII = {[p(ω1), (1 − p)(ω2)]}, while Player I has
two possible types, TI = {[1(ω1)], [1(ω2)]}, because he knows the true state of nature. The beliefs
of the players can be calculated from a common prior P given by P(ω1) = p and P(ω2) = 1 − p,
and the partition FI = {{ω1}, {ω2}} (Player I knows which state of the world has been chosen)
and FII = {Y } (Player II does not know which state of the world has been chosen). Note that
in this example, the belief operator is the same as the knowledge operator (in accordance with
Theorem 10.11). �
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Example 10.16 Incomplete information about the information of the other player This example, which

is similar to Example 10.2 (on page 388), describes a situation in which one of the players knows
the true state of nature, but is uncertain whether the other player knows the true state of nature.
Consider a situation with two players, N = {I, II}. A state of nature s1 or s2 is chosen by tossing a
fair coin. Player I is informed which state of nature has been chosen. If the chosen state of nature is
s2, only Player I is informed of that fact. If the chosen state of nature is s1, the coin is tossed again,
in order to determine whether or not Player II is to be informed that the chosen state of nature is s1;
Player I is not informed of the result of the second coin toss; hence in this situation, even though he
knows the state of nature, he does not know whether or not Player II knows the state of nature. The
belief space corresponding to this situation contains three states of the world Y = {ω1, ω2, ω3} and
is given by:

State of the world s(·) πI(·) πII(·)
ω1 s1

[
1
2 (ω1), 1

2 (ω2)
]

[1(ω1)]

ω2 s1
[

1
2 (ω1), 1

2 (ω2)
] [

1
3 (ω2), 2

3 (ω3)
]

ω3 s2 [1(ω3)]
[

1
3 (ω2), 2

3 (ω3)
]

At the state of the world ω1, the state of nature is s1, and both Player I and Player II know this.
At the state of the world ω2, the state of nature is s1, and Player I knows this, but Player II does not
know this. The state of the world ω3 corresponds to the situation in which the state of nature is s2.
Player I cannot distinguish between the states of the world ω1 and ω2. Player II cannot distinguish
between the states of the world ω2 and ω3. The beliefs of the players can be derived from the
probability distribution P,

P(ω1) = 1
4 , P(ω2) = 1

4 , P(ω3) = 1
2 , (10.17)

given the partitions FI = {{ω1, ω2}, {ω3}} and FII = {{ω1}, {ω2, ω3}}. Notice that, as required,
at every state of the world ω, every player ascribes probability 1 to the states of the world at
which his beliefs coincide with his beliefs at ω. In this belief space, each player has two possible
types:

TI =
{[

1
2 (ω1), 1

2 (ω2)
]
, [1(ω3)]

}
, (10.18)

TII =
{
[1(ω1)] ,

[
1
3 (ω2), 2

3 (ω3)
]}

. (10.19)

What information does Player I of type [ 1
2 (ω1), 1

2 (ω2)] lack (at the states of the world ω1 and ω2)?
He knows that the state of nature is s1, but he does not know whether Player II knows this: Player I
ascribes probability 1

2 to the state of the world being ω1, at which Player II knows that the state of
nature is s1, and he ascribes probability 1

2 to the state of the world being ω2, at which Player II does
not know what the true state of nature is. Player I’s lack of information involves the information
that Player II has. �

Example 10.17 Incomplete information on two sides (the independent case) There are two players,

N = {I, II}, and four states of nature, S = {s11, s12, s21, s22}. One of the states of nature is cho-
sen, using the probability distribution p defined by p(s11) = p(s12) = 1

6 , p(s21) = p(s22) = 1
3 .
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Each player has partial information about the chosen state of nature: Player I knows only the first
coordinate of the chosen state, while Player II knows only the second coordinate. The belief space
corresponding to this situation contains four states of the world, Y = {ω11, ω12, ω21, ω22}, and is
given by:

State of the world s(·) πI(·) πII(·)

ω11 s11
[

1
2 (ω11), 1

2 (ω12)
] [

1
3 (ω11), 2

3 (ω21)
]

ω12 s12
[

1
2 (ω11), 1

2 (ω12)
] [

1
3 (ω12), 2

3 (ω22)
]

ω21 s21
[

1
2 (ω21), 1

2 (ω22)
] [

1
3 (ω11), 2

3 (ω21)
]

ω22 s22
[

1
2 (ω21), 1

2 (ω22)
] [

1
3 (ω12), 2

3 (ω22)
]

In this case, each player has two possible types:

TI = {I1, I2} =
{[

1
2 (ω11), 1

2 (ω12)
]
,
[

1
2 (ω21), 1

2 (ω22)
]}

, (10.20)

TII = {II1, II2} =
{[

1
3 (ω11), 2

3 (ω21)
]
,
[

1
3 (ω12), 2

3 (ω22)
]}

. (10.21)

Note that each player knows his own type: at each state of the world, each player ascribes positive
probability only to those states of the world in which he has the same type. The beliefs of each
player about the type of the other player are described in Figure 10.2.

II1

I1
I2

II2

1/2

The beliefs of Player I The beliefs of Player II

1/2
1/2 1/2

II1

I1
I2

II2

1/3 1/3
2/3 2/3

Figure 10.2 The beliefs of each player about the type of the other player

The tables in Figure 10.2 state, for example, that Player I of type I2 ascribes probability 1
2 to

Player II being of type II1, and probability 1
2 to his being of type II2.

The beliefs of each player about the types of the other player do not depend on his own type,
which is why this model is termed the “independent case.” This is a Harsanyi model of incomplete
information, in which the common prior p over the set of type vectors, T = TI × TII is the product
distribution shown in Figure 10.3.

II1

I1
I2

II2

1/6 1/6
1/3 1/3

Figure 10.3 The common prior in Example 10.17

The independence in this example is expressed in the fact that p is a product distribution over TI

and TII. In summary, in this case the belief space � is equivalent to a Harsanyi model of incomplete
information. �
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Example 10.18 Incomplete information on two sides (the dependent case) This example is similar to

Example 10.17, but here the probability distribution p according to which the state of nature is
chosen is given by p(s11) = 0.3, p(s12) = 0.4, p(s21) = 0.2, p(s22) = 0.1. As in Example 10.17,
the corresponding belief space has four states of the world, Y = {ω11, ω12, ω21, ω22}, and is given
by:

State of the world s(·) πI(·) πII(·)

ω11 s11
[

3
7 (ω11), 4

7 (ω12)
] [

3
5 (ω11), 2

5 (ω21)
]

ω12 s12
[

3
7 (ω11), 4

7 (ω12)
] [

4
5 (ω12), 1

5 (ω22)
]

ω21 s21
[

2
3 (ω21), 1

3 (ω22)
] [

3
5 (ω11), 2

5 (ω21)
]

ω22 s22
[

2
3 (ω21), 1

3 (ω22)
] [

4
5 (ω12), 1

5 (ω22)
]

The sets of type sets are

TI = {I1, I2} =
{[

3
7 (ω11), 4

7 (ω12)
]
,
[

2
3 (ω21), 1

3 (ω22)
]}

,

TII = {II1, II2} =
{[

3
5 (ω11), 2

5 (ω21)
]
,
[

4
5 (ω12)), 1

5 (ω22)
]}

.

The mutual beliefs of the players are described in Figure 10.4.

II1

I1
I2

II2

3/7

The beliefs of Player I The beliefs of Player II

4/7
2/3 1/3

II1

I1
I2

II2

3/5 4/5
2/5 1/5

Figure 10.4 The beliefs of each player about the types of the other player

These beliefs correspond to a Harsanyi model with incomplete information, with the common
prior p described in Figure 10.5.

II1

I1
I2

II2

0.3 0.4
0.2 0.1

Figure 10.5 The common prior in Example 10.18

This prior distribution can be calculated from the mutual beliefs described in Figure 10.4 as follows.
Denote x = p(I1, II1). From the beliefs of type I1, we get p(I1, II2) = 4

3x; from the beliefs of type
II2, we get p(I2, II2) = 1

3x; from the beliefs of type I2, we get p(I2, II1) = 2
3x. From the beliefs of

type II1, we get p(I1, II1) = x, which is what we started with. Since p is a probability distribution,
x + 4

3x + 1
3x + 2

3x = 1. Then x = 3
10 , and we have indeed shown that the common prior of the

Harsanyi model is the probability distribution appearing in Figure 10.5.
The difference between this example and Example 10.17 is that in this case the common prior is

not a product distribution over T = TI × TII. Equivalently, the beliefs of one player about the types
of the other player depend on his own type: Player I of type I1 ascribes probability 3

7 to Player II
being of type II1, while Player I of type I2 ascribes probability 2

3 to Player II being of type II1. �
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Example 10.19 Inconsistent Beliefs. This example studies a belief space in which the players hold incon-

sistent beliefs. This means that the beliefs cannot be derived from a common prior. Such a situation
cannot be described by an Aumann model of incomplete information.

There are two players, N = {I, II}, and four states of nature, S = {s11, s12, s21, s22}. The corre-
sponding belief space has four states of the world, Y = {ω11, ω12, ω21, ω22}:

State of the world s(·) πI(·) πII(·)

ω11 s11
[

3
7 (ω11), 4

7 (ω12)
] [

1
2 (ω11), 1

2 (ω21)
]

ω12 s12
[

3
7 (ω11), 4

7 (ω12)
] [

4
5 (ω12), 1

5 (ω22)
]

ω21 s21
[

2
3 (ω21), 1

3 (ω22)
] [

1
2 (ω11), 1

2 (ω21)
]

ω22 s22
[

2
3 (ω21), 1

3 (ω22)
] [

4
5 (ω12), 1

5 (ω22)
]

The type sets are

TI = {I1, I2} =
{[

3
7 (ω11), 4

7 (ω12)
]
,
[

2
3 (ω21), 1

3 (ω22)
]}

,

TII = {II1, II2} =
{[

1
2 (ω11), 1

2 (ω21)
]
,
[

4
5 (ω12), 1

5 (ω22)
]}

.

The mutual beliefs of the players are described in Figure 10.6.

II1

I1
I2

II2

3/7

The beliefs of Player I The beliefs of Player II

4/7
2/3 1/3

II1

I1
I2

II2

1/2 4/5
1/2 1/5

Figure 10.6 The beliefs of each player about the types of the other player

These mutual beliefs are the same beliefs as in Example 9.56 (page 366). As shown there, there
does not exist a common prior in the Harsanyi model with these beliefs. Note that this example
resembles Example 10.18, the only difference being the change of one of the types of Player II,
namely, type II1, from [ 3

5 (ω11), 2
5 (ω21)] to [ 1

2 (ω11), 1
2 (ω21)]. These two situations, which are similar

in their presentations as belief spaces, are in fact significantly different: one can be modeled by an
Aumann or Harsanyi model of incomplete information, while the other cannot. �

In general, if there exists a probability distribution p such that at any state of the world
ω in the support of p, the beliefs of the player are calculated as a conditional probability
via

πi(ω) = p(· | {ω′ ∈ Y : πi(ω
′) = πi(ω)}), (10.22)

then p is called a consistent distribution, and every state of the world in the support of p

is called a consistent state of the world. In that case, the collection of beliefs (πi)i∈N is
called a consistent belief system (see also Section 10.6 on page 415).

In the above example, all the states of the world in Y are inconsistent. Ensuring consis-
tency requires the existence of certain relationships between the subjective probabilities
of the players, and, therefore, the dimension of the set of consistent belief systems is lower
than the dimension of the set of all mutual belief systems. For example, in the examples
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above containing two players and two types for each player, the mutual belief system of the
types contains four probability distributions over [0, 1]; hence the set of mutual belief sys-
tems is isomorphic to [0, 1]4. The consistency condition requires that any one of these four
probability distributions be determined by the three others; hence the set of mutual belief
systems is isomorphic to [0, 1]3. In other words, within the set of all mutual belief systems,
the relative dimension of the set of consistent belief systems is 0 (see Exercise 10.18).

Example 10.20 Infinite type space There are two players N = {I, II} and the set of states of nature is

S = [0, 1]2. Player I is informed of the first coordinate of the chosen state of nature, while Player II
is informed of the second coordinate. The beliefs of the players are as follows. If x is the value that
Player I is informed of, he believes that the value Player II is informed of is taken from the uniform
distribution over [0.9x, 0.9x + 0.1]. If y is the value that Player 2 is informed of, then if y ≤ 1

2 ,
Player 2 believes that the value Player 1 is informed of is taken from the uniform distribution over
[0.7, 1], and if y > 1

2 , Player 2 believes that the value Player 1 is informed of is taken from the
uniform distribution over [0, 0.3].

A belief space that corresponds to this situation is:

� The set of states of the world is Y = [0, 1]2. A state of the world is denoted by ωxy = (x, y),
where 0 ≤ x, y ≤ 1. For every (x, y) ∈ [0, 1]2, the equation s(ωxy) = (x, y) holds.

� For every x ∈ [0, 1], Player I’s belief πI(ωxy) is a uniform distribution over the set {(x, y) ∈
[0, 1]2 : 0.9x ≤ y ≤ 0.9x + 0.1}, which is the interval [(x, 0.9x), (x, 0.9x + 0.1)].

� If y ≤ 1
2 then Player II’s belief πII(ωxy) is the uniform distribution over the set {(x, y) ∈

[0, 1]2 : 0.7 ≤ x ≤ 1} (which is the interval [(0.7, y), (1, y)]), and if y > 1
2 then the belief

πII(ωxy) is the uniform distribution over the set {(x, y) ∈ [0, 1]2 : 0 ≤ x ≤ 0.3} (which is the
interval [(0, y), (0.3, y)]).

The type sets of the players are4

TI = {U [(x, 0.9x), (x, 0.9x + 0.1)] : 0 ≤ x ≤ 1} , (10.23)

TII =
{
U [(0.7, y), (1, y)] : 0 ≤ y ≤ 1

2

}⋃{
U [(0, y), (0.3, y)] : 1

2 < y ≤ 1
}
. (10.24)

The beliefs of the players in this example are inconsistent. At every state of the world, Player I
believes that |x − y| ≤ 0.1, while Player II believes that |x − y| ≥ 0.2; there cannot be a common
prior from which these two beliefs are both derived (Exercise 10.19). �

10.4 Belief subspaces
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 10.21 Let � = (Y,Y, s, (πi)i∈N ) be a belief space and let Ỹ ∈ Y be
a nonempty subset of the set of states of the world. The ordered vector �̃ =
(Ỹ ,Y|Ỹ , s, (πi)i∈N ) is called 5 a belief subspace if

πi(Ỹ | ω) = 1, ∀i ∈ N, ∀ω ∈ Ỹ . (10.25)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 For −∞ < a < b < ∞, we denote the uniform distribution over [a, b] by U [a, b].
5 We denote the restriction of Y to Ỹ by Y|Ỹ = {E ⊆ Ỹ : E ∈ Y}, and s and (πi )i∈N are the functions appearing in

the definition of �, restricted to Ỹ .
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In words, a belief subspace is a set of states of the world that is closed under the
beliefs of the players. If the true state of the world ω is in the belief subspace Ỹ , then
the states of the world that are not in Ỹ are irrelevant to all the players, and this fact
is common belief among them (Exercise 10.16). Later in this chapter, we will analyze
games with incomplete information, where each player chooses his action as a function of
his beliefs. In his strategic considerations, each player may ignore the states of the world
that are not in the belief subspace that describes the situation he is in. For convenience,
we will call both Ỹ and �̃ belief subspaces of �. If a belief space is derived from an
Aumann model of incomplete information, then for every state of the world ω the common
knowledge component C(ω) at the state of the world ω (see page 333) is a belief subspace
(Exercise 10.17).

Example 10.22 Consider the following belief space, in which the set of players is N = {I, II}, the set of

states of nature is S = {s1, s2, s3}, and Y = {ω1, ω2, ω3}:
State of the world s(·) πI(·) πII(·)

ω1 s1
[

1
2 (ω1), 1

2 (ω2)
]

[1(ω1)]

ω2 s2
[

1
2 (ω1), 1

2 (ω2)
]

[1(ω3)]

ω3 s3 [1(ω3)] [1(ω3)]

The subspace Ỹ = {ω3} is a belief subspace, and it is the only strict subspace of Y that is a belief
subspace (verify!). �

The next theorem states that the intersection of two belief subspaces of the same belief
space is also a belief subspace. The proof of the theorem is left to the reader as an exercise
(Exercise 10.29).

Theorem 10.23 If �̃1 = (Ỹ1,Y|Ỹ1
, s, (πi)i∈N ) and �̃2 = (Ỹ2,Y|Ỹ2

, s, (πi)i∈N ) are two
belief subspaces of the same belief space � = (Y,Y, s, (πi)i∈N ), and if Ỹ1 ∩ Ỹ2 �= ∅,
then (Ỹ1 ∩ Ỹ2,Y|Ỹ1∩Ỹ2

, s, (πi)i∈N ) is also a belief subspace.

By definition, for every state of the world ω ∈ Y , the space Y itself is a belief subspace
containing ω; i.e., Y is a model of the situation: it can be used to describe the situation
associated with ω. However, this may be a model that is “too large,” in the sense that it
contains states of the world that all the players deem to be irrelevant. The most “efficient”
model is the smallest belief subspace (with respect to set inclusion) that contains ω.

Definition 10.24 The minimal belief subspace at a state of the world ω is the smallest
belief subspace (with respect to set inclusion) that contains ω. We will denote the minimal
subspace at ω (if such a space exists) by �̃(ω), and the set of states of the world of �̃(ω)
we will denote by Ỹ (ω).

Theorem 10.23 implies that if there exists a minimal belief subspace, then it is unique
(Exercise 10.30). Does every state of the world ω ∈ Y have a minimal belief subspace
containing it? As the next theorem shows, the answer to this question is positive, when
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the set of states of the world is finite. The same holds true if the set of states of the world
is countably infinite (Exercise 10.31).

Theorem 10.25 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which the set of states of
the world Y is a finite set. For each state of the world ω ∈ Y , there exists a unique minimal
belief subspace containing ω.

Proof: � is a belief subspace; hence there exists at least one belief subspace containing ω.
Since Y is a finite set, there is a finite number of belief subspaces containing ω. By repeated
application of Theorem 10.23, the intersection of all the belief subspaces containing ω is
a belief subspace containing ω, and it is the minimal belief subspace at ω. �

As the next example shows, in more general spaces there may not exist a minimal belief
space.

Example 10.26 Consider the one-player belief space in which N = {I}, the set of states of nature is S = [0, 1],

the set of states of the world is Y = [0, 1], the σ -algebraY is the σ -algebra of Borel sets, the function
s is given by s(ω) = ω for each ω ∈ Y , and the player’s belief at each state of the world is the
uniform distribution over [0, 1]. At each state of the world ω, every subset of states of the world
Ỹ ⊆ Y whose Lebesgue measure is 1 is a belief subspace. Since there does not exist a minimal set
containing ω whose Lebesgue measure is 1, it follows that there is no minimal belief subspace at
any state of the world in this example. �

Since player i does not know the true state of the world ω, and knows only his belief
πi(ω), he may not be able to calculate Ỹ (ω). This point is elucidated in the next example.

Example 10.27 Figure 10.7 depicts a belief space with a set of players N = {I, II}, and a set of states of

nature S = {s1, s2, s3}. The set of states of the world is Y = {ω1, ω2, ω3}.

State of the world πI (·) πII (·) Y
∼

(ω)(·)

ω1

ω2
ω3

[1(ω1)]

[1(ω3)]
[1(ω1)]

[1(ω1)]

[1(ω3)]
[1(ω3)]

{ω1}

{ω3}
Y

s1

s2
s3

Figure 10.7 The belief space in Example 10.27

At the state of the world ω2, the players do not agree on the states of the world that are relevant
to the situation: at this state of the world, Player I believes it is common belief that the state of
nature is s1, while Player II believes it is common belief that the state of nature is s3. In fact, both
of them are wrong, because the true state of nature is s2.
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The sets Ỹ1 = {ω1} and Ỹ3 = {ω3} are belief subspaces. At the state of the world ω2, Player I
believes that the state of the world is ω1, and he therefore ascribes probability 1 to the minimal
belief subspace being Ỹ1. Player II, in contrast, ascribes probability 1 at the state of the world ω2

to the minimal belief subspace being Ỹ3. If the situation is a game situation, then at the state of the
world ω2 Player I will ignore in his strategic considerations the states of the world ω2 and ω3 and
Player II will ignore the states of the world ω1 and ω2. �

The last example leads to the following definition.

Definition 10.28 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, and let ω ∈ Y be a state
of the world. A belief subspace of player i at a state of the world ω is a belief subspace
�̃ = (Ỹ ,Y, s, (πi)i∈N ) satisfying

πi(Ỹ | ω) = 1. (10.26)

The condition in Equation (10.26) guarantees that at the state of the world ω, player i

ascribes probability 1 to the true state of the world being in Ỹ . Note that Y itself is a belief
subspace for each player at each state of the world.

The next theorem states that the intersection of two belief subspaces of player i at the
state of the world ω is a belief subspace of player i at ω.

Theorem 10.29 If �̃1 = (Ỹ1,Y|Ỹ1
, s, (πi)i∈N ) and �̃2 = (Ỹ2,Y|Ỹ2

, s, (πi)i∈N ) are two
belief subspaces of player i at a state of the world ω, then (Ỹ1 ∩ Ỹ2,Y|Ỹ1∩Ỹ2

, s, (πi)i∈N ) is
a belief subspace of player i at ω.

Proof: We first establish that Ỹ1 ∩ Ỹ2 �= ∅. Since �̃1 is a belief subspace of player i at ω,
it follows that πi(Ỹ1 | ω) = 1. We similarly deduce that πi(Ỹ2 | ω) = 1. Therefore,

πi(Ỹ1 ∩ Ỹ2 | ω) = 1, (10.27)

and, in particular, the set Ỹ1 ∩ Ỹ2 is not empty. If follows from Theorem 10.23 that
(Ỹ1 ∩ Ỹ2,Y|Ỹ1∩Ỹ2

, s, (πi)i∈N ) is a belief subspace; hence this is a belief subspace of player
i at the state of the world ω. �

The smallest belief subspace of a player i (with respect to set inclusion) is called the
minimal belief subspace of player i.

Definition 10.30 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, and let ω ∈ Y be a state
of the world. The minimal belief subspace of player i at ω is the smallest belief subspace
of player i (with respect to set inclusion) at the state of the world ω.

The minimal belief subspace of player i at a state of the world ω (if such a subspace
exists) will be denoted by �̃i(ω), and the set of states of the world in �̃i(ω) will be denoted
by Ỹi(ω).

The next two examples show that the minimal belief subspaces of two players at a given
state of the world may be different, and even disjoint.
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Example 10.22 (Continued) The table in Figure 10.8 presents the belief space of Example 10.22, along

with the minimal belief subspaces of the players. At the state of the world ω2, the minimal belief
subspace of Player I is ỸI(ω2) = {ω1, ω2, ω3}. It properly contains the minimal belief subspace of
Player II, which is ỸII(ω2) = {ω3}.

State of the world πI (·) πII (·) Y
∼

I(ω) Y
∼

II(ω)(·)

ω1
ω2
ω3

[  (ω1),   (ω2)]

[1(ω3)]

[1(ω1)]

[1(ω3)]
[1(ω3)]

Y

{ω3}
Y

Y

{ω3}
{ω3}

s1
s2
s3

1
2

1
2

[  (ω1),   (ω2)]1
2

1
2

Figure 10.8 The belief space in Example 10.22, and the minimal belief subspaces of the players
�

Example 10.27 (Continued) The table in Figure 10.9 presents the belief space of Example 10.27, along

with the minimal belief subspaces of the players.

State of the world πI (·) πII (·) Y
∼

I(ω) Y
∼

II(ω)(·)

ω1
ω2
ω3

[1(ω1)]

[1(ω3)]
[1(ω3)]

[1(ω1)]

[1(ω3)]
[1(ω1)]

{ω3} {ω3}
{ω3}
{ω1}{ω1}

{ω1}
s1
s2
s3

Figure 10.9 The belief space in Example 10.27, and the minimal belief subspaces of the players

As consideration of the table shows, the belief subspaces of the players at the state of the world
ω2 are disjoint. Note in addition that the state of the world ω2 is not contained in the minimal belief
subspaces of the two players at the state of the world ω2, ω2 �∈ ỸI(ω2) and ω2 �∈ ỸII(ω2). �

The significance of Ỹi(ω) is that, when player i is considering the situation that he
faces at the state of the world ω, Ỹi(ω) is the belief subspace that he deems relevant:
player i believes that it is common belief among all the players that the state of the world
is contained in Ỹi(ω). Note the difference between the definitions of the minimal belief
subspace Ỹ (ω) and the minimal belief subspace of player i, Ỹi(ω): while Ỹi(ω) does not
necessarily contain ω, as shown in Example 10.27, Ỹ (ω) by definition must contain ω,
because for an “objective” analysis of the game, the true state is of relevance for the
situation; in particular, it affects the payoffs of the players.

The statement of the following theorem shows that there is a tight relationship between
the minimal belief subspaces of different players.

Theorem 10.31 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set. If
ω′ ∈ Ỹi(ω) then Ỹj (ω′) ⊆ Ỹi(ω) for every j ∈ N .

In words, if at the state of the world ω, the belief subspace of player i contains another
state of the world ω′, then it also contains all the minimal belief subspaces of the other
players at ω′.
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Proof: We will show that for any player j ∈ N , every state of the world ω′′ ∈ Ỹj (ω′) is
also contained in Ỹi(ω). From the definition of the minimal belief subspace of player j ,
if ω′′ ∈ Ỹj (ω′), then every belief subspace Ỹ containing ω′ and satisfying πj (Ỹ | ω′) = 1
contains ω′′. Since Ỹi(ω) is such a space, it too contains ω′′. �

The next theorem states that if the set of states of the world is finite, and at the state
of the world ω all the players ascribed positive probability to ω, then the minimal belief
subspaces of all the players at ω are the same.

Theorem 10.32 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set,
and let ω ∈ Y . If πi({ω} | ω) > 0 for each player i ∈ N , then Ỹi(ω) = Ỹj (ω) for every
pair of players i and j (hence Ỹi(ω) = Ỹ (ω) for every i ∈ N).

Proof: Let i ∈ N be a player. Since πi({ω} | ω) > 0, it follows from Equation (10.26)
in Definition 10.28 that ω ∈ Ỹi(ω). Then Theorem 10.31 implies that Ỹj (ω) ⊆ Ỹi(ω) for
every j ∈ N . Since this is true for any pair of players i, j ∈ N , the proof of the theorem
is complete. �

The next theorem states that the minimal belief subspace at a state of the world ω is
simply the union of the true state of the world ω and the minimal belief subspaces of the
players at that state. The proof of the theorem is left to the reader (Exercise 10.32).

Theorem 10.33 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set.
Then for every state of the world ω ∈ Y ,

Ỹ (ω) = {ω} ∪
(⋃

i∈N

Ỹi(ω)

)
. (10.28)

Remark 10.34 As shown in Example 10.26, when the set of states of the world has the
cardinality of the continuum, the minimal belief subspace may not necessarily exist. If the
set of states of the world is a topological space,6 define the minimal belief subspace of a
player as follows.

A belief subspace is an ordered vector �̃ = (Ỹ ,Y|Ỹ , s, (πi)i∈N ) satisfying Equation
(10.25), and also satisfying the property that Ỹ is a closed set. Player i’s minimal belief
subspace at the state of the world ω, is the belief subspace �̃ = (Ỹ ,Y|Ỹ , s, (πi)i∈N ) in
which the set Ỹ is the smallest closed subset (with respect to set inclusion) among all the
belief subspaces satisfying Equation (10.26). �

When the set of states of the world Y is finite, there exists a characterization of belief
subspaces. Define a directed graph G = (Y, E) in which the set of vertices is the set of
states of the world Y , and there is a directed edge from ω1 to ω2 if and only if there exists a
player i ∈ N for whom πi({ω2} | ω1) > 0. A set of vertices C in a directed graph is called

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 A space Y is called a topological space if there exists a family of subsets T that are called open sets: the empty set
is contained in T , the set Y is contained in T , the union of any set of elements of T is in T , and the intersection
of a finite number of elements in T is also a set in T . A set A in a topological space is called closed if it is the
complement of an open set.
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a closed component if for each vertex ω ∈ C, every vertex connected to ω by a directed
edge is also in C; i.e., if there exists an edge from ω to ω′, then ω′ ∈ C.

The next theorem states that the set of belief subspaces is exactly the set of closed sets
in the graph G. The proof of the theorem is left to the reader (Exercise 10.33).

Theorem 10.35 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set
of states of the world. A subset Ỹ of Y is a belief subspace if and only if Ỹ is a closed
component in the graph G.

Denote the minimal closed set containing ω by C(ω). This set contains the ver-
tex ω, all the vertices that are connected to ω by way of directed edges emanating
from ω, all vertices that are connected to those vertices by directed edges, and so on.
Since the graph G is finite, this is a finite process, and therefore the set C(ω) is well
defined. Together with the construction of the set C(ω), Theorem 10.35 provides a
practical method for calculating belief subspaces and minimal belief subspaces of the
players.

The next theorem provides a practical method of computing minimal belief subspaces
at a particular state of the world. The proof of the theorem is left to the reader (Exercise
10.34).

Theorem 10.36 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set, let
ω ∈ Y , and let i ∈ N . Then

Ỹi(ω) =
⋃

{ω′ : πi ({ω′}|ω)>0}
C(ω′). (10.29)

Recognizing his own beliefs, player i can compute his own minimal belief subspace.
To see this, note that since he knows πi(ω), he knows which states of the world are in the
support of this probability distribution. Knowing the states of the world in the support,
player i knows the beliefs of the other players at these states of the world; hence he knows
which states of the world are in the supports of those beliefs. Player i can thus recursively
construct the portion of the graph G relevant for computing Ỹi(ω). The construction is
completed in a finite number of steps because Y is a finite set.

While player i can compute his minimal belief subspace Ỹi(ω) using his own beliefs,
in order to compute the belief subspaces of the other players, (Ỹj (ω))j �=i , he needs
to know their beliefs. Since player i does not know the true state of the world ω,
he does not know the beliefs of the other players at that state, which means that he
cannot compute the minimal belief subspaces of the other players. In Example 10.22
(page 404), at the states of the world ω2 and ω3, the belief of Player II is [1(ω3)];
hence Player II cannot distinguish between the two states of the world based on his
beliefs. The minimal belief subspaces of Player I at the two states of the world are
different:

ỸI(ω2) = Y, ỸI(ω3) = {ω3}. (10.30)

It follows that, based on his beliefs, Player II cannot know whether the minimal belief
subspace of Player I is Y or {ω3}.
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10.5 Games with incomplete information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

So far, we have discussed the structure of the mutual beliefs of players, and largely ignored
the other components of a game, namely, the actions and the payoffs. In this section, we
will define games with incomplete information without a common prior, and the concept
of Bayesian equilibrium in such games.

Definition 10.37 A game with incomplete information is an ordered vector G =
(N, S, (Ai)i∈N, �), where:

� N is a finite set of players.
� S is a measurable space of states of nature. To avoid a surfeit of symbols, we will not

mention the σ -algebra over S, or over other measurable sets that are defined below.
� Ai is a measurable set of possible actions of player i, for every i ∈ N .
� Each state of nature in S is a state game s = (N, (Ai(s))i∈N, (ui(s))i∈N ), where Ai(s) ⊆
Ai is a nonempty measurable set of possible actions of player i, for each i ∈ N . We
denote by A(s) = ×i∈N Ai(s) the set of vectors of possible actions in s. For each player
i ∈ N the function ui(s) : A(s) → R is a measurable function assigning a payoff to
player i in the state game s for each vector of possible actions.

� � = (Y,Y, s, (πi)i∈N ) is a belief space of the players N over the set of states of nature
S, satisfying the following condition: for every pair of states of the world ω, ω′ ∈ Y , if
πi(ω) = πi(ω′), then Ai(s(ω)) = Ai(s(ω′)).

The last condition in Definition 10.37 implies that at each state of the world ω ∈ Y ,
player i’s set of possible actions Ai(s(ω)) depends on ω, but only through his type πi(ω).
Since the player knows his own type, he knows the set of possible actions Ai(s(ω))
available to him. Formally, consider the partition Fi of Y determined by player i’s beliefs
(see Equation (10.8) on page 390) given by the sets

Fi(ω) = {ω′ ∈ Y : πi(ω
′) = πi(ω)}, (10.31)

and the knowledge operator defined by this partition. Define the event Ci(ω) = “player i’s
set of actions is Ai(s(ω))”:

Ci(ω) := {ω′ ∈ Y : Ai(s(ω′)) = Ai(s(ω))}. (10.32)

Then the last condition in Definition 10.37 guarantees that at each state of the world
ω, player i knows Ci(ω), i.e., Fi(ω) ⊆ Ci(ω) for each ω ∈ Y . A game with incomplete
information, therefore, is composed of a belief space �, and a collection of state games,
one for each state of nature in S. The information that each player i has at the state of the
world ω is his type, πi(ω). As required in the Harsanyi model of incomplete information,
the set of actions available to a player must depend solely on his type. Every Harsanyi
game with incomplete information (see Definition 9.39 on page 347) is a game with
incomplete information according to Definition 10.37 (Exercise 10.48).

Player i’s type set was denoted by

Ti := {πi(ω) : ω ∈ Y }. (10.33)
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To define the expected payoff, we assume that the graph of the function s #→ A(s),
defined by Graph(A) := {(s, a) : s ∈ S, a ∈ A(s)} ⊆ S × A, is a measurable set. We sim-
ilarly assume that for each player i ∈ N , the function ui : Graph(A) → R is a measurable
function.

Definition 10.38 A behavior strategy of player i in a game with incomplete information
G = (N, S, (Ai)i∈N, �) is a measurable function σi : Y → 
(Ai), mapping every state
of the world to a mixed action available at the stage game that corresponds to that state
of the world,7 and dependent solely on the type of the player. In other words, for each
ω, ω′ ∈ Y ,

σi(ω) ∈ 
(Ai(s(ω))), (10.34)

πi(ω) = πi(ω
′) =⇒ σi(ω) = σi(ω

′). (10.35)

Since the mixed action σi(ω) of player i depends solely on his type ti = πi(ω), it can
also be denoted by σi(ti). Because the type sets of the players may be infinite, strategies
must be measurable functions in order for us to calculate the expected payoff of a player
given his type. Let σ = (σi)i∈N be a strategy vector. Denote by

σ (ω) := (σi(ω))i∈N ∈ ×
i∈N


(Ai(s(ω))) (10.36)

the vector of mixed actions of the players when the state of the world is ω. Player i’s
payoff under σ at the state of the world ω is8

γi(σ | ω) =
∫

Y

Ui(s(ω′); σ (ω′))dπi(ω
′ | ω). (10.37)

Since πi(ω) is player i’s belief at the state of the world ω about the states of the world
ω′ ∈ Y , the integral of the payoff function with respect to this probability distribution
describes the expected payoff of the player at the state of the world ω, based on his
subjective beliefs, and given the other players’ strategies.

To emphasize that the expected payoff of player i at the state of world ω depends on
the mixed action implemented by player i at ω, and is independent of mixed actions that
he implements at other states of the world, we sometimes write γi(σi(ω), σ−i | ω) instead
of γi(σi, σ−i | ω).

We will now define the concept of Bayesian equilibrium in games with incomplete
information.

Definition 10.39 A Bayesian equilibrium is a strategy vector σ ∗ = (σ ∗
i )i∈N satisfying

γi(σ
∗ | ω) ≥ γi(σi(ω), σ ∗

−i | ω), ∀i ∈ N, ∀σi(ω) ∈ 
(Ai(s(ω))), ∀ω ∈ Y. (10.38)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Since a behavior strategy is a measurable function whose range is the space of mixed actions, we need to specify
the σ -algebra over the space 
(Ai ) that we are using. The σ -algebra over this space is the σ -algebra induced by
the weak topology (see Dunford and Schwartz [1999]). An alternative definition of a measurable function taking
values in this space is: for each measurable set C ⊆ Ai , the function ω #→ σi (C | ω) is a measurable function.

In an infinite space, the existence of a behavior strategy requires that the function ω #→ Ai (s(ω)) be measurable.
Results appearing in Kuratowski and Ryll-Nardzewski [1965] imply that a sufficient condition for the existence of
a behavior strategy is that (a) Ai is a complete metric space for every i ∈ N , (b) the function ω #→ Ai (s(ω)) is a
measurable function, and (c) for each state of nature s, the set Ai (s) is a closed set.

8 Recall that Ui is the multilinear extension of ui ; see Equation (5.9) on page 147.



409 10.5 Games with incomplete information

In other words, a Bayesian equilibrium is a strategy vector that satisfies the condition that
based on his subjective beliefs, at no state of the world can a player profit by deviating
from his strategy.

As the next theorem states, a strategy vector is a Bayesian equilibrium if no player of
any type can profit by deviating to any other action. The theorem is a generalization of
Corollary 5.8 (page 149). In our formulation of the theorem, we will use the following
notation. Let σ = (σj )j∈N be a strategy vector. For each player i ∈ N , each state of the
world ω ∈ Y , and for each action ai,ω ∈ Ai(s(ω)), denote by (σ ; ai,ω) the strategy vector
at which every player j �= i implements strategy σj , and player i plays action ai,ω when
his type is πi(ω).

Theorem 10.40 A strategy vector σ ∗ = (σ ∗
i )i∈N is a Bayesian equilibrium if and only if

for each player i ∈ N , for each state of the world ω ∈ Y , and each action ai,ω ∈ Ai(s(ω)),

γi(σ
∗ | ω) ≥ γi((σ

∗; ai,ω) | ω). (10.39)

The proof of the theorem is left to the reader (Exercise 10.49).

Example 10.41 We consider a game that extends Example 10.19 (page 399), where beliefs are inconsistent.

There are two players N = {I, II}, four states of nature S = {s11, s12, s21, s22}, and four states of
the world, Y = {ω11, ω12, ω21, ω22}. The beliefs of the players, and the function s are given in
Figure 10.10.

State of the world πI πII

ω11 s11 [3
7 (ω11), 4

7 (ω12)] [1
2 (ω11), 1

2 (ω21)]

ω12 s12 [3
7 (ω11), 4

7 (ω12)] [4
5 (ω12), 1

5 (ω22)]

ω21 s21 [2
3 (ω21), 1

3 (ω22)] [1
2 (ω11), 1

2 (ω21)]

ω22 s22 [2
3 (ω21), 1

3 (ω22)] [4
5 (ω12), 1

5 (ω22)]

(·) (·) (·)

Figure 10.10 The beliefs of the players and the function s in Example 10.41

The players’ type sets are

TI = {I1, I2} =
{[

3
7 (ω11), 4

7 (ω12)
]
,
[

2
3 (ω21), 1

3 (ω22)
]}

, (10.40)

TII = {II1, II2} =
{[

1
2 (ω11), 1

2 (ω21)
]
,
[

4
5 (ω12), 1

5 (ω22)
]}

. (10.41)

The state games s11, s12, s21, and s22 are given in Figure 10.11. A behavior strategy of Player I
is a pair (x, y), defined as:

� Play the mixed action [x(T ), (1 − x)(B)] if your type is I1.
� Play the mixed action [y(T ), (1 − y)(B)] if your type is I2.
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Similarly, a behavior strategy of Player II is a pair (z, t), defined as:

� Play the mixed action [z(L), (1 − z)(R)] if your type is II1.
� Play the mixed action [t(L), (1 − t)(R)] if your type is II2.

We will now find a Bayesian equilibrium satisfying 0 < x, y, z, t < 1 (assuming one exists). In
such an equilibrium, every player of each type must be indifferent between his two actions, given
his beliefs about the type of the other player.

L

State game s11

T 2, 0 0, 1

0, 0 1, 0B

R L

State game s12

T 0, 0 0, 0

1, 1 1, 0B

R

L

State game s21

T 0, 0 0, 0

1, 1 0, 0B

R L

State game s22

T 0, 0 2, 1

0, 0 0, 2B

R

Figure 10.11 The payoff functions in Example 10.41

If the players are indifferent between their actions, then:

Player I of type I1 is indifferent between B and T : 3
7 · 2z = 3

7 (1 − z) + 4
7 ;

Player I of type I2 is indifferent between B and T : 1
3 · 2(1 − t) = 2

3z;

Player II of type II1 is indifferent between R and L : 1
2 (1 − y) = 1

2x;

Player II of type II2 is indifferent between R and L : 4
5 (1 − x) = 1

5 (y + 2(1 − y)).

The solution to this system of equations is (verify!)

x = 3
5 , y = 2

5 , z = 7
9 , t = 2

9 . (10.42)

The mixed actions [ 3
5 (T ), 2

5 (B)] for Player I of type I1, and [ 2
5 (T ), 3

5 (B)] for Player I of type
I2, and [ 7

9 (L), 2
9 (R)] for Player II of type II1, and [ 2

9 (L), 7
9 (R)] for Player II of type II2 therefore

form a Bayesian equilibrium of this game. This game has no “expected payoff,” because there is
no common prior distribution over Y . Nevertheless, one can speak about an “objective” expected
payoff at each state of nature (calculated from the actions of the players at that state of nature).
Denote by γi(s) the payoff of player i at the state game s. Denote the payoff matrix of player
i at the state game skl by Gi,kl . The payoff γi(skl), for example, can be represented in vector
form:

γi(s11) = (x, 1 − x)Gi,11

(
z

1 − z

)
. (10.43)
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A simple calculation gives the payoff of each player at each state of nature:

γI(ω11) =
(

3

5
,

2

5

)
GI,11

(
7/9
2/9

)
= 46

45
, γII(ω11) =

(
3

5
,

2

5

)
GI,11

(
7/9
2/9

)
= 6

45
,

γI(ω12) =
(

3

5
,

2

5

)
GI,12

(
2/9
7/9

)
= 18

45
, γII(ω12) =

(
3

5
,

2

5

)
GI,12

(
2/9
7/9

)
= 4

45
,

γI(ω21) =
(

2

5
,

3

5

)
GII,21

(
7/9
2/9

)
= 21

45
, γII(ω21) =

(
2

5
,

3

5

)
GII,21

(
7/9
2/9

)
= 21

45
,

γI(ω22) =
(

2

5
,

3

5

)
GII,22

(
2/9
7/9

)
= 28

45
, γII(ω22) =

(
2

5
,

3

5

)
GII,22

(
2/9
7/9

)
= 70

45
.

Because the players do not know the true state game, the relevant expected payoff for a player
is the subjective payoff he receives given his beliefs. For example, at the state of the world ω11

(or ω12) Player I believes that the state of the world is ω11 with probability 3
7 , and ω12 with

probability 4
7 . Player I therefore believes that the state game is G11 with probability 3

7 , and G12

with probability 4
7 . His subjective expected payoff is therefore 3

7 × 46
45 + 4

7 × 18
45 = 2

3 , and it is this
payoff that he “expects” to receive at the state of the world ω11 (or ω12). Similarly, at the state
of the world ω21 (or ω22), Player I “expects” to receive 2

3 × 21
45 + 1

3 × 28
45 = 14

27 . At ω11 (or ω21)
Player II “expects” to receive 1

2 × 6
45 + 1

2 × 21
45 = 3

10 . At ω12 ( or ω22) Player II “expects” to receive
4
5 × 4

45 + 1
5 × 70

45 = 86
225 . �

There are no general results concerning the existence of Bayesian equilibria in incon-
sistent models, but we do have the following result.

Theorem 10.42 Let G = (N, S, (Ai)i∈N, �) be a game with incomplete information,
where Y is a finite set of states of the world, and each player i has a finite set of actions
Ai . Then G has a Bayesian equilibrium in behavior strategies.

Proof: To prove the theorem, we will define the agent-form game corresponding to G (see
Definition 9.50, on page 354), and show that every Nash equilibrium of the agent-form
game is a Bayesian equilibrium of G. Since Nash’s Theorem (Theorem 5.10 on page 151)
implies that there exists an equilibrium in the agent-form game, we will deduce that the
given game G has a Bayesian equilibrium.

Recall that the type set of player i is denoted Ti = {πi(ω) : ω ∈ Y }. The agent-form
game corresponding to G is a strategic-form game � = (N̂, (Ŝk)k∈N̂ , (̂uk)k∈N̂ ), where:

� The set of players is N̂ = {(i, ti) : i ∈ N, ti ∈ Ti}. In other words, each type of each
player is a player in the agent-form game.

� The set of pure strategies of player (i, ti) ∈ N̂ is Ŝ(i,ti ) := Ai(s(ω)), where ω is any state
of the world satisfying ti = πi(ω).

A pure strategy σ(i,ti ) of player (i, ti) in the agent-form game is a possible action of player
i’s type ti in G. It follows that a pure strategy vector σ = (σ(i,ti ))(i,ti )∈N̂ is a prescription for
what each type of each player should play; hence it is, in fact, also a pure strategy vector
in G, in which for each i ∈ N , the vector (σ(i,ti ))ti∈Ti

is a pure strategy of player i. This
means that the set of pure strategy vectors in G is equal to the set of strategy vectors in
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�, and the set of behavior strategy vectors in the game G equals the set of mixed strategy
vectors in the game �.

� The payoff function of player (i, ti) is

û(i,ti )(̂σ ) = γi (̂σ | ω), (10.44)

where ω is any state of the world satisfying ti = πi(ω). Since γi (̂σ | ω) depends on
ω only via πi(ω), this expression depends only on ti , and therefore u(i,ti )(̂σ ) is well
defined.

Because the set of states of the world Y is finite, we deduce that the set of players N̂ in
� is also finite. Since every player i’s set of actions Ai is finite, the agent-form game �

satisfies the conditions of Nash’s Theorem (see Theorem 5.10 on page 151); hence it has
an equilibrium σ ∗ = (σ ∗

(i,ti )
)(i,ti )∈N̂ in mixed strategies. Since the set of behavior strategy

vectors of G equals the set of mixed strategies of �, we can regard σ ∗ = (σ ∗
i (· | ti))i∈N,ti∈Ti

as a vector of behavior strategies in G. The fact that σ ∗ is a Bayesian equilibrium then
follows from the definition of the agent-form game, and because σ ∗ is a mixed strategy
equilibrium of the agent-form game �. �

The following examples look at games with incomplete information with infinite spaces
of states of nature.

Example 10.43 Sealed-bid first-price auction9 An original van Gogh painting is being offered in a first-

price sealed-bid auction, meaning that every buyer writes his bid on a slip of paper that is placed
in a sealed envelope, which is then inserted into a box. After all buyers have submitted their
bids, all of the envelopes in the box are opened and read. The buyer who has made the highest
bid wins the painting, paying for it the amount that he offered. If more than one buyer bids the
highest bid, a fair lottery is conducted among them to choose the winner. Every buyer has a private
evaluation for the painting, which will be referred to as his private value for the object. This is
the subjective value he ascribes to the painting; private values may differ from one buyer to the
next.

Only two buyers take part in this auction, Elizabeth and Charles. Each of them knows his or
her private value, but not the private value of the other buyer. Each buyer believes that the private
value of the other buyer is uniformly distributed in the interval [0, 1], and this fact is common belief
among the buyers. This situation can be modeled as a game with incomplete information, in the
following way:

� The set of players is N = {Elizabeth, Charles}.
� The set of states of nature is S = {sx,y : 0 ≤ x, y ≤ 1}; The subscript x corresponds to Elizabeth’s

private value, and subscript y corresponds to Charles’s private value.
� Player i’s set of actions is Ai (s) = [0,∞); hence each player i can submit any nonnegative bid

ai . The pair of bids submitted in the envelopes is therefore (aE, aC).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 Auction theory is studied in greater detail in Chapter 12.
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� Elizabeth’s payoff function is

uE(sx,y ; aE, aC) =

⎧⎪⎨⎪⎩
x − aE if aE > aC,
1
2 (x − aE) if aE = aC,

0 if aE < aC.

(10.45)

If Elizabeth wins the auction, her payoff is the difference between her private value and the
amount of money she pays for the painting; if she does not win the auction, her payoff is 0. If
both buyers submit the same bid, the winner of the auction is chosen at random between them,
where each buyer has a probability of 1

2 of being chosen (this can be accomplished, for example,
by tossing a fair coin). It follows that in this case Elizabeth’s payoff is half of the difference
between her private value and the sum of money she pays for the painting. Charles’s payoff
function is defined similarly.

� The space of the states of the world is Y = [0, 1]2 with the σ -algebra generated by the Borel sets.
� The function s : Y → S is defined by s(x, y) = sx,y for all (x, y) ∈ Y .
� For each state of the world ω = (x, y), Elizabeth’s belief, πE(x, y), is the uniform distribution

over the set {(x, ŷ) : ŷ ∈ [0, 1]} and Charles’s belief, πC(x, y), is the uniform distribution over
the set {(̂x, y) : x̂ ∈ [0, 1]}.

We will show that this game has a symmetric Bayesian equilibrium σ ∗ = (σ ∗
E , σ ∗

C), in which both
buyers make use of the same strategy: player i’s bid is half of his private value. That is,

σ ∗
E (x, y) = x

2
, σ ∗

C(x, y) = y

2
, ∀(x, y) ∈ [0, 1]2. (10.46)

Suppose that Charles uses strategy σ ∗
C. We will show that Elizabeth’s best reply is to bid half of her

private value. Elizabeth’s expected payoff if her private value is x, and her bid is aE, is

γE(aE, σ ∗
C | x) = P

(
aE >

y

2

)
× (x − aE) (10.47)

= P(2aE > y) × (x − aE) (10.48)

= min{2aE, 1} × (x − aE). (10.49)

As a function of aE, this is a quadratic function over aE ∈ [0, 1
2 ] (attaining a maximum at aE = x

2 ),
and a linear function with a negative slope for aE ≥ 1

2 . The graph of this function is shown in
Figure 10.12.

The case x < 12

x
2

x
2

1
2

1
2

The case sE > 12

γE (aE, σ*
C

 ⏐ x) γE (aE, σ*
C

 ⏐ x)

aEaE
x x

Figure 10.12 Elizabeth’s payoff function

In both cases, the function attains a maximum at the point aE = x
2 . It follows that a∗

E(x) = x
2 is

the best reply to σ ∗
C. Thus, σ ∗ = (σ ∗

E , σ ∗
C) is a Bayesian equilibrium. �
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Example 10.44 This is an example in which the beliefs of the players are inconsistent. There are two players

N = {I, II}. The set of states of nature is S = {sx,y : 0 < x, y < 1}; the state games in S are depicted
in Figure 10.13.

L

State game sx,y for x > y

T 1, 0 0, 0

2, 1 1, –1B

R L

State game sx,y for x = y

T 0, 0 0, 0

0, 0 0, 0B

R L

State game sx,y for x < y

T 0, 1 1, 2

0, 0 –1, 1B

R

Figure 10.13 The state games in Example 10.44

The set of states of the world is Y = (0, 1)2, and the function s : Y → S is defined by s(x, y) =
sx,y for every (x, y) ∈ Y . Player I is told the first coordinate x of the state of world, and Player
II is told the second coordinate y of the state of world. Given the value z that is told to a player,
that player believes that the value told to the other player is uniformly distributed over the interval
(0, z). In other words, πI(x, y) is the uniform distribution over the line segment ((x, 0), (x, x)) and
πI(x, y) is the uniform distribution over the line segment ((0, y), (y, y)).

At every state of the world, Player I believes that x > y; hence he believes that action B strictly
dominates action T . In a similar way, at every state of the world Player II believes that y > x; hence
he believes that action R strictly dominates action L. It follows that the only equilibrium is that
where Player I, of any type, plays B, and Player II, of any type, plays R. The equilibrium payoff is
then (−1, 1) if x < y, (1,−1) if x > y, and (0, 0) if x = y. However, in every state of the world,
each player believes that his payoff is 1. �

Example 10.45 We now consider a game similar to the game in Example 10.44, but with different state

games, given in Figure 10.14; here, x represents the first coordinate of the state of nature, and y

the second coordinate. Note that each player, after learning his type, knows his payoff function, but
does not know the payoff function of the other player, even if he knows the strategy used by the
other player, because he does not know the other player’s type.

Player II

Player I
T

L

x, 0 0, y

0, 1 1, 0

R

B

Figure 10.14 The state game s(x,y) in Example 10.45

We will seek a Bayesian equilibrium in which both players, of each type, use a completely
mixed action. At such an equilibrium, every player of every type is indifferent between his
two actions. Denote by σI(x) the probability that Player I of type x, who has received the
information x, will choose action T , and by σII(y) the probability that Player II of type y,
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who has received the information y, will choose action L. Denote by Ux the uniform distribution
over [0, x]. The payoff to Player I of type x if he plays the action T is then

γI(T , σII | x) =
∫ x

y=0
xσII(y)dUx(y) = x

∫ x

y=0
σII(y)dUx(y), (10.50)

and the payoff to Player I of type x if he plays the action B is then

γI(B, σII | x) =
∫ x

y=0
(1 − σII(y))dUx(y) = 1 −

∫ x

y=0
σII(y)dUx(y). (10.51)

Player I of type x is indifferent between T and B if these two quantities are equal to each other,
i.e., if

(1 + x)
∫ x

y=0
σII(y)dUx(y) = 1. (10.52)

The density function of the distribution Ux equals 1
x

in the interval [0, x] , and it follows that in this

interval dUx(y) = dy

x
. After inserting this equality in Equation (10.52) and moving terms from one

side of the equal sign to the other, we get∫ x

y=0
σII(y)dy = x

1 + x
. (10.53)

Differentiating by x yields

σII(x) = 1

(1 + x)2
. (10.54)

By replacing the variable x by y, which is the information that Player II receives, we deduce that
σII(y) = 1

(1+y)2 is a strategy of Player II that makes Player I of any type indifferent between his two
actions. In Exercise 10.54, the reader is asked to conduct a similar calculation to find a strategy of
Player I that makes Player II of any type indifferent between his two actions. When each player
implements a strategy that makes the other player indifferent between his two actions, we obtain
an equilibrium (why is this true?). �

10.6 The concept of consistency
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The concept of consistency in belief spaces was defined on page 399. A consistent belief
space is one in which the beliefs of the players are derived from a common prior p over
the types. In this section, we will study this concept in greater detail. For simplicity, we
will deal here only with finite belief spaces, but all the results of this section also hold in
belief spaces with a countably infinite number of states of the world. The definitions and
results can be generalized to infinite belief spaces, often requiring only adding appropriate
technical conditions. Denote the support of πi(ω) by Pi(ω),

Pi(ω) := supp(πi(ω)) ⊆ Y. (10.55)

This is the set of states of the world that are possible, in player i’s opinion, at the state of
the world ω.
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Definition 10.46 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, where Y is a finite set. A
belief subspace Ỹ is consistent if there exists a probability distribution p over Ỹ such
that, for every event A ⊆ Ỹ , for each player i, and for each ω ∈ supp(p), p(Pi(ω))
> 0 and

πi(A | ω) = p(A | Pi(ω)). (10.56)

A probability distribution p satisfying Equation (10.56) for every event A ⊆ Ỹ , for every
player i and for every ω ∈ supp(p), is called a consistent distribution (over Ỹ ), or a
common prior.

In words, the belief of player i at the state of the world ω is given by the conditional
probability of p given the information Pi(ω) that the player has at ω. A consistent
distribution, therefore, plays the same role as the common prior in the Aumann model of
incomplete information.

On page 399 we defined the concept of consistency by conditioning on the set
{ω′ ∈ Y : πi(ω′) = πi(ω)} instead of the set Pi(ω) (see Equation (10.56)). The coherency
requirement in the definition of a belief space guarantees that these two definitions are
equivalent (Exercise 10.65).

If p is a consistent distribution, then every state of the world ω ∈ supp(p) is called
a consistent state of the world. Every state of the world that is not consistent is called
inconsistent.

Remark 10.47 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, and let �̃ =
(Ỹ ,Y, s, (πi)i∈N ) be a consistent belief subspace of �. Then � is also a consistent
belief space. To see this, note that since �̃ is a consistent belief subspace, there exists a
consistent distribution p̃ over Ỹ . In that case, define a probability distribution p over Y

by

p(ω) =
{

p̃(ω) if ω ∈ Ỹ ,

0 if ω �∈ Ỹ .
(10.57)

This is a consistent distribution over � (Exercise 10.64). �

The next example elucidates the concepts of consistent distribution and consistent state
of the world.

Example 10.48 Figure 10.15 depicts a belief space for the set of players N = {I, II} over the set of states of

nature S = {s1, s2}. In this belief space, the set of states of the world is Y = {ω1, ω2}.

State of the world

ω1 s1 [1(ω1)]
[1(ω1)]s2ω2

(·) πI (·)

[1(ω1)]
[1(ω2)]

πII (·)

Figure 10.15 The belief space in Example 10.48
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At the state of the world ω1, the fact that the state of nature is s1 is common belief among the
players. At the state of the world ω2, Player I believes that the fact that the state of nature is s1 is
common belief among the players, while Player II believes that the state of nature is s2, and believes
that Player I believes that the fact that the state of nature is s1 is common belief among the players.

The belief subspace Ỹ = {ω1} is a consistent belief subspace, with a consistent distribution p̃ =
[1(ω1)]. Remark 10.47 shows that � is also a consistent belief space, with consistent distribution
p = [1(ω1)]. The state of the world ω1 is contained in the support of p; therefore it is a consistent
state of the world.

The state of the world ω2, however, is inconsistent. Indeed, at that state of the world Player I
ascribes probability 1 to the state of nature being s1, while Player II ascribes probability 1 to the
state of nature being s2. There cannot, then, exist a probability distribution p from which these two
beliefs can be derived (verify!). �

Example 10.18 (Continued) Consider the event A = {ω12, ω21} and the probability distribution p, as defined

in Figure 10.5 on page 398. Then

πI(A | ω11) = 4
7 , (10.58)

p(A | PI(ω11)) = p(A | {ω11, ω12}) = 4
7 ; (10.59)

hence πI(A | ω11) = p(A | PI(ω)). It can be shown that Equation (10.56) is satisfied for every event
A ⊆ Y , for every player i ∈ {I, II}, and for every ω ∈ Y (Exercise 10.66); hence p is a consistent
distribution. �

Example 10.19 (Continued) The beliefs of the players are shown in Figure 10.6 on page 399. Consider the

event A = {ω12, ω21} and the probability distribution p defined in Figure 10.5 on page 398. Then

πI(A | ω11) = 4
7 , (10.60)

p(A | PI(ω11)) = p(A | {ω11, ω12}) = 4
7 . (10.61)

On the other hand,

πII(A | ω11) = 1
2 , (10.62)

p(A | PII(ω11)) = p(A | {ω11, ω21}) = 2
5 ; (10.63)

hence πII(A | ω11) �= p(A | PII(ω11)). It follows that p is not a consistent distribution. This is not
surprising, since we proved that this belief space is not consistent. �

It can be shown (Exercise 10.67) that the following definition is equivalent to the
definition of a consistent distribution (see Definition 10.46).
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Definition 10.49 A probability distribution p ∈ 
(Y ) (over a finite set of states of the
world Y ) is called consistent if for each player i ∈ N ,

p =
∑
ω∈Y

πi(ω)p(ω). (10.64)

In other words,

p(ω′) =
∑
ω∈Y

πi({ω′} | ω)p(ω), ∀ω′ ∈ Y. (10.65)

A probability distribution p is consistent if, for every player i, it is the average according
to p of player i’s types (recall that a type is a probability distribution over Y ). This gives
us a new angle from which to regard the consistency condition: in any consistent system
of beliefs, we can find weights for the states of the world (a probability distribution p),
such that the weighted average of the type of each player is the same for all the players,
and this average is exactly the probability distribution p. (Equations (10.64) and (10.65)
refer to sums, and not integrals, because of the assumption that the set of states of the
world is finite.)

Example 10.18 (Continued) To ascertain that p is a consistent distribution according to Definition 10.49,

we need to ascertain that Equation (10.64) is satisfied for each player i ∈ N . Each row in the table
in Figure 10.16 describes a type of Player I at a state of the world. The right column shows the
common prior, and the bottom row describes the weighted average of Player I’s types.

ω11 ω12 ω21 ω22 Probability

Average

πI(ω11)
πI(ω12)
πI(ω21)
πI(ω22)

3

3

3 3

3

3

2

4

1
3

2 1

12

3 4

4
7 7

77

4 2 1
10 10

00

00

00

00

10 10

10

10

10

10

Figure 10.16 The probability that each type of Player I ascribes to each state of nature in
Example 10.18

When we take the weighted average of each row of the table (i.e., compute the right-hand side of
the equal sign in Equation (10.64)), we obtain the probability distribution p with which we started
(listed in the left-most column). We obtain a similar result with respect to Player II (Exercise 10.68);
hence p is a consistent distribution according to Definition 10.49. �

Definition 10.46 does not require the support of a consistent distribution p to be all of
Y . The next theorem states, however, that the support of such a probability distribution is
also a consistent belief subspace.

Theorem 10.50 Let � = (Y,Y, s, (πi)i∈N ) be a belief space in which Y is a finite set. If
p is a consistent distribution over Y , then Ỹ = supp(p) is a consistent belief subspace.
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The proof of Theorem 10.50 is left to the reader (Exercise 10.70). As the next example
shows, it is possible for a consistent belief space to have several different consistent
distributions.

Example 10.51 Consider the following belief space, with one player, N = {I}, two states of nature, S =
{s1, s2}, and two states of the world, Y = {ω1, ω2}, where:

State of the world s(·) πI(·)
ω1 s1 [1(ω1)]
ω2 s2 [1(ω2)]

That is, at ω1 the player believes that the state of nature is s1, and at ω2 he believes that the state
of nature is s2. For each λ ∈ [0, 1], the probability distribution pλ, defined as follows, is consistent
(verify!):

pλ(ω1) = λ, pλ(ω2) = 1 − λ. (10.66)
�

The belief space Y = {ω1, ω2} in Example 10.51 properly contains two belief subspaces:
{ω1} and {ω2}. As the next theorem states, this is the only possible way in which multiple
consistent distributions can arise.

Theorem 10.52 Let � = (Y,Y, s, (πi)i∈N ) be a consistent belief space in which Y is finite
that does not properly contain a belief subspace. Then there exists a unique consistent
probability distribution p whose support supp(p) is contained in Y .

By definition, for each consistent belief subspace Ỹ there exists a consistent distribution
p satisfying supp(p) ⊆ Ỹ . Theorem 10.52 states that if the belief subspace is minimal,
then there exists a unique such probability distribution. It then follows from Theorem
10.50 that supp(p) = Ỹ .

In order to prove Theorem 10.52, we will first prove the following auxiliary theorem.
We adopt here the convention that 0

0 = 1.

Theorem 10.53 Let (αk)nk=1 be nonnegative numbers, let (xk, yk)nk=1 be a sequence of
pairs of positive numbers, and let C > 1. If xk

yk
≤ C for all i ∈ {1, 2, . . . , n}, then∑n

k=1 αkxk∑n
k=1 αkyk

≤ C. If, in addition, there exists j ∈ {1, 2, . . . , n} such that αj > 0, and xj

yj
< C,

then
∑n

k=1 αkxk∑n
k=1 αkyk

< C.

Proof: If αk = 0 for each k, then both the numerator and the denominator in the expression∑n
k=1 αkxk∑n
k=1 αkyk

are zero; hence their ratio equals 1, which is smaller than C. Suppose, therefore,
that at least one of the numbers in (αk)nk=1 is positive. This implies that both the numerator

and the denominator in the expression
∑n

k=1 αkxk∑n
k=1 αkyk

are positive.

Since xk

yk
≤ C for each k ∈ {1, 2, . . . , n}, it follows that xk ≤ Cyk . Because (αk)nk=1 are

nonnegative numbers,

n∑
k=1

αkxk ≤ C

n∑
k=1

αkyk. (10.67)
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Since the sum on the right-hand side of the equation is positive, we can divide by that sum
to get ∑n

k=1 αkxk∑n
k=1 αkyk

≤ C. (10.68)

Next, suppose that there also exists j ∈ {1, 2, . . . , n} such that αj > 0 and xj

yj
< C. In this

case, we deduce that Equation (10.67) is satisfied as a strict inequality (verify!). It follows
that Equation (10.68) is also satisfied as a strict inequality, which is what we sought to
show. �
Proof of Theorem 10.52: Let p and p̂ be two distinct consistent probability distributions,
where the supports supp(p) supp(p̂) are contained in Y . Theorem 10.50 implies that
supp(p) is a belief subspace. Since Y is a minimal belief subspace, it must be the case
that supp(p) = Y . We similarly deduce that supp(p̂) = Y and therefore in particular
supp(p̂) = supp(p). Denote C := maxω∈supp(p)

p(ω)
p̂(ω) . Since supp(p̂) = Y , the denominator

p̂(ω) is positive for all ω ∈ Y ; therefore C is well defined.
Since p and p̂ are different probability distributions, it must be the case that C > 1. To

see why, suppose that C ≤ 1. Then p(ω) ≤ p̂(ω) for each ω ∈ Y , and since
∑

ω∈Y p(ω) =
1 = ∑

ω∈Y p̂(ω), we have p(ω) = p̂(ω) for each ω ∈ Ŷ . Denote

A :=
{
ω ∈ Y :

p(ω)

p̂(ω)
= C

}
. (10.69)

We now show that Theorem 10.53 implies that supp(πi(ω′)) ⊆ A for each ω′ ∈ A. Let
ω′ ∈ A be an element of A, and write out the expressions in Theorem 10.53 with (πi({ω′} |
ω))ω∈Y as the set of nonnegative numbers (αk)nk=1 and (p(ω))ω∈Y and (p̂(ω))ω∈Y as,
respectively, the sets of positive numbers (xk)nk=1 and (yk)nk=1. Since p and p̂ are consistent
distributions, with the aid of Definition 10.49, we get∑

k αkxk∑
k αkyk

=
∑

ω πi({ω′} | ω)p(ω)∑
ω πi({ω′} | ω)p̂(ω)

= p(ω′)
p̂(ω′)

. (10.70)

If supp(πi(ω′)) were not contained in A, then there would be a state ω ∈ supp(πi(ω′))
satisfying p(ω)

p̂(ω) < C. Then Theorem 10.53 would in turn imply that p(ω′)
p̂(ω′) < C, i.e., ω′ �∈ A,

which would be a contradiction.
If follows that supp(πi(ω′)) ⊆ A for each ω′ ∈ A; hence A is a belief subspace (see

Definition 10.21 on page 400). Since Y is a minimal belief subspace, A = Y . We then
deduce that p(ω)

p̂(ω) = C > 1 for each ω ∈ Y , i.e., p(ω) > p̂(ω). Summing over ω ∈ Y , we
get

1 =
∑
ω∈Y

p(ω) >
∑
ω∈Y

p̂(ω) = 1. (10.71)

This contradiction establishes that p = p̂. �
The consistency presented in this section is an “objective” concept, by which we

mean objective from the perspective of an outside observer, who knows the belief space
� = (Y,Y, s, (πi)i∈N ) and can verify whether or not a given state of the world ω ∈ Y

is consistent according to Definition 10.46. But what are the beliefs of the players about
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the consistency of a given state of the world? If a player believes that the state of the
world is consistent, then he can describe the situation he is in as a Harsanyi game with
incomplete information, and choose his actions by analyzing that game. The following
theorem relates to this question.

Theorem 10.54 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, where Y is a finite set, and
let ω ∈ Y be a consistent state of the world. Then it is common belief among the players
at ω that ω is consistent. In particular, every player at ω believes that ω is consistent.

Proof: Since ω is a consistent state of the world, there exists a consistent distribution p

over Y satisfying p(ω) > 0. Since p(ω) > 0, Equation (10.56) implies that for each player
i ∈ N ,

πi({ω} | ω) = p({ω} | Pi(ω)) > 0. (10.72)

It follows from Theorem 10.32 on page 405 that for each pair of players i, j ∈ N ,

Ỹj (ω) = Ỹi(ω), (10.73)

where Ỹi(ω) is the minimal belief space of player i at the state of the world ω (see
Definition 10.30 on page 403). Note that ω ∈ supp(πi(ω)) for each player i ∈ N ; hence
ω ∈ Yi(ω). Theorem 10.33 implies that Ỹi(ω) = Ỹ (ω) for each i ∈ N , where Ỹ (ω) is the
minimal belief space at the state of the world ω (see Definition 10.24 on page 401). Let p̃

be the probability distribution p, conditioned on the set Ỹ (ω),

p̃(ω′) = p(ω′)
p(Ỹ (ω))

, ∀ω′ ∈ Ỹ (ω). (10.74)

Then p̃ is a consistent distribution (Exercise 10.72). It follows that Ỹ (ω) is a consistent
belief subspace. As stated after Definition 10.21 (page 400), every belief subspace is
common belief at every state of the world contained in it; hence the event Ỹ (ω) is common
belief among the players at the state of the world ω. In particular, it is common belief
among the players at ω that ω is consistent. �

Every player i, based only on his own private information (i.e., his type), can construct
the minimal belief subspace Ỹi(ω) that includes, according to his beliefs, all the states
of the world that are relevant to the situation he is in. If the state of the world ω is
consistent, then the belief subspace Ỹi(ω) is also consistent, and, since it is a minimal
belief subspace, there is a unique consistent distribution p over it (Theorem 10.52), which
the player can compute. In this case, the situation, according to player i’s beliefs, is
equivalent to a Harsanyi model of incomplete information. That model is constructed by
first selecting a state of the world according to the consistent distribution p over Ỹi(ω);
hence the situation, according to player i’s beliefs, is equivalent to the interim stage, which
is the point in time at which every player knows his partition element, which contains
the true state of the world. Every Aumann model, or equivalently Harsanyi model, is but
an auxiliary construction that can be made by each of the players. The entire model thus
constructed, including the space of types (which is computed from the belief subspace
Ỹi(ω)), and the probability distribution used to choose the types (which is derived from the
consistent distribution p), is based on the private information of the player. In addition,
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when ω is a consistent state of the world, Theorem 10.54 states that every player computes
the same minimal belief space, and computes the same consistent distribution p, and it is
common belief among the players that this is the case. In particular, all the players arrive
at the same Aumann (or Harsanyi) model of incomplete information, and this model is
common belief among them.

The next question that naturally arises is what are the beliefs of the players about the
consistency of a given state of the world when that state of the world is inconsistent. As
we will now show, in that case there are two possibilities: it is possible for a player to
believe that the state of the world is inconsistent, and in some cases this may even be
common belief among the players. However, it is also possible for a player (mistakenly)
to believe that the state of the world is consistent, and it is even possible for all the players
to believe that the state of the world is consistent, and for that fact to be common belief
among the players.

Theorem 10.55 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, where Y is a finite set, and
let ω ∈ Y be an inconsistent state of the world. If πi({ω} | ω) > 0, then at the state of the
world ω player i believes that the state of the world is inconsistent.

Proof: The assumption that πi({ω} | ω) > 0 implies that ω ∈ Ỹi(ω); hence Ỹi(ω) is a
belief subspace containing ω. Since ω is an inconsistent state of the world, there does
not exist a consistent distribution p over Ỹi(ω) satisfying p(ω) > 0; hence player i, after
calculating his minimal belief subspace Ỹi(ω), believes that the state of the world is
inconsistent. �

It follows from Theorem 10.55 that at an inconsistent state of the world ω, player i is
liable (mistakenly) to believe that the state of the world is consistent only if he ascribes
probability 0 to ω; that is, πi({ω} | ω) = 0. This happens in fact in Example 10.27 on
page 402, in which the state of the world ω2 is inconsistent, but at this state of the
world, both players believe that the actual state of the world is consistent. In fact, in
Example 10.27, at the state of the world ω2 it is common belief among the players that
the state of the world is consistent, even though it is inconsistent (Exercise 10.80).

In Example 10.19 on page 399, every state of the world is inconsistent; hence the fact
that any given state of the world is inconsistent is common belief among the players at every
state of the world. The next theorem generalizes this example, and presents a sufficient
condition that guarantees that the fact that a given state of the world is inconsistent is
common belief among the players.

Theorem 10.56 Let � = (Y,Y, s, (πi)i∈N ) be a belief space, where Y is a finite set, and
let ω ∈ Y be an inconsistent state of the world. If πi({ω′} | ω′) > 0 for every player i and
every state of the world ω′ in the minimal belief subspace Ỹ (ω) at ω, then the fact that the
state of the world is inconsistent is common belief among the players at ω, and at every
state of the world in Ỹ (ω).

Proof: Because ω ∈ Ỹ (ω), the assumption implies that πi({ω} | ω) > 0 for every player
i ∈ N . By Theorem 10.32 (page 405), Ỹ (ω) = Ỹi(ω) for each player i ∈ N . It then follows
from Theorem 10.55 that at every state of the world ω′ ∈ Ỹ (ω), every player believes that
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the state of the world is inconsistent. In particular, it follows that at every state of the
world ω′ ∈ Ỹ (ω) it is common belief that the state of the world is inconsistent. �

There are cases in which at a given state of the world, every player believes that the
state of the world is inconsistent, but this fact is not common belief among the players
(Exercise 10.81). There are also cases in which some of the players believe that the state
of the world is consistent while others believe that the state of the world is inconsistent
(Exercise 10.82).

Most of the models of incomplete information used in the game theory literature are
Harsanyi games. This means that nearly every model in published papers is described
using a consistent belief system, despite the fact that, as we have seen, not only do
inconsistent belief spaces exist, they comprise an “absolute majority” of situations of
incomplete information – the set of consistent situations is a set of measure zero within
the set of belief spaces. The reason that consistent models are ubiquitous in the literature is
mainly because consistent models are presentable extensive-form games, while situations
of inconsistent beliefs cannot be presented as either extensive-form or strategic-form
games. This makes the mathematical study of such situations difficult. It should, however,
be reiterated that the central solution concept – Bayesian equilibrium – is computable and
applicable in both consistent and inconsistent situations.

10.7 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Example 10.16 (page 396) appears in Sorin and Zamir [1985], under the name “Lack of
information on one-and-a-half sides.” Results on Nash equilibria and Bayesian equilibria
in games with incomplete information and general space of states of the world can be
found in many papers. A partial list includes Milgrom and Weber [1985], Milgrom and
Roberts [1990], van Zandt and Vives [2007], van Zandt [2007], and Vives [1990].

Exercises 10.37–10.40 are taken from Mertens and Zamir [1985]. The notion “belief
with probability at least p” that appears in Exercise 10.15 was defined in Monderer and
Samet [1989]. Discussion about the subject of probabilistic beliefs appeared in Gaifman
[1986]. Exercise 10.62 is taken from van Zandt [2007].

The authors thank Yaron Azrieli, Aviad Heifetz, Dov Samet, and Eran Shmaya for their
comments on this chapter.

10.8 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10.1 Let the set of players be N = {I, II}, the set of states of nature be S = {s1, s2},
and the set of states of the world be Y = {ω1, ω2, ω3}. The σ -algebra over Y is
Y = {∅, {1}, {2, 3}, {1, 2, 3}}, and the function s mapping the states of the world
to the states of nature is given by

s(ω1) = s1, s(ω2) = s(ω3) = s2. (10.75)

For each of the following three belief functions, determine whether
(Y,Y, s, (πi)i∈N ) is a belief space of N over S. Justify your answers.
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(a) πI(ω1) = [1(ω1)], πI(ω2) = πI(ω3) = [ 1
3 (ω2), 2

3 (ω3)], πII(ω1) = πII(ω2) =
πII(ω3) = [ 4

7 (ω2), 3
7 (ω3)].

(b) πI(ω1) = πI(ω2) = πI(ω3) = [ 1
4 (ω1), 3

4 (ω2)], πII(ω1) = [1(ω1)], πII(ω2) =
πII(ω3) = [ 1

3 (ω2), 2
3 (ω3)].

(c) πI(ω1) = [ 1
3 (ω1), 1

3 (ω2), 1
3 (ω3)], πI(ω2) = πI(ω3) = [ 1

6 (ω2), 5
6 (ω3)], πII(ω1) =

[1(ω1)], πII(ω2) = πII(ω3) = [1(ω3)].

10.2 Let � = (Y,Y, s, (πi)i∈N ) and �̂ = (Ŷ , Ŷ, ŝ, (π̂i)i∈N ) be two belief spaces satis-
fying Y ∩ Ŷ = ∅. Prove that �̃ = (Ỹ , Ỹ, s̃, (π̃i)i∈N ), as defined below, is a belief
space.10

� Ỹ := Y ∪ Ŷ .
� Ỹ := {F ∪ F̂ : F ∈ Y, F̂ ∈ Ŷ}.
� s̃(ω) = s(ω) for every ω ∈ Y and s̃(ω̂) = ŝ(ω̂) for every ω̂ ∈ Ŷ .
� π̃i(ω) = πi(ω) for every ω ∈ Y and π̃i(ω̂) = π̂i(ω̂) for every ω̂ ∈ Ŷ .

10.3 Prove Equation (10.10) on page 390.

10.4 Minerva ascribes probability 0.7 to Hercules being able to lift a massive rock, and
she believes that Hercules believes that he can lift the rock. Construct a belief space
in which the described situation is represented by a state of the world and indicate
that state (more than one answer is possible).

10.5 Minerva ascribes probability 0.7 to Hercules being able to lift a massive rock, and
she believes that Hercules believes that he can lift the rock. Hercules, in contrast,
believes that if he attempts to lift the rock he will fail to do so. Construct a belief
space in which the described situation is represented by a state of the world and
indicate that state (more than one answer is possible).

10.6 Eric believes that it is common belief among him and Jack that the New York Mets
won the baseball World Series in 1969. Jack ascribes probability 0.5 to the New
York Mets having won the World Series in 1969, and to Eric believing that it is
common belief among the two of them that the New York Mets won the World
Series in 1969. Jack also ascribes probability 0.5 to the New York Mets not having
won the World Series in 1969, and to Eric believing that it is not common belief
among the two of them that the New York Mets won the World Series in 1969.
Construct a belief space in which the described situation is represented by a state
of the world and indicate that state (more than one answer is possible).

10.7 (a) Using two states of the world describe the following situation, specifying
how each state differs from the other: “Roger ascribes probability 0.4 to the
Philadelphia Phillies winning the World Series.”

(b) Add to the two states of the world that you listed above two more states of the
world, and use the four states to construct a belief space in which the following
situation is represented as a state of the world: “Jimmy ascribes probability 0.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 Every probability distribution π over the space Y can be regarded as a probability distribution over the space
Y ∪ Ŷ such that π (Ŷ ) = 0.
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to the Philadelphia Phillies winning the World Series and to Roger ascribing
probability 0.4 to the Philadelphia Phillies winning the World Series, and
Jimmy ascribes probability 0.7 to the Philadelphia Phillies not winning the
World Series and to Jimmy ascribing 0.4 to the Philadelphia Phillies winning
the World Series.”

(c) Construct a belief space in which the following situation is represented by a
state of the world and indicate that state.
Roger says:
� I ascribe probability 0.3 to “the Philadelphia Phillies will win the World

Series, and Jimmy ascribes probability 0.3 to the Philadelphia Phillies win-
ning the World Series and to my ascribing 0.4 to the Philadelphia Phillies
winning the World Series, and Jimmy ascribes probability 0.7 to the Philadel-
phia Phillies not winning the World Series and to my ascribing 0.4 to the
Philadelphia Phillies winning the World Series.”

� I ascribe probability 0.2 to “the Philadelphia Phillies will win the World
Series, and Jimmy ascribes probability 0.7 to the Philadelphia Phillies win-
ning the World Series and to my ascribing 0.5 to the Philadelphia Phillies
winning the World Series, and Jimmy ascribes probability 0.3 to the Philadel-
phia Phillies not winning the World Series and to my ascribing 0.5 to the
Philadelphia Phillies winning the World Series.”

� I ascribe probability 0.4 to “the Philadelphia Phillies will win the World
Series, and Jimmy ascribes probability 0.2 to the Philadelphia Phillies win-
ning the World Series and to my ascribing 0.1 to the Philadelphia Phillies
winning the World Series, and Jimmy ascribes probability 0.8 to the Philadel-
phia Phillies not winning the World Series and to my ascribing 0.1 to the
Philadelphia Phillies winning the World Series.”

� I ascribe probability 0.1 to “the Philadelphia Phillies will win the World
Series, and Jimmy ascribes probability 0.6 to the Philadelphia Phillies win-
ning the World Series and to my ascribing 0.4 to the Philadelphia Phillies
winning the World Series, and Jimmy ascribes probability 0.4 to the Philadel-
phia Phillies not winning the World Series and to my ascribing 0.3 to the
Philadelphia Phillies winning the World Series.”

10.8 Prove Theorem 10.7: player i’s belief operator Bi (see Definition 10.6 on
page 392) satisfies the following properties:

(a) BiY = Y : player i believes that Y is the set of all states of the world.
(b) BiA ∩ BiC = Bi(A ∩ C): if player i believes that event A obtains, and that

event C obtains, then he believes that event A ∩ C obtains.
(c) Bi(BiA) = BiA: if player i believes that event A obtains, then he believes that

he believes that event A obtains.
(d) (BiA)c = Bi((BiA)c): if player i does not believe that event A obtains, then he

believes that he does not believe that event A obtains.

10.9 Let � be a belief space equivalent to an Aumann model of incomplete information
and let Bi be player i’s belief operator in � (see Definition 10.6 on page 392).
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Prove that the knowledge operator Ki that is defined by the partition via Equation
(10.8) (page 390) is the same operator as the belief operator Bi .

10.10 In this exercise we show that the converse of the statement of Theorem 10.10 does
not hold. Find an example of a belief space in which there exists a state of the
world ω ∈ Y , an event A that is common belief among the players at the state of the
world ω, a player i ∈ N , and a state of the world ω′ ∈ A, such that πi(A | ω′) < 1.

10.11 In this exercise we show that Theorem 10.11 on page 393 does not hold without
the assumption that P(ω) > 0 for every state of the world ω ∈ Y .

Prove that there exists an Aumann model of incomplete information in which
the common prior P satisfies P(ω) = 0 in at least one state of the world ω ∈ Y , such
that the following claim holds: the knowledge operator in the Aumann model is
not identical to the belief operator in the belief space � equivalent to the Aumann
model.

10.12 Describe in words the beliefs of the players about the state of nature and the beliefs
of the other players about the state of nature in each of the states of the world in
Example 10.4 (page 389).

10.13 Prove Theorem 10.8 (page 392): for each player i ∈ N and every pair of events
A, C ⊆ Y , if A ⊆ C, then BiA ⊆ BiC.

10.14 Let � = (Y,Y, s, (πi)i∈N ) be a belief space equivalent to an Aumann model
of incomplete information. Prove that the partition defined by Equation (10.8)
(page 390) for the belief space � is the same partition as the partition Fi in the
equivalent Aumann model.

10.15 For every player i ∈ N and every real number p ∈ [0, 1], define B
p
i to be the

operator mapping each set E ∈ Y to the set of states of the world at which player
i ascribes to E probability equal to or greater than p,

B
p
i (E) := {ω ∈ Y : πi(E | ω) ≥ p}. (10.76)

Which of the following properties are satisfied by B
p
i for p ∈ [0, 1]? For each

property, either prove that it is satisfied, or present a counterexample. There may
be different answers for different values of p.

(a) B
p
i (Y ) = Y .

(b) B
p
i (A) ⊆ A.

(c) If A ⊆ C then B
p
i (A) ⊆ B

p
i (C).

(d) B
p
i (Bp

i (A)) = B
p
i (A).

(e) B
p
i ((Bp

i (A))c) = (Bp
i (A))c.

10.16 Prove that if Ỹ is a belief subspace of a belief space � = (Y,Y, s, (πi)i∈N ), then
the event Ỹ is common belief among the players at every state of the world ω ∈ Ỹ .

10.17 Let � = (Y,Y, s, (πi)i∈N ) be a belief space equivalent to an Aumann model of
incomplete information. Prove that for each state of the world ω, the common
knowledge component among the players at ω (see page 333) is a belief subspace.
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10.18 Consider Example 10.19 (page 399), and suppose that the beliefs of the types in
that example are as follows, where x, y, z, w ∈ [0, 1]. For which values of x, y, z,
and w is the belief system of the players consistent?

II1 II2

I1 x 1 − x

I2 y 1 − y

The beliefs of Player I

II1 II2

I1 z w

I2 1 − z 1 − w

The beliefs of Player II

10.19 Prove that the beliefs of the players in Example 10.20 (page 400) are inconsistent.
Recall that when the set of states of the world is a topological space, we require
that a belief subspace be a closed set (see Remark 10.34).

10.20 Consider the following belief space, where the set of players is N = {I, II}, and
the set of states of nature is S = {s1, s2}.

State of the world s(·) πI(·) πII(·)

ω1 s1
[

2
5 (ω1), 3

5 (ω2)
]

[1(ω1)]

ω2 s2
[

2
5 (ω1), 3

5 (ω2)
]

[ 3
4 (ω2), 1

4 (ω3)]

ω3 s2 [1(ω1)]
[

3
4 (ω2), 1

4 (ω3)
]

(a) List the types of the two players at each state of the world in Y .
(b) Can the beliefs of the players be derived from a common prior? If so, what is

that common prior? If not, justify your answer.

10.21 Boris believes that “it is common belief among me and Alex that Bruce Jenner won
a gold medal at the Montreal Olympics,” while Alex believes that “it is common
belief among me and Boris that Bruce Jenner won a silver medal at the Montreal
Olympics.”

(a) Construct a belief space in which the described situation is represented by a
state of the world and indicate that state.

(b) Prove that, in any belief space in which the set of states of the world is a finite
set and contains a state ω describing the situation in this exercise, ω is not
contained in the support of the beliefs of either Boris or Alex, at any state of
the world. In other words, ω �∈ supp(πi(ω′)) for any state of the world ω′, for
i ∈ {Boris, Alex}.

10.22 Laocoön declares: “I ascribe probability 0.6 to the Greeks attacking us from within
a wooden horse.” Priam then declares: “I ascribe probability 0.7 to the Greeks
attacking us from within a wooden horse.” After Priam’s declaration, is the fact
that “Laocoön ascribes probability 0.6 to the Greeks attacking from within a
wooden horse” common belief among the players? Justify your answer.

10.23 There are two players, N = {I, II}, and two states of nature S = {s1, s2}. A chance
move chooses the state of nature, where s1 is chosen with probability 0.4, and s2 is
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chosen with probability 0.6. Player I knows the true state of nature that has been
chosen. A chance move selects a signal that is received by Player II. The signal
depends on the state of nature, as follows: if the true state of nature is s1, Player II
receives signal R with probability 0.6, and signal L with probability 0.4; if the true
state of nature is s2, Player II receives signal M with probability 0.7, and signal L

with probability 0.3. It follows that if Player II receives signal L, he does not know
with certainty which state of nature has been chosen. If the state of nature that has
been chosen is s2, and Player II has received signal M , then Player I is informed of
this with probability 0.2, and Player I is not informed of this with probability 0.8.
This description is common belief among the players. Construct a belief space in
which the described situation is represented by a state of the world and indicate
that state.

10.24 Repeat Exercise 10.23, under the assumption that the players do not agree on the
probability distribution according to which the state of nature is chosen; that is,
there is no common prior over S: Player I believes that s1 is chosen with probability
0.4, while Player II believes that s1 is chosen with probability 0.5. The rest of the
description of the situation is as in Exercise 10.23, and this description is common
belief among the players.

10.25 John, Bob, and Ted meet at a party in which all the invitees are either novelists
or poets (but no one is both a novelist and a poet). Every poet knows all the
other poets, but no novelist knows any other attendee at the party, whether novelist
or poet. Every novelist believes that one-quarter of the attendees are novelists.
Construct a belief space describing the beliefs of John, Bob, and Ted about the
others’ profession.

10.26 Walter, Karl, and Ferdinand are on the road to Dallas. They arrive at a fork in the
road; should they turn right or left? Type t1 believes that “we should turn right,
everyone here believes that we should turn right, everyone here believes that every-
one here believes that we should turn right, etc.”: in other words, that type believes
that turning right is called for, and believes that this is common belief among
the three. Type t2 believes that “we should turn right, the two others believe that
we should turn left, the two others believe that everyone here believes that we
should turn left, the two others believe that everyone here believes that everyone
here believes that we should turn left, etc.”: in other words, that type believes that
turning right is called for, but believes that the other two believe that they should
turn left and that this fact is common belief among the three. Type t3 does not know
which way to turn, but believes that the two others know the right way to turn,
and believes that the others believe that everyone knows the right way to turn: he
believes “the probability that we should turn right is 1

2 , and the probability that we
should turn left is 1

2 ; if we should turn right, then the two others believe that we
should turn right, and that this is common belief among everyone here, and if
we should turn left, then the two others believe that we should turn left, and that
this is common belief among everyone here.” Walter’s type is t1, Karl’s type is t2,
and Ferdinand’s type is t3.



429 10.8 Exercises

(a) Construct a belief space in which the described situation is represented by a
state of the world and indicate that state.

(b) What is the minimal belief subspace of each of the three players (at the state of
the world in which Walter’s type is t1, Karl’s type is t2, and Ferdinand’s type is
t3)?

10.27 Repeat Exercise 10.26, when all three players are of type t3.

10.28 In this exercise we show that when there is no common prior, it is possible to find
a lottery that satisfies the property that each player has a positive expectation of
profiting from the lottery, using his subjective probability belief.

Let � = (Y,Y, s, (πi)i∈N ) be a belief space of the set of players N = {I, II},
where the set of states of the world Y is finite. For each i ∈ N , define a set Pi of
probability distributions over Y as follows:

Pi :=
{∑

ω∈Y

xωπi(· | ω) :
∑
ω∈Y

xω = 1, xω > 0 ∀ω ∈ Y

}
⊂ 
(Y ). (10.77)

This is the set of all convex combinations of the beliefs (πi(· | ω))ω∈Y of player i

such that the weight given to every ω is positive.

(a) Prove that for every p ∈ Pi and every ω ∈ Y , the belief πi(· | ω) is the con-
ditional probability distribution of p given Fi(ω) (for the definition of the set
Fi(ω) see Equation (10.8) on page 390). In other words, if p were a common
prior, the beliefs of player i would be given by πi .

(b) Prove that the set Pi is an open and convex set in 
(Y ), for every i ∈ N .
(c) Prove that if there is no common prior, then PI and PII are disjoint sets.
(d) Using Exercise 23.46 (page 956) prove that there exist α ∈ R|Y | and β ∈ R

such that11

〈α, pI〉 > β > 〈α, pII〉, ∀pI ∈ PI, ∀pII ∈ PII. (10.78)

(e) The beliefs of Players I and II about the state of the world are given by the
probability distributions (πi)i∈N . The state of the world, while unknown to
them today, will become known to them tomorrow. They decide that after the
state of the world ω will be revealed to them, Player II will pay Player I the
sum α(ω) − β. If this quantity is negative, the payment will be from Player I to
Player II. Prove that, given his subjective beliefs, the expected payoff of each
player under this procedure is positive.

10.29 Prove Theorem 10.23 (page 401): given two belief subspaces �̃1 = (Ỹ1,Y|Ỹ1
,

s, (πi)i∈N ) and �̃2 = (Ỹ2,Y|Ỹ2
, s, (πi)i∈N ) of a belief space � = (Y,Y, s, (πi)i∈N )

satisfying Ỹ1 ∩ Ỹ2 �= ∅, prove that (Ỹ1 ∩ Ỹ2,Y|Ỹ1∩Ỹ2
, s, (πi)i∈N ) is also a belief

subspace of �.

10.30 Prove that if there exists a minimal belief subspace, then it is unique.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 The inner product is given by 〈p, α〉 = ∑
ω∈Y p(ω)α(ω).
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10.31 Generalize Theorem 10.25 to the case in which the set of states of the world is
countably infinite: let � = (Y,Y, s, (πi)i∈N ) be a belief space in which the set of
states of the world Y is countably infinite. Prove that there exists a minimal belief
subspace at each state of the world ω ∈ Y .

10.32 Prove Theorem 10.33 (page 405): let � = (Y,Y, s, (πi)i∈N ) be a belief space,
where Y is a finite set. Then for each state of the world ω ∈ Y ,

Ỹ (ω) = {ω} ∪
(⋃

i∈N

Ỹi(ω)

)
. (10.79)

10.33 Prove Theorem 10.35 (page 406): let � = (Y,Y, s, (πi)i∈N ) be a belief space,
where Y is a finite set. Then the subset Ỹ of Y is a belief subspace if and only if Ỹ

is a closed component in the graph G defined by �.

10.34 Prove Theorem 10.36 on page 406: let � = (Y,Y, s, (πi)i∈N ) be a belief space,
where Y is a finite set, let ω ∈ Y , and let i ∈ N . For each state of the world ω, let
C(ω) be the minimal closed component containing ω in the graph corresponding
to �. Prove that

Ỹi(ω) =
⋃

{ω′ : πi ({ω′}|ω)>0}
C(ω′). (10.80)

10.35 Present an example of a belief space � with three players, and a state of the
world ω satisfying Ỹ1(ω) ⊃ Ỹ2(ω) ⊃ Ỹ3(ω) (where all the set inclusions are strict
inclusions).

10.36 Prove or disprove the following. There exists a belief space � = (Y,Y, s, (πi)i∈N ),
where Y is a finite set, and there are two players, i, j ∈ N , such that there exists
a state of the world ω ∈ Y satisfying the property that Ỹi(ω) ∩ Ỹj (ω) is nonempty
and strictly included in both Ỹi(ω) and Ỹj (ω).

10.37 In this exercise, suppose there are four states of nature, S = {s11, s12, s21, s22}.
The information that Player I receives is the first coordinate of the state of nature
chosen, while the information that Player II receives is the second coordinate. The
conditional probabilities of the players, given their respective informations, are
given by the following table (the conditional probability of Player I appears in the
left column, while the conditional probability of Player II appears in the top row
of the table): (

3
5
2
5

) (
0
1

)
(1, 0) s11 s12

( 2
3 ,

1
3 ) s21 s22

The table is to be read as stating, e.g., that if Player I receives information indicating
that the state of nature is contained in {s11, s12}, he believes with probability 1 that
the state of nature is s11.
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(a) Construct a belief space in which the described situation is represented by a
state of the world and indicate that state.

Suppose that the state of nature is s12, and that ω is the corresponding state of the
world. Answer the following questions:

(b) What are the minimal belief subspaces ỸI(ω) and ỸII(ω) of the players?
(c) Is ỸI(ω) = ỸII(ω)?
(d) Is there a common prior p over S such that the players agree that the state of

the world has been chosen according to p?
(e) Is the state of the world ω ascribed positive probability by p?

10.38 Repeat Exercise 10.37, where this time there are nine states of nature S =
{s11, s12, s13, s21, s22, s23, s31, s32, s33} and the beliefs of the players, given their
information, are presented in the following table:

⎛⎜⎝
3
5
1
5
1
5

⎞⎟⎠
⎛⎝0

1
0

⎞⎠
⎛⎜⎝

1
3
2
3
0

⎞⎟⎠
(1, 0, 0) s11 s12 s13

( 2
3 ,

1
3 , 0) s21 s22 s23

(0, 0, 1) s31 s32 s33

10.39 Repeat Exercise 10.37, but this time suppose the beliefs of each player of each
type are: (

1
0

) (
0
1

)
(1, 0) s11 s12

(0, 1) s21 s22

Parts (b)–(e) of Exercise 10.37 relate to a situation in which the true state of nature
is s12. Can each player calculate the minimal belief subspace of the other player at
each state of the world? Justify your answer.

10.40 Repeat Exercise 10.37, where S includes 20 states of nature, the true state of nature
is s13, and the beliefs of the players are given in the following table:

⎛⎜⎜⎜⎝
0

1
0
0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

3
5
2
5
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

0
0
1
2
1
2

⎞⎟⎟⎠
⎛⎜⎜⎝

0
0
1
2
1
2

⎞⎟⎟⎠
⎛⎜⎜⎝

0
0
1
3
2
3

⎞⎟⎟⎠
(1, 0, 0, 0, 0) s11 s12 s13 s14 s15

( 1
3 ,

2
3 , 0, 0, 0) s21 s22 s23 s24 s25

(0, 0, 0, 1
4 , 3

4 ) s31 s32 s33 s34 s35

(0, 0, 0, 1
4 , 3

4 ) s41 s42 s43 s44 s45
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10.41 Suppose there are two players, N = {I, II}, and four states of nature, S =
{s11, s12, s21, s22}. Player I’s information is the first coordinate of the state of nature,
and Player II’s information is the second coordinate. The beliefs of each player,
given his information, about the other player’s type are given by the following
tables:

II1 II2

I1
1
4

3
4

I2
4
9

5
9

The beliefs of Player I

II1 II2

I1
1
5

3
8

I2
4
5

5
8

The beliefs of Player II

(a) Find a belief space describing this situation.
(b) Is this belief space consistent? If so, describe this situation as an Aumann

model of incomplete information.

10.42 Repeat Exercise 10.41 for the following beliefs of the players:

II1 II2

I1
1
4

3
4

I2
1
5

4
5

The beliefs of Player I

II1 II2

I1
2
3

1
2

I2
1
3

1
2

The beliefs of Player II

10.43 Calculate the minimal belief subspaces of the two players at each state of the world
in Example 10.20 (page 400). Recall that when the set of states of the world is a
topological space, a belief subspace is required to be a closed set (Remark 10.34).

10.44 Prove or disprove: There exists a belief space in which the set of states of the world
contains K states, and there are 2K − 1 different belief subspaces (in other words,
every subset of states of the world, except for the empty set, constitutes a belief
subspace).

10.45 Prove or disprove: There exists a belief space comprised of three states of the world
and six different belief subspaces.

10.46 Prove or disprove: There exists a belief space with N = {I, II} and a finite set of
states of the world containing a state of the world ω such that ỸI(ω) �⊇ ỸII(ω) and
ỸII(ω) �⊇ ỸI(ω).

10.47 Prove or disprove: For each ω ∈ Y , and each player i ∈ N , the set Ỹi(ω) ∪ {ω} is
a belief subspace.

10.48 Prove that every Harsanyi game with incomplete information (see Definition 9.39
on page 347) is a game with incomplete information according to Definition 10.37
on page 407.

10.49 Prove Theorem 10.40 (page 409): the strategy vector σ ∗ = (σ ∗
i )i∈N is a Bayesian

equilibrium if and only if for each player i ∈ N , each state of the world ω ∈ Y ,
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and each action ai,ω ∈ Ai(ω),

γi(σ
∗ | ω) ≥ γi((σ

∗; ai,ω) | ω). (10.81)

10.50 In this exercise we show that for studying the set of Bayesian equilibria, one may
assume that the action sets of the players are independent of the state of nature.

Let G = (N, S, (Ai)i∈N, �) be a game with incomplete information such that
the payoff functions (ui)i∈N are uniformly bounded from below:

M := inf
i∈N

inf
s∈S

inf
a∈A(s)

ui(s; a) > −∞. (10.82)

Let Ĝ = (N, S, (Ai)i∈N, �) be the game with incomplete information defined as
follows:

� The action sets of the players are independent of the state of nature: Ai(s) = Ai

for every player i ∈ N and every state of nature s ∈ S.
� For each player i ∈ N , the payoff function ûi is a real-valued function defined

over the set A =×i∈N Ai and given by

ûi(s; a) =
⎧⎨⎩

ui(s; a) a ∈ A(s),
M ai ∈ Ai(s), a �∈ A(s),
M − 1 ai �∈ Ai(s),

(10.83)

where A(s) =×i∈N Ai(s). In other words, if at least one player j �= i chooses
an action that is not in Aj (s), while player i chooses an action in Ai(s), player
i receives payoff M , and if player i chooses an action that is not in Ai(s), he
receives a payoff that is less than M .

Prove that the set of Bayesian equilibria of the game G coincides with the set of
Bayesian equilibria of the game Ĝ.

10.51 Prove that there exists a Bayesian equilibrium (in behavior strategies) in every
game with incomplete information in which the set of players is finite, the number
of types of each player is countable, the number of actions of each type is finite,
and the payoff functions are uniformly bounded.

10.52 In this exercise we generalize Corollary 4.27 (page 105) to Bayesian equilibria.
Suppose that for every player i in a game with incomplete information there exists
a strategy σ ∗

i that weakly dominates all his other strategies; in particular,

Ui(s(ω); σ ∗(ω)) ≥ Ui(s(ω); σ ∗
−i(ω), ai), ∀i ∈ N, ∀ω ∈ Y, ∀ai ∈ Ai(s(ω)).

Prove that the strategy vector σ ∗ = (σ ∗
i )i∈N is a Bayesian equilibrium.

10.53 This exercise presents an alternative proof of Theorem 10.42 (page 411), regarding
the existence of Bayesian equilibria in finite games.

Let G = (N, S, (Ai)i∈N, �) be a game with incomplete information where the
set of actions (Ai)i∈N is a finite set, and � = (Y,Y, s, (πi)i∈N ) is a belief space
with a finite set of states of the world Y . Define a strategic-form game �, where
the set of players is N , the set of player i’s pure strategies is the set of functions σi

that map each type of player i to an available action for that type, and player i’s
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payoff function wi is given by

wi(σ ) =
∑
ω∈Y

γi(σ | ω). (10.84)

(a) Prove that the game � has a Nash equilibrium in mixed strategies.
(b) Deduce that the game � has a Nash equilibrium in behavior strategies.
(c) Prove that the set of Nash equilibria in behavior strategies of the game �

coincides with the set of Bayesian equilibria of the game G.

10.54 In Example 10.45 (page 414), find a strategy for Player I that guarantees that Player
II, of any type, is indifferent between L and R.

10.55 Find a Bayesian equilibrium in pure strategies in the following two-player game.
Are there any additional Bayesian equilibria?

The set of states of nature is S = {s1, s2}, the set of players is N = {I, II}, and
the belief space is given by:

State of the world s(·) π1(·) π2(·)
ω1 s1 [1(ω1)] [1(ω1)]
ω2 s1 [1(ω1)] [ 1

2 (ω2), 1
2 (ω3)]

ω3 s2 [1(ω4)] [ 1
2 (ω2), 1

2 (ω3)]
ω4 s2 [1(ω4)] [1(ω4)]

The state games are as follows:

B

T

L R

−10, 0

0, 0

1, 1

0, 1

State game s1

B

T

L R

0, 2

1, 2

0, 0

−10, 0

State game s2

10.56 Find a Bayesian equilibrium in the game appearing in Exercise 9.39 (page 378,
when each player has a different prior, as follows. The prior distribution of Player
I is

pI(I1, II1) = 0.4, pI(I1, II2) = 0.1, pI(I2, II1) = 0.2, pI(I2, II2) = 0.3.

The prior distribution of Player II is

pII(I1, II1) = 0.3, pII(I1, II2) = 0.2,

pII(I2, II1) = 0.25, pII(I2, II2) = 0.25.

Assume that these prior distributions are common knowledge among the players.

10.57 Ronald and Jimmy are betting on the result of a coin toss. Ronald ascribes proba-
bility 1

3 to the event that the coin shows heads, while Jimmy ascribes probability
3
4 to that event. The betting rules are as follows: Each of the two players writes
on a slip of paper “heads” or “tails,” with neither player knowing what the other
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player is writing. After they are done writing, they show each other what they
have written. If both players wrote heads, or both players wrote tails, each of them
receives a payoff of 0. If they have made mutually conflicting predictions, they
toss the coin. The player who has made the correct prediction regarding the result
of the coin toss receives $1 from the player who has made the incorrect prediction.
This description is common knowledge among the two players.

(a) Depict this situation as a game with incomplete information.
(b) Are the beliefs of Ronald and Jimmy consistent? Justify your answer.
(c) If you answered the above question positively, find the common prior.
(d) Find a Bayesian equilibrium in this game (whether or not the beliefs of the

players are consistent).

10.58 Find a Bayesian equilibrium in the game appearing in Exercise 9.50 (page 382).

10.59 In Exercise 9.42 (page 379), suppose that the players’ beliefs are:

� Marc thinks that the probability of every possible value is 1
3 , and he believes that

this is common belief among him and Nicolas.
� Nicolas knows that Marc’s beliefs are as described above, but he also knows that

the true value of the company is 11.

Answer the following questions:

(a) Can this situation be described as a Harsanyi game with incomplete information
(with a common prior)? Justify your answer.

(b) Find a Bayesian equilibrium of the game.

10.60 Find all the Bayesian equilibria of the following two-player game with incomplete
information. The set of states of nature is S = {s1, s2, s3}, the set of players is
N = {I, II}, the set of states of the world is Y = {ω1, ω2, ω3}, and the belief space
is:

State of the world s(·) πI(·) πII(·)

ω1 s1
[

1
2 (ω1), 1

2 (ω2)
]

[1(ω1)]

ω2 s2
[

1
2 (ω1), 1

2 (ω2)
]

[1(ω1)]

ω3 s3 [1(ω3)] [1(ω3)]

The state games are as follows:

B

T

L R

1, 2

4, 0

3, 0

1, 1

State game s1

B

T

L R

1, 0

0, 3

0, 2

1, 5

State game s2

B

T

L R

7, 5

0, 1

2, 3

6, 4

State game s3

10.61 A Cournot game with inconsistent beliefs Each of two manufacturers i ∈ {I, II}
must determine the quantity of a product xi to be manufactured (in thousands of
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units) for sale in the coming month. The unit price of the manufactured prod-
ucts depends on the total quantities both manufacturers produce, and is given
by p = 2 − xI − xII. Each manufacturer knows his own unit production cost, but
does not know the unit production cost of his rival. The unit production cost of
manufacturer i may be high (ci = 5

4 ) or low (ci = 3
4 ). Manufacturer i’s profit is

xi(p − ci).
The first manufacturer ascribes probability 2

3 to the second manufacturer’s costs
being high (and probability 1

3 to the second manufacturer’s costs being low). The
second manufacturer ascribes probability 3

4 to the costs of both manufacturers
being equal to each other (and probability 1

4 to their costs being different).
Answer the following questions:

(a) Describe this situation as a game with incomplete information.
(b) Prove that the beliefs of the manufacturers are inconsistent.
(c) Find all Bayesian equilibria in pure strategies in this game.

10.62 This exercise shows that when the players agree that every state of the world may
obtain, the game is equivalent to a game with a common prior.

Let G = (N, S, (Ai)i∈N, �) be a game with incomplete information, where
s = (N, (Ai(s))i∈N, (ui(s))i∈N ) for every s ∈ S, � = (Y,Y, s, (πi)i∈N ), the set of
states of the world Y is finite, the set of states of nature S equals the set of states
of the world, S = Y with s(ω) = ω, and each player i has a prior distribution Pi

whose support is Y , and a partition Fi of Y such that πi(ω) = Pi(ω | Fi(ω)), for
every player i and every state of the world ω.

Let P be a probability distribution over Y whose support is Y . For each
s ∈ S define a state game ŝ := (N, (Ai(s))i∈N, (̂ui(s))i∈N ), where ûi(a; ω) :=
Pi (ω)
P(ω) ui(a; ω). Let Ŝ be the collection of all state games ŝ defined in this way.

Let Ĝ = (N, Ŝ, (Ai)i∈N, �̂) be a game with incomplete information, where
ŝ(ω) = ŝ(ω), �̂ = (Y,Y, ŝ, (π̂i)i∈N ), and for every player i ∈ N and every ω ∈ Y ,
π̂i(ω) := P(ω | Fi(ω)). In words, the game Ĝ has a common prior equal to P. Each
player i’s payoff function at the state of the world ω is his payoff function in the
game G multiplied by the ratio Pi (ω)

P(ω) .
Prove that the set of Bayesian equilibria of the game G coincides with the set

of Bayesian equilibria of the game Ĝ.

10.63 In this exercise, we relate the set of Bayesian equilibria in a game G with incomplete
information to the set of Bayesian equilibria when we restrict the game to a belief
subspace of the belief space of G.

Let G = (N, S, (Ai)i∈N, �) be a game with incomplete information, where
� = (Y,Y, s, (πi)i∈N ) is a belief space with a finite set of states of the world Y ,
and let �̃ = (Ỹ , Ỹ|Ỹ , s, (πi)i∈N ) be a belief subspace of �.

(a) Prove that G̃ = (N, S, (Ai)i∈N, �̃) is a game with incomplete information.
(b) Let σ ∗ be a Bayesian equilibrium of G. Prove that σ ∗

|Ỹ , the strategy vector σ ∗

restricted to the states of the world in Ỹ , is a Bayesian equilibrium of the game
G̃.
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(c) Let σ̃ be a Bayesian equilibrium of G̃. Prove that there exists a Bayesian
equilibrium σ ∗ of G satisfying σ̃i(ω) = σ ∗

i (ω) for each player i ∈ N and each
state of the world ω ∈ Ỹ .

10.64 Prove that the probability distribution defined by Equation (10.57) on page 416 is
consistent over the belief space described in Remark 10.47.

10.65 Prove that for probability distributions p over Y whose support is a finite set in
Equation (10.56) one may condition on the set {ω′ ∈ Y : πi(ω′) = πi(ω)} instead
of Pi(ω).

10.66 Prove that, in Example 10.18 (page 398), Equation (10.56) (page 416) is satisfied
for each event A ⊆ Y , for each player i, and for each ω ∈ Y .

10.67 Prove that the two definitions of a consistent distribution, Definition 10.46
(page 416) and Definition 10.49 (page 418), are equivalent.

10.68 Prove that Equation (10.64) on page 418 is satisfied for Player II in Example 10.18
(page 398).

10.69 Verify that Equation (10.64) on page 418 is satisfied in Examples 10.17 (page 396)
and 10.18 (page 398).

10.70 Prove Theorem 10.50 (page 418): if the set of states of the world is finite, and if p

is a consistent distribution, then Ỹ = supp(p) is a consistent belief subspace.

10.71 Let Ỹ1 and Ỹ2 be two consistent belief subspaces of the same belief space �, and
let p1 and p2 be consistent distributions over these two subspaces, respectively.
Prove that the set Ỹ1 ∪ Ỹ2 is also a consistent belief subspace, and that for each
λ ∈ [0, 1] the probability distribution λp1 + (1 − λ)p2 is consistent. In addition,
if for each i ∈ {1, 2} we expand pi to a probability distribution over Y by setting
pi(ω) = 0 for every ω �∈ Ỹi , then for every λ ∈ [0, 1] the probability distribution
λp1 + (1 − λ)p2 is consistent.

10.72 Let � be a consistent belief space, and let p be a consistent distribution. Let
ω ∈ Y be a state of the world satisfying p(Ỹ (ω)) > 0. Prove that the probability
distribution p conditioned on the set Ỹ (ω) is consistent. Deduce that Ỹ (ω) is a
consistent belief subspace.

10.73 Prove or disprove: Every finite belief space has a consistent belief subspace.

10.74 Prove or disprove: If Ỹi(ω) is inconsistent for some player i ∈ N , then Ỹ (ω) is also
inconsistent.

10.75 Prove or disprove: If Ỹi(ω) is inconsistent for every player i ∈ N , then Ỹ (ω) is also
inconsistent.

10.76 Prove or disprove: If Ỹ (ω) is inconsistent then there exists a player i ∈ N for whom
Ỹi(ω) is inconsistent.

10.77 Provide an example of a belief space � with three players, which contains a state
of the world ω, such that the minimal belief subspaces of the players at ω are
inconsistent, and differ from each other.
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10.78 Provide an example of a belief space � with three players, which contains a state
of the world ω, such that the minimal belief subspaces of two of the players at ω

are consistent and differ from each other, but the minimal belief space of the third
player is inconsistent.

10.79 Prove that if Ỹ is a minimal consistent belief subspace, and Ỹ ′ is an inconsistent
belief subspace, then Ỹ ∩ Ỹ ′ = ∅. Does the claim hold without the condition that
Ỹ is minimal?

10.80 In Example 10.27 on page 402, show that at the state of the world ω2, the fact that
the state of the world is consistent is common belief among the players.

10.81 Consider the following belief space, where the set of players is N = {I, II}, the set
of states of nature is S = {s1, s2}, the set of states of the world is Y = {ω1, ω2, ω3},
and the beliefs of the players are given by the following table:

State of the world s(·) πI(·) πII(·)
ω1 s1

[
1
2 (ω1), 1

2 (ω2)
]

[1(ω1)]

ω2 s1
[

1
2 (ω1), 1

2 (ω2)
]

[1(ω3)]
ω3 s2 [1(ω3)] [1(ω3)]

(a) Prove that the state of the world ω3 is the only consistent state of the world in
Y .

(b) Prove that at the state of the world ω2, Player II believes that the state of the
world is consistent.

(c) Prove that at the state of the world ω1, both players believe that the state of the
world is inconsistent.

(d) Prove that at the state of the world ω1, the fact that the state of the world is
inconsistent is not common belief among the players.

10.82 Find an example of a belief space, where the set of players is N = {I, II}, and
there is a state of the world at which Player I believes that the state of the world is
consistent, while Player II believes the state of the world is inconsistent.

10.83 At the state of the world ω, Player I believes that the state of the world is consistent,
while Player II believes the state of the world is inconsistent. Is it possible that ω

is a consistent state of the world? Justify your answer.

10.84 Prove or disprove: If it is common belief among the players at the state of the
world ω that the state of the world is consistent, then Ỹi(ω) = Ỹj (ω) for every pair
of players i, j ∈ N .

10.85 Find an example of a belief space where the set of players consists of two players,
and there exists an inconsistent state of the world ω at which πi({ω} | ω) = 0, and
each player i believes that the state of the world is inconsistent.

10.86 Prove that if player i believes at the state of the world ω that the state of the world
is consistent, then he believes that every player believes that the state of the world
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is consistent. Deduce that in this case player i believes that it is common belief
that the state of the world is consistent.

10.87 Two buyers are participating in a first-price auction. Each of them has a private
value, located in [0, 1]. With regards to each of the following belief situations, in
which the two buyers have symmetric beliefs, answer the following questions:

� Ascertain whether the beliefs of the buyers are consistent. Prove your reply.
� Find a Bayesian equilibrium.

(a) The buyer whose private value is x believes:
� If x ∈ [0, 1

2 ], the buyer believes that the private value of the other buyer is
given by the uniform distribution over [0, 1

2 ].
� If x ∈ ( 1

2 , 1], the buyer believes that the private value of the other buyer is
given by the uniform distribution over [ 1

2 , 1].
(b) A buyer whose private value is x believes:

� If x ∈ [0, 1
2 ], the buyer believes that the private value of the other buyer is

given by the uniform distribution over [ 1
2 , 1].

� If x ∈ ( 1
2 , 1], the buyer believes that the private value of the other buyer is

given by the uniform distribution over [0, 1
2 ].
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Chapter summary
In this chapter we construct the universal belief space, which is a belief space that
contains all possible situations of incomplete information of a given set of players over a
certain set of states of nature. The construction is carried out in a straightforward way.
Starting from a given set of states of nature S and a set of players N we construct, step
by step, the space of all possible hierarchies of beliefs of the players in N. The space of
all possible hierarchies of beliefs of each player is proved to be a well-defined compact
set T , called the universal type space. It is then proved that a type of a player is a joint
probability distribution over the set S and the types of the other players. Finally, the
universal belief space � is defined as the Cartesian product of S with n copies of T ; that
is, an element of �, called state of the world, consists of a state of nature and a list of
types, one for each player.

Chapters 9 and 10 focused on models of incomplete information and their properties. A
belief space � with a set of players N on a set of states of nature S, is given by a set of
states of the world Y , and, for each state of the world ω ∈ Y , a corresponding state of
nature s(ω) ∈ S and a belief πi(ω) ∈ 
(Y ) for each player i ∈ N . As we saw, the players’
beliefs determine hierarchies of beliefs over the states of nature, that is, beliefs about the
state of nature, beliefs about beliefs about the state of nature, beliefs about beliefs about
beliefs about the state of nature, and so on (see Example 9.28 on page 334 for an Aumann
model of incomplete information, Example 9.43 on page 350 for a Harsanyi model of
incomplete information, and page 390 for a hierarchy of beliefs in a more general belief
space). The players’ hierarchies of beliefs are thus derived from the model of incomplete
information, and they are not an element of the model.

In reality, when individuals analyze a situation with incomplete information they do
not write down a belief space. They do, however, have hierarchies of beliefs over the state
of nature: an investor ascribes a certain probability to the event “the interest rate next year
will be 3%,” he ascribes a possibly different probability to the event “the interest rate next
year will be 3% and the other investor ascribes probability at least 0.7 to the interest rate
next year being 3%,” and he similarly ascribes probabilities to events that involve higher
levels of beliefs. It therefore seems more natural to have the belief hierarchies as part of
the data of the situation. In other words, we wish to describe a situation of incomplete
information by the set of states of nature S and the players’ belief hierarchies on S. Does
such a description correspond to a belief space as defined in Section 10? This chapter is
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devoted to the affirmative answer of this question: starting from belief hierarchies we will
construct the belief space that yields these belief hierarchies.

We will first define the concept of a belief hierarchy of a player, and construct a space
� = �(N, S) containing all possible hierarchies of beliefs of the set of players N about
the set of states of nature S. We will then prove that this space is a belief space. This will
imply that every belief space of the set of players N on the set of states of nature S is a
belief subspace of the space �. That is why the space � will be called the universal belief
space.

In constructing the universal belief space �, we will assume that the space of states of
nature S is a compact set in a metric space. This assumption is satisfied, in particular, when
S is a finite set, or when it is a closed and bounded set in a finite-dimensional Euclidean
space.

Remark 11.1 As we will now show, the assumption that the space of states of nature is
compact is not a strong assumption. Suppose that the players in N are facing a strategic-
form game in which the set of actions of player i is Ai , which may be a finite or an infinite
set. We argue that under mild assumptions, such a game can be presented as a point in
a compact subset of a metric space. Denote by A = ×i∈N Ai the set of action vectors.
Assume that the preference relation of each player satisfies the von Neumann–Morgenstern
axioms, and that each player has a most-preferred and a least-preferred outcome (see
Section 2.6 for a generalization of the von Neumann–Morgenstern axioms to infinite sets
of outcomes). It follows that the preference relation of each player i can be presented by a
bounded linear utility function ui . Since the utility function of every player is determined
up to a positive affine transformation, we may suppose that the utility function of each
player takes values in the range [0, 1].

As we saw in Chapters 9 and 10, a state of nature is a state game in strategic form
that the players face. Suppose for now that the set of actions Ai of player i is common
knowledge among the players. Then a state of nature is described by a vector of utility
functions (ui)i∈N , i.e., by an element in S := [0, 1]A: a list of payoff vectors for each
action vector.

When the sets of actions are finite, the set S is compact, i.e., the set of states of nature
is a compact set. When the sets of actions are compact (not necessarily finite), the set
of states of nature is a compact set if we consider only state games in which the utility
functions of all players are Lipschitz functions with a given constant. �

Recall that for every set X in a topological space, 
(X) is the space of all probability
distributions over X. We endow 
(X) with the weak-∗ topology. In the weak-∗ topology,
a sequence of distributions (μj )j∈N converges to a probability distribution μ if and only
if for every continuous function f : X → R,

lim
j→∞

∫
X

f (x)dμj (x) =
∫

X

f (x)dμ(x). (11.1)

This topology is a metric topology: there exists a metric over the set 
(X) satisfying
the property that the collection of open sets in the weak-∗ topology is identical with the
collection of open sets generated by open balls in this metric.
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A fundamental property of this topology, which we will often make use of, is the
following theorem, which follows from Riestz’s representation theorem.

Theorem 11.2 If X is a compact set in a metric space, then 
(X) is a compact metric
space (in the weak-∗ topology).

For the proof of this theorem, see Conway [1990], Theorem V.3.1, and Claim III.5.4.
Further properties of this topology will be presented, as needed, in the course of the
chapter.

11.1 Belief hierarchies
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We begin by constructing all the belief spaces in the most direct and general possible
way. A player’s belief is described by a distribution over the parameter about which he is
uncertain, i.e., over the state of nature. Denote by Xk the space of all belief hierarchies of
order k. In particular, X1 includes all the possible beliefs of a player about the states of
nature; X2 includes all possible beliefs of a player about the state of nature, and on the
beliefs of the other players about the state of nature; X3 includes all the beliefs of order 1
and 2 and the beliefs about the second-order beliefs of all the other players, etc.

Definition 11.3 The space of belief hierarchies of order k of a set of players N on the set
of states of nature S is the space Xk defined inductively as follows:

X1 := 
(S), (11.2)

and for every k ≥ 2,

Xk : = Xk−1 × 
(S × (Xk−1)n−1)

= Xk−1 × 
(S × Xk−1 × Xk−1 × · · · × Xk−1︸ ︷︷ ︸
n−1 times

). (11.3)

An element μk ∈ Xk is called a belief of order k, or a belief hierarchy of order k.

Every probability distribution over S can be a first-order belief of a player in a game.
A second-order belief (or hierarchy) is a first-order belief and a joint distribution over
the set of states of nature and the first-order beliefs of the other players. In general, a
(k + 1)-order belief includes a belief of order k and a joint distribution over the vectors of
length n composed of a state of nature and the n − 1 beliefs of order k of the other players.
Note that the joint distribution over S × (Xk)n−1 is not necessarily a product distribution.
This means that a player can believe that there is a correlation between the beliefs of order
k of the other players, and between those beliefs and the state of nature. This can happen,
for example, if the player believes that one or more of the other players knows the state of
nature, or if some other players have common information on the state of nature.

Since the first component of a (k + 1)-order belief is a k-order belief, and the first
component of a k-order belief is a (k − 1)-order belief, and so on, a (k + 1)-order belief
defines the player’s beliefs of order 1, 2, . . . , k. This is the reason that a (k + 1)-order
belief is also called a “belief hierarchy of order k + 1.”
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Example 11.4 Suppose that there are two players N = {Benjamin, George}, and two states of nature

S = {s1, s2}. The space of belief hierarchies of order 1 of every player is X1 = 
(S), and a
first-order belief is of the form [p1(s1), (1 − p1)(s2)]: “I ascribe probability p1 to the state of nature
being s1, and probability 1 − p1 to the state of nature being s2.”A second-order belief is an element
in X2 = X1 × 
(S × X1), for example, “I ascribe probability p2 to the state of nature being s1,
probability 1 − p2 to the state of nature being s2 (an element of X1), probability α1 to the state of
nature being s1 and the belief of the second player on the state of nature being [q1(s1), (1 − q1)(s2)],
probability α2 to the state of nature being s1 and the belief of the second player on the state of
nature being [q2(s1), (1 − q2)(s2)], and probability 1 − α1 − α2 to the state of nature being s2 and
the belief of the second player on the state of nature being [q3(s1), (1 − q3)(s2)] (this is an element
in 
(S × X1)).

Note that each of these beliefs can be those of either Benjamin or George: the belief spaces, at
any order, of the players are identical.” �

While the concept of a belief hierarchy is an intuitive one, the detailed mathematical
description of a belief hierarchy may be extremely cumbersome. Despite this, we can prove
mathematical properties of belief hierarchies that will eventually enable us to construct
the universal belief space, which is the space of all possible belief hierarchies.

Theorem 11.5 For each k ∈ N, the set Xk is a compact set in a metric space.

Proof: The theorem is proved by induction on k. Because S is a compact set in a metric
space, Theorem 11.2 implies that X1 = 
(S) is also a compact set in a metric space.

Let k ≥ 1, and suppose by induction that Xk is a compact set. It follows that the set
S × (Xk)n−1 is also compact, as the Cartesian product of compact sets in metric spaces. By
Theorem 11.2 again, the set 
(S × (Xk)n−1) is a compact subset of a metric space in the
weak-∗ topology. We deduce that the set Xk+1 = Xk × 
(S × (Xk)n−1) as the Cartesian
product of two compact sets in metric spaces is also a compact set in a metric space. �

A k-order belief of a player is an element of Xk . Can every element in Xk be an
“acceptable” belief of a player? The answer to this question is negative.

Example 11.4 (Continued ) In this example, where N = {Benjamin, George} and S = {s1, s2}, an element

in X1 is of the form [p1(s1), (1 − p1)(s2)], and every such element is an “acceptable” first-order
belief of a player. We will show, however, that not every second-order belief is “acceptable.”

A second-order belief of a player is a pair μ2 = (μ1, ν1), where μ1 is a first-order belief of
the player, and ν1 is a probability distribution over S × X1. In other words, ν1 is a probability
distribution over vectors of the form (s, ρ), where s is a state of nature, and ρ is a first-order belief
of the other player.

On page 443, we gave an example of a second-order belief of a player where:

� The first-order belief is μ1 = [p2(s1), (1 − p2)(s2)].
� The distribution ν1 ascribes probability α1 to the state of nature being s1 and the first-order belief

of the second player being [q1(s1), (1 − q1)(s2)].
� The distribution ν1 ascribes probability α2 to the state of nature being s1 and the first-order belief

of the second player being [q2(s1), (1 − q2)(s2)].
� The distribution ν1 ascribes probability 1 − α1 − α2 to the state of nature being s2 and the

first-order belief of the second player being [q3(s1), (1 − q3)(s2)].
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If a player’s belief is “acceptable,” we expect the player to be able to answer the question “what
is the probability you ascribe to the state of nature being s1?” When the second-order belief of the
player is μ2 = (μ1, ν1), he can answer this question in two different ways. On the one hand, μ1 is a
first-order belief; i.e., it is a probability distribution over S, so that the answer to our question is the
probability that μ1 ascribes to s1. In the example above, that answer is p2. On the other hand, ν1 is
a probability distribution over S × X1, so that the answer to our question is the probability that the
marginal distribution of ν1 over S ascribes to s1. In the above example, that answer is α1 + α2. For
the probability that the player ascribes to the state of nature s1 to be well defined, we must require
that p2 = α1 + α2. In general, for a second-order belief of a player to be “acceptable,” the marginal
distribution of ν1 over S must coincide with μ1, which is also a probability distribution over S.

Note that according to the player’s second-order belief, the probability that the other player
ascribes to the state of nature being s1 is α1q1 + α2q2 + (1 − α1 − α2)q3. It follows that even if the
player’s belief is “acceptable,” i.e., if p2 = α1 + α2, if α1q1 + α2q2 + (1 − α1 − α2)q3 �= p2, then
the player believes that the other player ascribes a probability to the state of nature being s1 that
is different from the probability that he himself ascribes to that event. Thus, the inequality α1q1 +
α2q2 + (1 − α1 − α2)q3 �= p2 does not mean that the player’s belief is unacceptable, because the
player may believe that the other player does not agree with him. �

The condition p2 = α1 + α2, which emerged in the above discussion, is a mathematical
condition constraining the distributions that comprise a belief hierarchy. Its purpose is to
ensure that the beliefs in a belief hierarchy do not contradict each other. This condition
is called the coherency condition. To define the coherency condition precisely, denote by
μk+1 a belief hierarchy of order k + 1, i.e., an element in Xk+1, for every k ≥ 0. We will
present conditions that ensure that such a hierarchy is coherent.

Since by the inductive definition (Definition 11.3) an element of Xk+1 is μk+1 ∈ Xk ×

(S × (Xk)n−1), we write μk+1 = (μk, νk), where μk ∈ Xk and νk ∈ 
(S × Xn−1

k ). We
similarly write μk = (μk−1, νk−1), where μk−1 ∈ Xk−1 and νk−1 ∈ 
(S × (Xk−1)n−1).
Note that1

νk ∈ 
(S × (Xk)n−1) = 
(S × (Xk−1 × 
(S × (Xk−1)n−1))n−1)

= 
(S × (Xk−1)n−1 × (
(S × (Xk−1)n−1))n−1). (11.4)

The marginal distribution of νk over S × (Xk−1)n−1 is the player’s belief about the
(k − 1)-order beliefs of the other players. For μk+1 to be coherent, we require that the
marginal distribution of νk over S × (Xk−1)n−1 to be equal to the probability distribution
νk−1 over S × (Xk−1)n−1, which comprises part of μk . We also require that the players
believe that the beliefs of the other players be coherent: νk must ascribe probability 1 to the
event that the lower-order beliefs of the other players are also coherent. These conditions
together lead to the following inductive definition of Zk, the set of all coherent belief
hierarchies of order k (for each k ∈ N).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 The spaces (S × (Xk−1)n−1)n−1 and S × (Xk−1)n−1 × (

(S × (Xk−1)n−1)

)n−1
in Equation (11.4) differ from each

other in the order of the coordinates. Here and in the sequel we will relate to these spaces as if they were identical,
identifying the corresponding coordinates in the two spaces.
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Definition 11.6 For each k ∈ N, the space of coherent belief hierarchies of order k is the
space Zk defined inductively as follows:

Z1 := X1 = 
(S), (11.5)

Z2 := {μ2 = (μ1, ν1) ∈ Z1 × 
(S × (Z1)n−1) : (11.6)

the marginal distribution of ν1 over S equals μ1}.
For each k ≥ 2,

Zk+1 := {μk+1 = (μk, νk) ∈ Zk×
(S×(Zk)n−1) :

the marginal distribution of νk over S×(Zk−1)n−1 equals νk−1 where μk = (μk−1, νk−1)}.
(11.7)

An element in the set Zk is called a coherent belief hierarchy of order k.

In words, every belief of order 1 of a player is coherent; a second-order belief hierarchy
μ2 = (μ1, ν1) is a coherent belief hierarchy if the marginal distribution of ν1 over S

equals μ1; for k ≥ 2, a (k + 1)-order belief hierarchy μk+1 = (μk, νk) is a coherent belief
hierarchy of order k + 1 if:

� μk = (μk−1, νk−1) is a coherent belief hierarchy of order k.
� νk is a probability distribution over S × (Zk)n−1.
� The marginal distribution of νk over S × (Xk−1)n−1 equals νk−1.

One can prove by induction that Zk ⊆ Xk: every coherent belief hierarchy is a belief hier-
archy (Exercise 11.3). As mentioned before, the coherency condition requires the beliefs
of a player to be well defined. If the coherency condition is not met, then, for example, the
probability that the player ascribes to event A may be 1

3 according to his k-order belief, and
2
5 according to his l-order belief. This is, of course, meaningless: the mathematical struc-
ture must reflect the intuition that the question “What is the probability that the player
ascribes to an event A?” has an unequivocal answer. To understand the content of the
coherency condition, note that a belief hierarchy of order k of any player defines a belief
hierarchy for all orders l less than k for that player. Indeed, μk = (μk−1, νk−1), where
μk−1 ∈ Zk−1 is the player’s belief hierarchy of order k − 1 and νk−1 ∈ 
(S × (Zk−1)n−1)
is that player’s belief on the states of nature and on the belief hierarchies of order k − 1
of the other players. Similarly, μk−1 = (μk−2, νk−2), where μk−2 ∈ Zk−2 is the players’
belief hierarchy of order k − 2 and νk−2 ∈ 
(S × (Zk−2)n−1) is that player’s belief about
the states of nature and about the belief hierarchies of order k − 2 of the other players.
Continuing in this way, we arrive at the conclusion that in effect a belief hierarchy of order
k is equivalent to a vector

μk = (μ1; ν1, ν2, . . . , νk−1), k ≥ 2, (11.8)

where μ1 is the player’s belief about the state of nature, and νl ∈ 
(S × (Zl)n−1) is a
probability distribution over the states of nature and the belief hierarchies of order l of
the other players, for all 2 ≤ l < k. As the next theorem states, the coherency condition
guarantees that all of these distributions “agree” with each other. The proof of the theorem
is left to the reader (Exercise 11.6).
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Theorem 11.7 Let μk = (μ1; ν1, ν2, . . . , νk−1) ∈ Zk be a coherent belief hierarchy of
order k, and let l1, l2 be integers satisfying 1 ≤ l1 ≤ l2 ≤ k. Then:

1. The marginal distribution of ν1 over S equals μ1.
2. The marginal distribution of νl2 over S × (Zl1 )n−1 is νl1 .

The following theorem is a reformulation of Definition 11.6, and it details which pairs
(μk, νk) form coherent beliefs of order k + 1.

Theorem 11.8 Let μk = (μ1; ν1, ν2, . . . , νk−1) ∈ Zk be a coherent belief hierarchy of
order k, and let νk ∈ 
(S × (Xk)n−1). The pair (μk, νk) is a coherent belief hierarchy of
order k + 1 if and only if the following conditions are met:

� νk ascribes probability 1 to S × (Zk)n−1.
� For k = 1, the marginal distribution of ν1 over S is μ1.
� For k > 1, the marginal distribution of νk over S × (Xk−1)n−1 equals νk−1, where
μk = (μk−1, νk−1).

From Theorem 11.8 it follows that if the belief of player i is coherent, then for every
finite sequence of players i1, i2, . . . , il , player i believes (ascribes probability 1) to i1

believing that player i2 believes . . . that the belief hierarchy of order k − l of player il is
coherent.

Example 11.9 In this example we present a situation of incomplete information and write down the belief

hierarchy of one of the players. Phil wonders what the color of the famous Shwezigon Pagoda in
Burma is, and whether his brother Don knows what it is. The states of nature are the possible colors
of the pagoda: sb (blue), sg (gold), sp (purple), sr (red), sw (white), and so on. Phil does not know
the color of the pagoda; he ascribes probability 1

3 to the pagoda being red and probability 2
3 to its

being gold. Phil’s first-order belief is therefore

μ1 = [
1
3 (sr),

2
3 (sg)

] ∈ 
(S). (11.9)

Phil also believes that if the pagoda is red, then Don ascribes probability 1
2 to the pagoda being red

and probability 1
2 to its being blue. He also believes that if the pagoda is gold then Don ascribes

probability 1 to its being gold. Phil’s second-order belief is μ2 = (μ1, ν1) where μ1 is given by
Equation (11.9) and

ν1 = [
1
3

(
sr,

[
1
2 (sr), 1

2 (sb)
])

, 2
3

(
sg, 1[sg]

)] ∈ 
(S × Z1). (11.10)

In addition, Phil believes that if the pagoda is red, then the following conditions are met:

� Don ascribes probability 1
2 to “the pagoda is red, and Phil believes that the pagoda is purple.”

� Don ascribes probability 1
2 to “the pagoda is blue, and Phil believes that the pagoda is red.”
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Phil also believes that if the pagoda is gold, then Don ascribes probability 1 to “the pagoda is gold,
and Phil ascribes probability 1 to the pagoda being white.” Phil’s third-order belief is μ3 = (μ2, ν2)
with μ2 as defined above and

ν2 = [
1
3

(
sr,

[
1
2 (sr), 1

2 (sb)
]
,
[

1
2 (sr, [1(sp)]), 1

2 (sb, [1(sr)])
])

, 2
3 (sg, [1(sg)], [1(sg, [1(sw)])])

]
.

(11.11)

ν2 is Phil’s belief about Don’s belief. In Equation (11.11), we see that Phil believes that if the
state of nature is sr, then Don’s first-order belief is [ 1

2 (sr), 1
2 (sb)] and Don’s second-order belief is

([ 1
2 (sr),

1
2 (sb)], [ 1

2 (sr, [1(sp)]), 1
2 (sb, [1(sr)])]). Phil also believes that if the state of nature is sg, then

Don’s first-order belief is [1(sg)] and Don’s second-order belief is ([1(sg)], [1(sg, [1(sw)])]).

We can now check the meaning of the coherence condition in this example. First, Phil’s belief is
coherent:

� The marginal distribution of ν1 over S is μ1.
� The projection of ν2 on S × Z1 is ν1.

Second, Phil believes that Don’s belief is coherent. Indeed, the second-order belief that Phil ascribes
to Don is coherent in both the states of nature sr and sg. Note that Phil indeed has beliefs about
Don’s beliefs, but Don’s true beliefs are not expressed in Phil’s belief about Don’s beliefs; the latter
may in fact differ from Phil’s beliefs about Don’s beliefs. �

Does there exist a coherent belief hierarchy of order k for every k? Can every coherent
belief hierarchy of order k be extended to a coherent belief hierarchy of order k + 1; in
other words, given a coherent belief hierarchy μk of order k, can we find a coherent belief
hierarchy μk+1 of order k + 1 such that μk+1 = (μk, νk)? The answer to these questions
is yes. With respect to the first question, if s0 ∈ S is a given state of nature, then the
following sentence defines a coherent belief hierarchy order k (Exercise 11.7): “I ascribe
probability 1 to the state of nature being s0, I ascribe probability 1 to the other players
ascribing probability 1 to the state of nature being s0, I ascribe probability 1 to each of the
other players ascribing probability 1 to each of the other players ascribing probability 1
to the state of nature being s0, and so on, up to level k.”

The proof that every coherent belief hierarchy of order k can be extended to a coherent
belief hierarchy of order k + 1 is more complicated, and we will present it next. We start
by showing that for every k, the set Zk is compact.

Theorem 11.10 For each k ∈ N, the set Zk is compact in Xk.

Proof: The theorem is proved by induction on k. Start with k = 1. By definition,
Z1 = 
(S), which is a compact set in a metric space (see the proof of Theorem 11.5).

Let k ≥ 1, and suppose by induction that Zk is a compact set in Xk. Since the set Xk+1

is compact in a metric space (Theorem 11.5), to prove that Zk+1 is a compact set in Xk+1

it suffices to prove that the set Zk+1 is a closed set. To this end we need to show that the
limit of every convergent sequence of points in Zk+1 is also in Zk+1. This follows from
the following two well-known facts regarding the weak-∗ topology:

� Let (μn)n∈N be a sequence of probability distributions over a space X, which converges
in the weak-∗ topology to a probability distribution μ, and satisfies, for a compact
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set T ⊆ X, the condition μn(T ) = 1 for all n ∈ N. Then μ(T ) = 1 (this follows from
Theorem 2.1 in Billingsley [1999]).

� Let (μn)n∈N be a sequence of probability distributions over a product space X × Y

converging in the weak-∗ topology to a probability distribution μ. Denote by νj the
marginal distribution of μj over X, and by ν the marginal distribution of μ over X.
Then the sequence (νn)n∈N converges in the weak-∗ topology to ν (see Theorem 2.8 in
Billingsley [1999]).

Indeed, let (μj
k+1)j∈N be a sequence of points in Zk+1 converging to the limit μk+1 in

Xk+1. Denote μ
j
k+1 = (μj

k, ν
j
k ) and μk+1 = (μk, νk). By Equation (11.8), μ

j
k+1 ascribes

probability 1 to S × (Zk)n−1, and the marginal probability distribution of ν
j
k over

S × (Zk)n−1 is ν
j
k−1. By the two above-mentioned facts, these two properties also hold for

the limits μk and νk . By Theorem 11.8, we deduce that μk+1 ∈ Zk+1, which is what we
needed to show. �

We are now ready to prove that every coherent belief hierarchy μk ∈ Zk of order k can
be extended to a coherent belief hierarchy μk+1 = (μk, νk) ∈ Zk+1. Since the set Z1 is
nonempty, it will follow from this in particular that for any k ∈ N the set Zk is nonempty.

Theorem 11.11 For any k ∈ N and every coherent belief hierarchy μk of order k there
exists νk ∈ 
(S × (Zk)n−1) such that the pair (μk, νk) is a coherent belief hierarchy of
order k + 1.

We will in effect be proving that there exists a continuous function hk : Zk → 
(S ×
(Zk)n−1) such that (μk, hk(μk)) ∈ Zk+1 for every μk ∈ Zk . If we define a function fk :
Zk → Zk+1 by

fk(μk) = (μk, hk(μk)), (11.12)

the function fk will be a continuous function associating every coherent belief hierarchy
of order k with a coherent belief hierarchy of order k + 1, such that the projection of fk

to the first coordinate is the identity function.

Proof: We prove the existence of the continuous function hk by induction on k. We start
with the case k = 1. Let s1 ∈ S be a state of nature. The distribution [1(s1)] ∈ 
(S) is a
first-order belief hierarchy in which the player ascribes probability 1 to s1. For each μ1 ∈
Z1 = 
(S), consider the product2 distribution ν1 := μ1 ⊗ [1(s1)]n−1 over S × (Z1)n−1.
The pair μ2 := (μ1, ν1) is a second-order belief hierarchy: the player believes that the
probability distribution of the state of nature is μ1, and that each of the other players
ascribes probability 1 to the state of nature being s1.

Define a function h1 : Z1 → 
(S × (Z1)n−1) as follows:

h1(μ1) := μ1 ⊗ [1(s1)]n−1. (11.13)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 When μ1 ∈ 
(X1) and μ2 ∈ 
(X2) are two probability distributions, the product distribution μ1 ⊗ μ2 ∈ 
(X1 ×
X2) is the unique probability distribution over X1 × X2 that satisfies (μ1 ⊗ μ2)(A1 × A2) = μ1(A1) · μ2(A2) for
every pair of measurable sets A1 in X1 and A2 in X2.
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As we saw earlier, the pair (μ1, h1(μ1)) is a coherent second-order belief hierarchy.
Moreover, the function h1 is continuous (why?). We have thus completed the proof for
the case k = 1.

Suppose by induction that there exists a continuous function hk : Zk → 
(S × (Zk)n−1)
satisfying (μk, hk(μk)) ∈ Zk+1 for all μk ∈ Zk . By Equation (11.12) this function defines
a function fk : Zk → Zk+1. We now proceed to construct the function hk+1.

For every k ∈ N set Yk := S × (Zk)n−1. For every coherent belief hierarchy of order
k + 1, μk+1 = (μk, νk), the component νk is a probability distribution over S × (Zk)n−1 =
Yk . Note that

Yk+1 = S × (Zk+1)n−1 ⊆ S × (Zk × 
(S × (Zk)n−1))n−1

= S × (Zk)n−1 × (
(S × (Zk)n−1))n−1 = Yk × (
(Yk))n−1. (11.14)

We will denote an element of Yk by (s, (μk,j )n−1
j=1), where μk,j ∈ Zk for all j =

1, 2, . . . , n − 1. Using Equation (11.12), changing the order of the coordinates yields(
s, (fk(μk,j ))n−1

j=1

) = (
s, (μk,j , hk(μk,j ))n−1

j=1

) = (
s, (μk,j )n−1

j=1, (hk(μk,j ))n−1
j=1

)
; (11.15)

i.e., the projection of (s, (fk(μk,j ))n−1
j=1) on Yk is (s, (μk,j )n−1

j=1).
For every measurable set A ⊆ Yk define a set Fk(A) ⊆ Yk+1 as follows:

Fk(A) := {(
s, (fk(μk,j ))n−1

j=1

)
:
(
s, (μk,j )n−1

j=1

) ∈ A
} ⊆ Yk+1. (11.16)

This set includes all the coherent belief hierarchy vectors of order k + 1 of the other
players derived by expanding the coherent belief hierarchy vectors of order k contained
in A by using fk . By the induction assumption, Fk(A) is not empty when A �= ∅ (because
(s, (fk(μk,j )n−1

j=1)) ∈ Fk(A) for every μk ∈ A) and is contained in S × (Zk+1)n−1.
Consider next the inverse function of Fk: for every measurable set B ⊆ Yk+1 define

F−1
k (B) := {(

s, (μk,j )n−1
j=1

)
:
(
s,
(
fk(μk,j )n−1

j=1

)) ∈ B} ⊆ Yk. (11.17)

This is the set of all elements of Yk that are mapped by fk to the elements of B. Since the
function fk is continuous, it is in particular a measurable function, and therefore the set
F−1

k (B) is also measurable.3 We next define an element νk+1 ∈ 
(Yk+1) as follows: for
every measurable set B ⊆ Yk+1,

νk+1(B) := νk(F−1
k (B)). (11.18)

Define the function hk+1 : Zk+1 → 
(Yk+1) by

hk+1(μk+1) := νk+1. (11.19)

The probability distribution νk+1 is a distribution over Yk+1. By Equation (11.14), νk+1

is also a probability distribution over the set Yk × (
(Yk))n−1 whose support is Yk+1. We
need to check that the marginal distribution of νk+1 over Yk is νk . To do so, we consider a
measurable set A ⊆ Yk and check that

νk+1(A × (
(Yk))n−1) = νk(A). (11.20)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 To show that the set F−1
k (B) is measurable, it suffices to show that the function fk is a measurable function. We

choose to show that this function is continuous because it is easier to do so than to show directly that it is measurable.
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Now,

νk+1(A×(
(Yk))n−1) = νk(F−1
k (A×(
(Yk))n−1) (11.21)

= νk

({(
s, (μk,j )n−1

j=1

)
:
(
s, fk(μk,j )n−1

j=1

)∈A×(
(Yk))n−1
})

(11.22)

= νk(A). (11.23)

Finally, we show that hk+1 is a continuous function. Let (μl
k+1)l∈N be a sequence of prob-

ability distributions over Yk converging to the limit μk+1 in the weak-∗ topology. Denote
νl

k+1 := hk+1(μl
k+1) and νk+1 = hk+1(μk+1). We need to show that for every continuous

function g : Yk+1 → R,

lim
l→∞

∫
S×(Zk+1)n−1

g
(
s, (μ̃k+1,j )n−1

j=1

)
dνl

k+1

(
s, (μ̃k+1,j )n−1

j=1

)
=

∫
S×(Zk+1)n−1

g
(
s, (μ̃k+1,j )n−1

j=1

)
dνk+1

(
s, (μ̃k+1,j )n−1

j=1

)
. (11.24)

This follows directly from μk+1 = fk(μk), along with the fact that if g and fk are contin-
uous functions then the composition g(s, (f (μk,j ))n−1

j=1) is a continuous function, where
μk+1,j = (μk,j , νk,j ). �

11.2 Types
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The sequence (Zk)∞k=1 of the spaces of coherent belief hierarchies has a special struc-
ture. Define a projection ρ : Zk+1 → Zk as follows: if μk+1 = (μk, νk) ∈ Zk+1, then
ρ(μk+1) := μk . Theorem 11.11 implies that ρ(Zk+1) = Zk . Such a structure is called
a projective structure, and it enables us to define the projective limit as follows.

Definition 11.12 The projective limit4 of the sequence of the spaces (Zk)∞k=1 is the space
T of all the sequences (μ1, μ2, . . .) ∈ ×∞

k=1 Zk , where for every k ∈ N the belief hierarchy
μk ∈ Zk is the projection of the belief hierarchy μk+1 ∈ Zk+1 on Zk . In other words, there
exists a distribution νk ∈ 
(S × Zn−1

k ) such that μk+1 = (μk, νk). The projective limit T

is called the universal type space.

An element in the universal type space is a sequence of finite belief hierarchies, satis-
fying the condition that for each k, the belief hierarchy of order k + 1 is an extension of
the belief hierarchy of order k. Such an element is called a type, a term due to Harsanyi.

Definition 11.13 An element t = (μ1, μ2, . . .) ∈ T is called a type.

A player’s type is sometimes called his “state of mind,” since it contains answers to all
questions regarding the player’s beliefs (of any order) about the state of nature. A player’s
belief hierarchy defines his beliefs to all orders: his beliefs about the state of nature, his
beliefs about the beliefs of the other players, his beliefs about their second-order beliefs,

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 The projective limit is also called the inverse limit. This definition is a special case of the more general definition
of the projective limit of an infinite sequence of spaces on which a projective operator is defined, from which the
name “projective limit” is derived.
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and so on. We assume that a player’s type is all the relevant information that the player
has about the situation, and in what follows we will relate to a type as all the information
in a player’s possession.

Let t = (μ1, μ2, . . .) be a player’s type. Since the distribution μk is a coherent belief
hierarchy of order k, as previously noted, it follows that for every list of players
i1, i2, . . . , il , the player believes that player i1 believes that player i2 believes that . . .

believes that player il’s belief hierarchy of order k − l is coherent. Since for every k ∈ N,
the first component of μk+1 is μk , a player of type t believes that the fact that “the players’
beliefs are coherent” is common belief among the players (Definition 10.9 on page 393).

As the following example shows, when the set of players contains only one player,
and there are two states of nature, the universal type space can be simply described. This
observation is extended to any finite set of states of nature in Exercise 11.9.

Example 11.14 In this example, we will construct the universal type space when there is one player, N = {I},
and two states of nature, S = {s1, s2}. By definition,

X1 = 
(S), (11.25)

Xk = 
(S)k−1 × 
(S) = (
(S))k, ∀k ≥ 2. (11.26)

The coherency condition implies that the player’s type (there is only one player here) is entirely
determined by his first-order beliefs. The universal type space in this case is homeomorphic to the
set [0, 1]: for every p ∈ [0, 1], the element tp corresponds to the type ascribing probability p to the
state of nature s1, and probability 1 − p to the state of nature s2. �

When the set of players contains two or more players, the mathematical structure of the
universal type space is far more complicated, because in that case a second-order belief
hierarchy is a distribution over distributions, a third-order belief hierarchy is a distribution
over distributions over distributions, and so on. The only way to analyze universal type
spaces tractably requires simplifying their mathematical description. We will therefore
consider several mathematical properties of the universal type space T that will be useful
towards that end. Since a type is an element of the product space ×∞

k=1 Zk , a natural
topology over the universal type space, which we will use, is the topology induced by the
product topology on this space.

Theorem 11.15 The universal type space T is a compact space.

Proof: As previously stated, every coherent belief hierarchy μk of order k uniquely defines
an element

(μ1, μ2, . . . , μk) ∈ Z1 × Z2 × · · · × Zk, (11.27)

where μl is the projection of μk on Zl for every l, 1 ≤ l ≤ k. Denote by Tk ⊆ Z1 ×
Z2 × · · ·Zk the set containing all k-order coherent belief hierarchies and their projections.
Zk is a compact space for every k ∈ N (Theorem 11.10), and therefore the Cartesian
product Z1 × Z2 × · · ·Zk is also compact. We will now show that Tk ⊆ Z1 × Z2 × · · · ×
Zk is a compact set. To see this, note that for every l = 1, 2, . . . , k, the projection ρk,l :
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Zk → Zl is a continuous function; hence Tk , which is the image of the compact set Zk

under the continuous mapping (ρk,1, ρk,2, . . . , ρk,k), is a compact set.
Tychonoff’s Theorem (see, for example, Theorem I.8.5 in Dunford and Schwartz

[1988]) states that the (finite or infinite) Cartesian product of compact spaces is a compact
space in the product topology. It follows that

T̂k := Tk × Zk+1 × Zk+2 × · · · (11.28)

is also a compact set for every k ∈ N. Since T = ⋂
k∈N T̂k we conclude that T , as the

intersection of compact sets, is a compact set in Z1 × Z2 × · · · . �
The topology over T is the collection of open sets in T . In order to study the probability

distributions over T , it is necessary first to define a σ -algebra over T . A natural σ -algebra
is the σ -algebra of the Borel sets: this is the minimal σ -algebra over T that contains all
the open sets in T . The next theorem provides us with another way of defining the type
of a player. It says that the type of a player is a probability distribution over the states of
nature and the types of the other players.

Theorem 11.16 The universal type space T satisfies5

T = 
(S × T n−1). (11.29)

To be more precise, we will prove that there exists a natural homeomorphism6

ϕ : 
(S × T n−1) → T .

Proof: An element in T is a vector of the form (μ1, μ2, . . .), satisfying μk = ρ(μk+1) for
all k ∈ N.

In the proof we will use the following:

S × T n−1 ⊆ S × (Z1 × Z2 × · · · ) × · · · × (Z1 × Z2 × · · · )︸ ︷︷ ︸
n−1 times

= S × (Z1)n−1 × (Z2)n−1 × · · · . (11.30)

Step 1: Definition of the function ϕ : 
(S × T n−1) → T .
We will show that every distribution λ ∈ 
(S × T n−1) uniquely determines an element
(μ1, μ2, . . .) ∈ T . The belief hierarchies of all finite orders are defined as follows. Let μ1

be the marginal distribution of λ over S. For each k ≥ 1, let νk be the marginal distribution
of λ over S × (Zk)n−1 (see Equation (11.30)). Inductively define μk+1 = (μk, νk) for each
k ≥ 1. To show that the resulting sequence (μ1, μ2, . . .) is a type in T , we need to show
that for each k ∈ N, the projection of μk+1 on Zk is μk , which follows from the definitions
of νk+1 and νk and from the fact that T contains only coherent types.

Step 2: The function ϕ is continuous.
The claim obtains because if (λl)l∈N is a sequence of probability distributions defined
over the probability space X × Y converging to λ in the weak-∗ topology, and if μl is the
marginal distribution of λl over X, then the sequence of distributions (μl)l∈N converges

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 The σ -algebra over S × T n−1 is the product σ -algebra.
6 A homeomorphism between two spaces X and Y is a continuous bijection f : X → Y , whose inverse f −1 : Y → X

is also continuous.
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in the weak-∗ topology to the marginal distribution μ of λ over X (see Theorem 2.8 in
Billingsley [1999]).

Step 3: The function ϕ is injective.
We will show that λ can be reconstructed from ϕ(λ), for each λ ∈ 
(S × T n−1).
Denote ϕ(λ) = (μ1, μ2, . . .). Recall that μk+1 = (μk, νk), where νk is a probability
distribution over the space S × (Zk)n−1. Because Zk contains all the hierarchies of
all orders 1, 2, . . . , k, it follows that νk is a probability distribution over the space
S × (Z1)n−1 × (Z2)n−1 × · · · × (Zk−1)n−1. Since μk = (μk−1, νk−1), the marginal distri-
bution of νk over S × (Z1)n−1 × (Z2)n−1 × · · · × (Zk−2)n−1 is the probability distribution
νk−1. From the Kolmogorov Extension Theorem (see, for example, Theorem II.3.4 in
Shiryaev [1995]) it follows that there exists a unique distribution λ∗ over the space
S × (Z1)n−1 × (Z2)n−1 × · · · satisfying the condition that for every k ∈ N, the marginal
distribution of λ∗ over S × (Z1)n−1 × (Z2)n−1 × · · · × (Zk−1)n−1 is νk . Since the marginal
distribution of λ∗ over S × (Z1)n−1 × (Z2)n−1 × · · · × (Zk−1)n−1 equals the marginal dis-
tribution of λ over these spaces, the uniqueness of the extension implies that λ = λ∗.

Step 4: The function ϕ is surjective.
Let (μ1, μ2, . . .) ∈ T be a type. As we saw in Step 3, a type in T defines a unique distri-
bution λ ∈ 
(S × T n−1). The reader is asked to ascertain that ϕ(λ) equals (μ1, μ2, . . .).

Step 5: The function ϕ is a homeomorphism.
Every continuous, injective, and surjective function ϕ from a compact space to a Hausdorff
space7 is a homeomorphism (see Claim I.5.8 in Dunford and Schwartz [1988]). �

11.3 Definition of the universal belief space
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 11.17 The universal belief space is

� = �(N, S) = S × T n. (11.31)

By definition, the universal belief space is determined by the set of states of nature and
by the number of players. To understand the meaning of Definition 11.17, write Equation
(11.31) in the following form:

� = S ×
(
×
i∈N

Ti

)
, (11.32)

where Ti = T for all i ∈ N . The space Ti is called player i’s type space. It is the same
space for all the players, and is the universal type space. An element of � is a state of the
world, and denoted by ω to distinguish it from the states of nature, which are elements

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 A topological space is a Hausdorff space if (a) every set containing a single point is closed, and (b) for every pair of
distinct points there exist two disjoint and open sets, each of which contains one point but not the other. The space
T is a Hausdorff space (Exercise 11.11).
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of S. A state of the world is therefore a vector

ω = (s(ω), t1(ω), t2(ω), . . . , tn(ω)). (11.33)

The first coordinate s(ω) is the state of nature at the state of the world ω, and ti(ω) is player
i’s type at this state of the world. In other words, a state of the world is characterized by
the state of nature s(ω), and the vector of types of the players, (ti(ω))i∈N , at that state of
the world. We will assume that all a player knows is his own type. While in the Aumann
and Harsanyi models the belief hierarchies of the players can be computed at every state
of the world, in the universal belief space these hierarchies are part of the data defining
the state of the world: a state of the world consists of a state of nature and the players’
belief hierarchies.

Example 11.14 (Continued ) We have seen that when N = {I} and S = {s1, s2}, the universal type space T

is homeomorphic to the interval [0, 1]. In this case, the universal belief space is � = �({I}, S) =
S × [0, 1]. For every p ∈ [0, 1], at the state of the world ω = (s1, p), the state of nature is s1, and
the player ascribes probability p to the state of nature being s1, and probability 1 − p to the state
of nature being s2. �

Remark 11.18 As we saw in Theorem 11.16, a type ti(ω) ∈ T = 
(S × T n−1) is a prob-
ability distribution over the vectors of the state of nature and the list of the n − 1 types
of the other players. Since � = (S × (×j �=i Tj )) × Ti , and because at every state of the
world ω every player i knows his own type ti(ω), we can regard ti(ω) also as a probability
distribution over �, where the marginal distribution over Ti is the degenerate distribu-
tion at the point {ti(ω)}. From here on, we will assume that ti(ω) is indeed a probability
distribution over �. �

Recall that a belief space of the set of players N on the set of states of nature S is an
ordered vector � = (Y,Y, s, (πi)i∈N ), where (Y,Y) is a measure space of states of the
world, s : Y → S is a measurable function associating a state of nature with every state
of the world, and πi : Y → 
(Y ) is a function associating a probability distribution over
Y with every state of the world and every player i ∈ N , which satisfies the conditions of
coherency and measurability. The next two theorems justify the name “universal belief
space” that we gave to �: Theorem 11.19 states that � naturally defines a belief space,
and Theorem 11.20 states that every belief space is a belief subspace of �. It follows that
the space �(N, S) contains all the possible situations of incomplete information of a set
of players N on a set of states of nature S.

Denote by Y∗ the product σ -algebra over the set � defined by Equation (11.32).

Theorem 11.19 The ordered vector �∗ = (�,Y∗, s, (ti)i∈N ) is a belief space, where �

is the universal belief space and s and (ti)i∈N are projections on the n + 1 coordinates of
the state of the world (see Equation (11.33)).

Proof: We will show that all the conditions defining a belief space are satisfied. The
space (�,Y∗) is a measurable space. Since Y∗ is a σ -algebra, the functions s and ti are
measurable functions.
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We will next show that the functions (ti)i∈N satisfy the coherency condition (see Def-
inition 10.1 on page 387). As stated in Remark 11.18, for every player i ∈ N and every
ω ∈ �, the type ti(ω) is a probability distribution over �. Since ti is a measurable function,
the set {ω′ ∈ � : ti(ω′) = ti(ω)} is measurable, and by definition, the probability distri-
bution ti(ω) ascribes probability 1 to this set, showing that the coherency condition is
satisfied.

Finally, we check that for every i ∈ N , the function ti satisfies the measurability condi-
tion (see Definition 10.1 on page 387). To do so, we need to show that for every measurable
set E in �, the function ti(E | ·) : � → [0, 1] is measurable. We prove this by showing
that for every x ∈ [0, 1], the set Gx = {ω ∈ � : ti(E | ω) > x} is measurable. By the
definition of the weak-∗ topology, for every continuous function f : � → R and every
x ∈ [0, 1], the set

Af,x :=
{
ω ∈ � :

∫
�

f (ω′)dti(ω′ | ω) > x

}
(11.34)

is measurable. Let F be the family of continuous functions f : � → (0,∞) satisfying
the condition f (ω) > 1 for all ω ∈ E. Let F0 be a countable dense subset of F (why does
such a set exist?). The intersection ∩f∈F0Af,x , as the intersection of a countable number
of measurable sets, is measurable, and is equal to Gx (why?). �

Theorem 11.20 Every belief space � of a set of players N on a set of states of nature
S is a belief subspace (see Definition 10.21 on page 400) of the universal belief space
�(N, S) defined in Theorem 11.19.

To be precise, every belief space � = (Y,Y, s, (πi)i∈N ) is homomorphic to a belief
subspace of the belief space �∗, in the following sense: the belief hierarchy of every
player i at every state of the world ω ∈ Y equals his belief hierarchy at the state of the
world in �∗ corresponding to ω, under the homomorphism.

Proof: Let � = (Y,Y, s, (πi)i∈N ) be a belief space. As we stated on page 390, for every
state of the world ω ∈ Y and every player i ∈ N , we can associate an infinite belief
hierarchy that describes the beliefs of player i at the state of the world ω. Denote this belief
hierarchy by ti(ω). For each ω ∈ Y , the vector ϕ(ω) := (s(ω), t1(ω), t2(ω), . . . , tn(ω)) is a
state of the world in the universal belief space. Note that if there are two states of the world
ω, ω′ ∈ Y satisfying the conditions that the belief hierarchy of every player i in ω equals
his belief hierarchy in ω′, and if these two states of the world are associated with the same
state of nature, then ϕ(ω) = ϕ(ω′) (this happens, for example, in the second belief space
in Example 10.13 on page 394). The definition implies that the belief hierarchy of every
player i at every state of the world ω ∈ Y equals his belief hierarchy in ϕ(ω). Consider
the set

Ŷ := {ϕ(ω) : ω ∈ Y } ⊆ �. (11.35)

It is left to the reader to check that the set Ŷ is a belief subspace of �∗ (Exercise 11.10).
�
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Theorem 11.20 implies, for example, that in each of the examples in Section 10.3
(page 394), the belief space is a belief subspace of an appropriate universal belief space.
For example, each of the belief spaces described in Examples 10.17 (page 396), 10.18
(page 398) and 10.19 (page 399), is a subspace of the universal belief space �(N, S),
where N = {I, II} and S = {s11, s12, s21, s22}.

11.4 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The universal belief space was first constructed and studied by Mertens and Zamir [1985].
Heifetz and Samet [1998] discuss a construction of the universal belief space using
measure-theoretical tools, without any use of topological structures. Aumann [1999]
constructs the universal belief space using a semantic approach. The reader interested in
the weak-∗ topology is directed to Dunford and Schwartz [1988] (Chapter V.12), Conway
[1990], or Billingsley [1999].

The authors thank Yaron Azrieli, Aviad Heifetz, Dov Samet, Boaz Klartag, John Levy,
and Eran Shmaya for their comments on this chapter.

11.5 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11.1 Joshua and his army are planning to circle Jericho seven times. Will the wall come
tumbling down? The king of Jericho reports that:

� I ascribe probability 0.8 to “the wall of the city will fall, and Joshua ascribes
probability 0.6 to the wall falling.”

� I ascribe probability 0.2 to “the wall of the city will not fall, and Joshua ascribes
probability 0.5 to the wall falling.”

Answer the following questions:

(a) What is the set of states of nature corresponding to the above description.
(b) What is the king’s first-order belief? What is his second-order belief?
(c) Can Joshua’s first-order belief be ascertained from the above description?

Justify your answer.

11.2 Construct a belief space of the set of players N = {Don, Phil} on the set of states of
nature S = {sb, sg, sp, sr, sw} describing the situation in Example 11.9 (page 446),
and indicate at which state of the world Phil’s belief hierarchy of order 3 is the
hierarchy described in the example. There may be more than one correct answer.

11.3 Prove that Zk ⊆ Xk for each k ≥ 1: every coherent belief hierarchy of order
k (Definition 11.6 on page 445) is a belief hierarchy of order k (Definition 11.3 on
page 442).
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11.4 Consider the following belief space, where the set of players is N = {I, II}, and
the set of states of nature is S = {s1, s2}:

State of the world s(·) πI(·) πII(·)
ω1 s1 [ 1

2 (ω1), 1
2 (ω2)] [1(ω1)]

ω2 s2 [ 1
2 (ω1), 1

2 (ω2)] [ 3
4 (ω2), 1

4 (ω3)]

ω3 s1 [1(ω3)] [ 3
4 (ω2), 1

4 (ω3)]

Write out the belief hierarchies of orders 1, 2, and 3 of Player I, at each state of the
world.

11.5 Roger reports:

� I ascribe probability 0.3 to “the Philadelphia Phillies will win the World Series
next year, Chris ascribes probability 0.4 to their winning the World Series and
to me ascribing probability 0.4 that they will win the World Series, and Chris
ascribes probability 0.6 to the Philadelphia Phillies not winning the World Series
and to me ascribing probability 0.2 that they will win the World Series.”

� I ascribe probability 0.2 to “the Philadelphia Phillies will win the World Series
next year, Chris ascribes probability 0.4 to their winning the World Series and
to me ascribing probability 0.5 that they will win the World Series, and Chris
ascribes probability 0.6 to the Philadelphia Phillies not winning the World Series
and to me ascribing probability 0.8 that they will win the World Series.”

� I ascribe probability 0.4 to “the Philadelphia Phillies will win the World Series
next year, Chris ascribes probability 0.2 to their winning the World Series and
to me ascribing probability 0.1 that they will win the World Series, and Chris
ascribes probability 0.8 to the Philadelphia Phillies not winning the World Series
and to me ascribing probability 0.3 that they will win the World Series.”

� I ascribe probability 0.1 to “the Philadelphia Phillies will win the World Series
next year, Chris ascribes probability 0.6 to their winning the World Series and
to me ascribing probability 0.4 that they will win the World Series, and Chris
ascribes probability 0.4 to the Philadelphia Phillies not winning the World Series
and to me ascribing probability 0.7 that they will win the World Series.”

Answer the following questions:

(a) Construct a space of states of nature corresponding to the above description.
(b) What is Roger’s first-order belief? What is his second-order belief? What is his

third-order belief?

11.6 Prove Theorem 11.7: let μk = (μ1; ν1, ν2, . . . , νk−1) ∈ Zk be a coherent belief
hierarchy of order k and let l1, l2 be two integers such that 1 ≤ l1 ≤ l2 ≤ k. Then:

(a) The marginal distribution of ν1 over S equals μ1.
(b) The marginal distribution of νl2 over S × (Zl1 )n−1 is νl1 .

11.7 Let s0 ∈ S be a state of nature. Prove that the following sentence defines a coherent
belief hierarchy of order k: “I ascribe probability 1 to the state of nature being s0,
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I ascribe probability 1 to all the other players ascribing probability 1 to the state
of nature being s0, I ascribe probability 1 to each of the other players ascribing
probability 1 to every other player ascribing probability 1 to the state of nature
being s0, and so on, to level k.”

11.8 There are two players, N = {I, II}, and the space of states of nature is S = {s1, s2}.
Ascertain for each of the following belief hierarchies of Player I whether or not it
is a coherent belief hierarchy (of some order). Justify your answer.

(a) I ascribe probability 1
9 to the state of nature being s1.

(b) � I ascribe probability 1
2 to the state of nature being s1.

� I also ascribe probability 2
3 to the state of nature being s1 and to me ascribing

probability 3
4 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1 and to me ascribing

probability 0 to the state of nature being s1.
(c) � I ascribe probability 1

2 to the state of nature being s1.
� I also ascribe probability 1

2 to the state of nature being s1 and me ascribing
probability 1

3 to the state of nature being s1.
� I also ascribe probability 1

2 to the state of nature being s1 and me ascribing
probability 2

3 to the state of nature being s1.
(d) � I ascribe probability 1

2 to the state of nature being s1.
� I also ascribe probability 2

3 to the state of nature being s1 and to Player II
ascribing probability 3

4 to the state of nature being s1.
� I also ascribe probability 1

3 to the state of nature being s1 and to Player II
ascribing probability 0 to the state of nature being s1.

(e) � I ascribe probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1 and to

Player II ascribing probability 1
4 to the state of nature being s1.

� I also ascribe probability 1
6 to the state of nature being s1 and to Player II

ascribing probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2 and to Player II

ascribing probability 2
3 to the state of nature being s1.

(f) � I ascribe probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1 and to

Player II ascribing probability 1
4 to the state of nature being s1.

� I also ascribe probability 1
6 to the state of nature being s1 and to Player II

ascribing probability 1
4 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2 and to Player II

ascribing probability 2
3 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s2 and to Player II

ascribing probability 1
4 to the state of nature being s1, and to me ascribing

probability 2
5 to the state of nature being s1, and to Player II ascribing

probability 3
4 to the state of nature being s2, and to me ascribing probability

4
5 to the state of nature being s1.
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� I also ascribe probability 1
6 to the state of nature being s1 and to Player II

ascribing probability 1
4 to the state of nature being s1, and to me ascribing

probability 3
5 to the state of nature being s1, and to Player II ascribing

probability 3
4 to the state of nature being s2, and to me ascribing probability

3
7 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2 and to Player II

ascribing probability 1
4 to the state of nature being s1, and to me ascribing

probability 4
5 to the state of nature being s1, and to Player II ascribing

probability 3
4 to the state of nature being s2, and to me ascribing probability

2
5 to the state of nature being s1.

(g) � I ascribe probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1 and to Player II

ascribing probability 1
4 to the state of nature being s1.

� I also ascribe probability 1
6 to the state of nature being s1 and to Player

II ascribing probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s1 and to Player II

ascribing probability 2
3 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s1 and to Player II

ascribing probability 1
3 to the state of nature being s1, and to me ascribing

probability 2
5 to the state of nature being s1, and to Player II ascribing

probability 2
3 to the state of nature being s2, and to me ascribing probability

4
5 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2 and to Player II

ascribing probability 2
3 to the state of nature being s1, and to me ascribing

probability 4
5 to the state of nature being s1, and to Player II ascribing

probability 1
3 to the state of nature being s2, and to me ascribing probability

1
5 to the state of nature being s1.

(h) � I ascribe probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1 and to Player II

ascribing probability 1
4 to the state of nature being s1.

� I also ascribe probability 1
6 to the state of nature being s1 and to Player

II ascribing probability 1
2 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2 and to Player II

ascribing probability 2
3 to the state of nature being s1.

� I also ascribe probability 1
3 to the state of nature being s1, and to Player II

ascribing probability 1
4 to the state of nature being s1 and to me ascribing

probability 2
5 to the state of nature being s1, and to Player II ascribing

probability 3
4 to the state of nature being s2 and to me ascribing probability

4
5 to the state of nature being s1.

� I also ascribe probability 1
6 to the state of nature being s1, and to Player II

ascribing probability 1
2 to the state of nature being s1 and to me ascribing

probability 4
5 to the state of nature being s1, and to Player II ascribing
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probability 1
2 to the state of nature being s2 and to me ascribing probability

3
5 to the state of nature being s1.

� I also ascribe probability 1
2 to the state of nature being s2, and to Player II

ascribing probability 2
3 to the state of nature being s1 and to me ascribing

probability 2
5 to the state of nature being s1, and to Player II ascribing

probability 1
3 to the state of nature being s2 and to me ascribing probability

1
5 to the state of nature being s1.

11.9 There is a single player N = {I} and the set of states of nature is a finite set S.
What is the universal type space in this case? What is the universal belief space
�(N, S)?

11.10 Complete the proof of Theorem 11.20 on page 455: prove that the set Ŷ that was
defined in the proof of the theorem is a belief subspace of �∗.

11.11 Prove that the universal type space T is a Hausdorff space.



12 Auctions

Chapter summary
In this chapter we present the theory of auctions, which is considered to be one of the
most successful applications of game theory, and in particular of games with incomplete
information. We mainly study symmetric auctions with independent private values and
risk-neutral buyers. An auction is presented as a game with incomplete information and
the main interest is in the (Bayesian) equilibrium of this game, that is, in the bidding
strategies of the buyers and in the expected revenue of the seller. A hallmark of this
theory is the Revenue Equivalence Theorem, which states that in any equilibrium of an
auction method in which (a) the winner is the buyer with the highest valuation for the
auctioned item, and (b) any buyer who assigns private value 0 to the auctioned item
pays nothing, the expected revenue of the seller is independent of the auction method.
This theorem implies that a wide range of auction methods yield the seller the same
expected revenue. We also prove that the expected revenue to the seller increases if all
buyers are risk averse, and it decreases if all buyers are risk seeking.

The theory is then extended to selling mechanisms. These are abstract mechanisms to
sell items to buyers that include, e.g., post-auction bargaining between the seller and
the buyers who placed the highest bids. We prove the revelation principle for selling
mechanisms, which allows us to consider only a simple class of mechanisms, called
incentive-compatible direct selling mechanisms. We then prove the Revenue Equivalence
Theorem for selling mechanisms, and identify the selling mechanism that yields the
seller the highest expected profit. This turns out to be a sealed-bid second-price auction
with a reserve price.

Auctions and tenders are mechanisms for the buying and selling of objects by way of
bids submitted by potential buyers, with the auctioned object sold to the highest bidder.
Auctions have been known since antiquity. The earliest mention of auctions appears in
the fifth century BCE, in the writings of Herodotus (Book One, Clio 194):

When they arrive at Babylon in their voyage and have disposed of their cargo, they sell by auction
the ribs of the boat and all the straw.

Herodotus also tells of a Babylonian custom of selling young women by public auction
to men seeking wives (Book One, Clio 196). In 193 CE, the Roman emperor Pertinax was
assassinated by his Praetorian Guard. In an attempt to win the support of the guard and
be crowned the next emperor, Titus Flavius Sulpicianus offered to pay 20,000 sesterces
to each member of the guard. Upon hearing of Sulpicianus’ offer, Marcus Severus Didius
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Julianus countered with an offer of 25,000 sesterces to each member of the Praetorian
guard, and ascended to the throne; in effect, the Roman Empire had been auctioned to
the highest bidder. Julianus did not live long to enjoy the prize he had won; within three
months, three other generals laid claim to the crown, and Julianus was beheaded.

Auctions and tenders are ubiquitous nowadays. A very partial list of examples of objects
sold in this way includes Treasury bills, mining rights, objects of fine art, bottles of wine,
and repossessed houses. A major milestone in the history of auctions was achieved in the
1995 auctioning of the rights to radio-spectrum frequencies in the United States, which
resulted in the federal government pocketing an unprecedented profit of 8.7 billion dollars.

The main reasons for preferring auctions and tenders to other sales mechanisms are the
speed with which deals are concluded, the revelation of information achieved by these
mechanisms, and the prevention of improper conduct on the part of sales agents and
purchasers (an especially important reason when the seller is a public body).

As we will show in this chapter, an auction is a special case of a game with incomplete
information. Many of the games we encounter in daily life are highly complex. Even when
the theory assures us that these games have equilibria, in most cases the equilibria are
hard to compute, and it is therefore difficult to predict what buyers will do, or to advise
them on the way to play. This is also true, in general, with respect to auctions. However,
as we will show, under certain assumptions, it is possible to compute the equilibrium
strategies in auctions, to describe how the equilibria will change if the parameters of the
game are changed (e.g., the utility functions of the buyers), and to compare the expected
outcomes (for both buyers and seller) when the rules of the game (or the auction method)
are changed. The theory developed in this chapter provides insights useful for participating
in auctions and designing auctions.

The theory of auctions is one of the most successful application of game theory, and in
particular of games with incomplete information. The theory is not simple, but it is very
elegant. The combination of mathematical challenge with clear applicability makes the
theory of auctions a central element of modern economic theory.

In the literature auctions are classified in several ways:

� Open-bid or sealed-bid auction. In an open-bid auction, the buyers hear or see each
other in real time, as bids are made, and are able immediately to offer counter bids. In a
sealed-bid auction, all the buyers submit their bids simultaneously, and no buyer knows
the offers made by the other buyers.

Art objects are usually sold in open-bid auctions. Most public auctions conducted on
the Web, and many large state-run auctions, such as the auctioning of radio-spectrum
frequencies, are also open-bid auctions. In contrast, tenders for government contracts,
and auctions for the sale of assets taken into receivership after a corporate bankruptcy,
are usually conducted in sealed-bid auctions.

� Private value or common value. A buyer’s assessment of the worth of an object offered
for sale is called a value. The literature on auction theory distinguishes between private
values and common values. When the value of an object for a buyer is a private value,
it is independent of the value as assessed by the other buyers. A private value is always
known ahead of time to the buyer, with no uncertainty.
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When the value is a common value, it is identical for all the buyers, but is unknown.
This occurs, for example, in tenders for oil-drilling rights, where there is uncertainty
regarding the amount of oil that can be extracted from the oil field, and in ten-
ders for the real-estate development rights, where there is uncertainty regarding the
potential demand for apartments, and the final price at which the apartments will be
sold.

Most auctions share both characteristics to a certain extent: the value of any object,
whether it is a valuable work of art or a drilling project, is never known with certainty.
This unknown value is common among the buyers when measured in dollars and cents,
but there is also a private component, determined by personal taste, financial resources
and the future plans of the buyer. When the object offered for sale is, for example, a
real-estate development or oil-drilling rights, the expected financial revenue that the
project will yield is the common value component. When the object is a Treasury
bond or shares in a company, the difference between the sale price and the purchase
price is the common value component. This component is common to all the buyers,
but is unknown to them, and each buyer may have different information (or different
assessments) regarding this value. The financial abilities of the buyer, his future plans,
and other possibilities available to him, should he fail to win the auction, also affect the
value of an object to the buyer. These factors differ from one buyer to another, and what
influences one buyer usually has no effect on another. This is the private component of
the value of an object for a buyer.

The literature includes general auction models that use general valuation functions,
and take into account the possibility that the private information of the buyers regarding
the common but unknown value of an object may be interdependent (see Milgrom and
Weber, [1982]).

� Selling a single object or several objects. Auctions differ with respect to the number
of objects offered. Sometimes only one object is offered, such as a Chagall painting, a
license to operate a television station for five years, or a letter from Marilyn Monroe
to Elvis Presley. Sometimes, several copies of the same object are offered, such as
batches of Treasury bonds, or shares in a company listed on the stock exchange. There
are also cases in which several objects with different characteristics are offered at
once. For example, in recent years some countries have conducted auctions of regional
communication licenses (covering mobile telephone rights, broadcast radio rights, and
so on), with licenses for different regions offered simultaneously.

In this chapter, we will focus on the case in which the buyers in an auction have
independent private values, and only one object is offered for sale. This is the simplest
case from the mathematical perspective. It is also historically the first case that was
studied in the literature. Despite the simplicity of this model, the mathematical analysis is
not trivial and the results are both elegant and applicable.

We close this introduction to the chapter with a remark on terminology. In previous
chapters, the term “payoff” meant the expected payoff of a buyer. In this chapter, we will
use the term “payment” to refer to the amount of money a buyer pays to the seller, and the
term “profit” to denote the expected profit of the buyer, which is defined as the difference
between the buyer’s expected utility from receiving the object (the probability that he will
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win the auction times the utility he receives from winning the object) and the expected
payment the buyer pays the seller.

12.1 Notation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The participants in the auctions will be called buyers. For every random variable X, denote
its cumulative distribution function by FX. That is,

FX(c) = P(X ≤ c), ∀c ∈ R. (12.1)

If X is a continuous random variable, denote its density function by fX. In this case,

FX(c) =
∫ c

−∞
fX(x)dx, ∀c ∈ R. (12.2)

12.2 Common auction methods
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following list details the most common auction methods:

1. Open-bid ascending auction (English auction). This is the most common public
auction. It is characterized by an auctioneer who publicly declares the price of the
object offered for sale. The opening price is low, and as long as there are at least
two buyers willing to pay the declared price, the auctioneer raises the price (either in
discrete jumps, or in a continuous manner using a clock). Each buyer raises a hand as
long as he is willing to pay the last price that the auctioneer has declared. The auction
ends when all hands except one have been lowered, and the object is sold to the last
buyer whose hand is still raised, at the last price declared by the auctioneer. If the
auction ends in a draw (i.e., the last two or more buyers whose hands were raised drop
out of the auction at the same time), a previously agreed rule (such as tossing a coin)
is employed to determine who wins the object, which is then sold to the winner at the
price that was current when they lowered their hands.

Web-based auctions and auctions of works of art (such as those conducted at
Sotheby’s and Christie’s), typically use this method.

2. Open-bid descending auction (Dutch auction). A Dutch auction operates in the
reverse direction of the English auction. In this method, the auctioneer begins by
declaring a very high price, higher than any buyer could be expected to pay. As long
as no buyer is willing to pay the last declared price, the auctioneer lowers the declared
price (either in discrete jumps or in a continuous manner using a clock), up to the
point at which at least one buyer is willing to pay the declared price and indicates his
readiness by raising his hand or pressing a button to stop the clock. If the price drops
below a previously declared minimum, the auction is stopped, and the object on offer
is not sold. Similarly to the English auction, a previously agreed rule is employed to
determine who wins the auction if two or more buyers stop the clock at the same time.

The flower auction at the Aalsmeer Flower Exchange, near Amsterdam, is conducted
using this method.
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3. Sealed-bid first-price auction. In this method, every buyer in the auction submits a
sealed envelope containing the price he is willing to pay for the offered object. After
all buyers have submitted their offers, the auctioneer opens the envelopes and reads
the offers they contain. The buyer who has submitted the highest bid wins the offered
object, and pays the price that he has bid. A previously agreed rule determines how to
resolve draws.

4. Sealed-bid second-price auction (Vickery auction). The sealed-bid second-price
auction method is similar to the first-price sealed-bid auction method, except that the
winner of the auction, i.e., the buyer who submitted the highest bid, pays the second-
highest price among the bid prices for the offered object. A previously agreed-upon
rule determines the winner in case of a draw, with the winner in this case paying what
he bid (which is, in the case of a draw, also the second-highest bid).

We mention here in passing several sealed-bid auction methods that, despite being
important, will not be studied in detail in this book. In each of these methods, the winner
of the auction is the buyer who has submitted the highest bid (if several buyers have
submitted the same highest bid, the winner is determined by a previously agreed-upon
rule).

1. A sealed-bid auction with a reserve price is a sealed-bid auction in which every bid
that is lower than a minimal price, as determined by the seller, is disqualified. In a
sealed-bid first-price auction with a reserve price, the winner of the auction pays the
highest bid for the object; in a sealed-bid second-price auction with a reserve price, the
winner pays either the second-highest bid for the object or the reserve price, whichever
is higher.

2. An auction with an entry fee is a sealed-bid auction in which every buyer must pay
an entry fee for participating in the auction, whether or not he wins the auction. The
winner of the auction also pays for the object he has won, in addition to the entry fee.
In a sealed-bid first-price auction with an entry fee, the winner of the auction pays the
highest bid for the object; in a sealed-bid second-price auction with an entry fee, the
winner pays the second-highest bid for the object. In an auction with an entry fee, a
buyer’s strategy is composed of two components: whether or not to participate in the
auction (and pay the entry fee), and if so, how high a bid to submit.

3. An all-pay auction is a sealed- or open-bid auction in which every buyer pays the
amount of money he has bid, whether or not he has won the object for sale. All-pay
auctions are appropriate models for competitions, such as arms races between countries,
or research and development competitions between companies racing to be the first to
market with a new innovation. In these cases, all the buyers in the race, or competition,
end up paying the full amounts of their investments, whether or not they win.

12.3 Definition of a sealed-bid auction with private values
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In a sealed-bid auction, every buyer submits a bid, and the rules of the auction determine
who wins the object for sale, and the amounts of money that the buyers (the winner, and



466 Auctions

perhaps also the other buyers) must pay. The winner is usually the highest bidder, but it is
possible to define auctions in which the winner is not necessarily the highest bidder.

Definition 12.1 A sealed-bid auction (with independent private values) is a vector
(N, (Vi , Fi)i∈N, p, C), where:

� N = {1, 2, . . . , n} is the set of buyers.
� Vi ⊆ R is the set of possible private values of buyer i, for each i ∈ N . Denote by

VN := V1 × V2 × · · · × Vn the set of vectors of private value.
� For each buyer i ∈ N there is a cumulative distribution function Fi over his set of

private values Vi .
� p : [0,∞)N → 
(N) is a function associating each vector of bids b ∈ [0,∞)N with a

distribution according to which the buyer who wins the auctioned object is identified.1

� C : N × [0,∞)N → RN is a function determining the payment each buyer pays, for
each vector of bids b ∈ [0,∞)N , depending on which buyer i∗ ∈ N is the winner.

A sealed-bid auction is conducted as follows:

� The private value vi of each buyer i is chosen randomly from the set Vi , according to
the cumulative distribution function Fi .

� Every buyer i learns his private value vi , but not the private values of the other buyers.
� Every buyer i submits a bid bi ∈ [0,∞) (depending on his private value vi).
� The buyer who wins the auctioned object, i∗, is chosen according to the distribution
p(b1, b2, . . . , bn); the probability that buyer i wins the object is pi(b1, b2, . . . , bn).

� Every buyer i pays the sum Ci(i∗; b1, b2, . . . , bn).

For simplicity we will sometimes denote an auction by (p, C) instead of
(N, (Fi)i∈N, p, C). Note several points relating to this definition:

� The private values of the buyers are independent, and therefore the vector of private
values (v1, v2, . . . , vn) is drawn according to a product distribution, whose cumulative
distribution function is FN := F1 × F2 × · · · × Fn. A more general model would take
into account the possibility of general joint distributions, thereby enabling the modeling
of situations of interdependency between the private values of different buyers.

� In most of the auctions with which we are familiar, the winner of the auction is the
highest bidder. In other words, if there is a buyer i such that bi > maxj �=i bj , then
p(b1, b2, . . . , bn) is a degenerate distribution ascribing probability 1 to buyer i. If
two (or more) buyers submit the same highest bid, a previously agreed-upon rule is
implemented to determine the winner. That rule may be deterministic (for example,
among the buyers who have submitted the highest bid, the winner is the buyer who
submitted his bid first), or probabilistic (for example, the winner may be determined by
the toss of a fair coin).

� In the most familiar payment functions, the winner pays either the highest, or the
second-highest bid for the auctioned object. The payment function in the definition of
a sealed-bid auction is more general, and enables the modeling of entry-fee favoritism
(e.g., incentives for certain sectors), and all-pay auctions. It also enables the modeling

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Recall that 
(N ) := {x ∈ [0, 1]N :
∑

i∈N xi = 1} is the set of all probability distributions over the set of buyers
N = {1, 2, . . . , n}.



467 12.3 Definition of a sealed-bid auction

of auctions with less-familiar rules, such as third-price auctions, in which the winner
pays the third-highest bid.

The private value of buyer i is a random variable whose cumulative distribution function
is Fi . This random value is denoted by Vi . A sealed-bid auction can be presented as a
Harsanyi game with incomplete information (see Section 9.4) in the following way:

� The set of players is the set of buyers N = {1, 2, . . . , n}.
� Player i’s set of types is Vi .
� The distribution over the set of type vectors is a product distribution with cumulative

distribution function FN = F1 × F2 × · · · × Fn.
� For each type vector v ∈ VN , the state of the world is the state game sv, where buyer i’s

set of actions is [0,∞) and for every action vector x ∈ [0,∞)N , buyer i’s profit is

pi(x)vi −
∑
i∗∈N

pi∗ (x)Ci(i∗; x). (12.3)

In words, if buyer i is the winner, he receives vi (his private value for the object), and
he pays Ci(i∗; x) in any event (whether or not he is the winner), where i∗ is the winning
buyer.

A formal definition of an open-bid auction depends on the specific method used in
conducting the auction, and may be very complex. For example, in the most common
open-bid auction method, the English auction, a buyer’s decision on whether or not to
stop bidding at a certain moment depends on the identities of the other buyers, both those
who have already quit the auction, and those who are still bidding, and the prices at which
those who have already quit chose to stop bidding. We will not present a formal definition
of an open-bid auction in this book.

Example 12.2 Sealed-bid second-price auction In a sealed-bid second-price auction, the winner is the

highest bidder. If several buyers have submitted the highest bid then each of them has the same
probability of winning: denote by N (x) = {i ∈ N : xi = maxj∈N xj } the set of buyers who have
submitted the highest bid, and by i∗ the buyer who wins the auctioned object. Then:

pi(x) =
{

0 i �∈ N (x),
1

|N (x)| i ∈ N (x), (12.4)

Ci (i∗; x) =
{

0 i �= i∗,
maxj �=i xj i = i∗.

(12.5)

Note that if at least two buyers have submitted the same highest bid, the auctioned object is sold at
this highest bid; that is, if |N (x)| ≥ 2, then Ci∗(i∗; x) = maxj∈N xj . �

A pure strategy of buyer i in a sealed-bid auction is a measurable function2

βi : [0,∞) → [0,∞). (12.6)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Recall that for every subset X ⊆ R, a real-valued function f : X → [0,∞) is measurable if for each number
y ∈ [0,∞), the set f−1([0, y]) = {x ∈ X : f (x) ≤ y} is a measurable set.
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If buyer i uses pure strategy βi , then when his type is vi he bids βi(vi). If the buyers use
the strategy vector β = (βi)i∈N , buyer i’s expected profit is

ui(β)

=
∫

VN

(
pi(β1(x1), . . . , βn(xn))vi −

∑
i∗∈N

pi∗(x)Ci(i∗; β1(x1), . . . , βn(xn))

)
dF N (x).

(12.7)

The next theorem points out a connection between two of the auction methods described
above.

Theorem 12.3 The open-bid descending auction method is equivalent to the sealed-bid
first-price auction method: both methods describe the same strategic-form game, with the
same strategy sets and the same payoff functions.

Proof: The set of (pure) strategies in a sealed-bid first-price auction, for each buyer i,
is the set of all measurable functions βi : Vi → [0,∞). This set is also the set of buyer
i’s strategies in an open descending auction. Indeed, a strategy of buyer i is a function
detailing how he should play at each of his information sets. An open descending auction
ends when the clock is stopped. Hence his only information consists of the current price.
A strategy of buyer i then only needs to determine, for each of his possible private values,
the announced price at which he will stop the clock (if no other buyer has stopped the
clock before that price has been announced). In other words, every strategy of buyer i is
a measurable function βi : [0,∞) → [0,∞).

In both auctions, every strategy vector β = (βi)i∈N leads to the same outcome in both
auctions: in a sealed-bid first-price auction, the winning buyer is the one who submits the
highest bid, maxi∈N βi(vi), and the price he pays for the auctioned object is his bid. In an
open descending auction, the winning buyer is the one who stops the clock at the price
maxi∈N βi(vi), and the price he pays for the auctioned object is that price. It follows that
both types of auction correspond to the same strategic-form game. �

Remark 12.4 Note that this equivalence obtains without any assumption on the informa-
tion that each buyer has regarding the other buyers, their preferences, and their identities,
or even the number of other buyers. Similarly, it does not depend on the assumption that
the private values of the buyers are independent. �

We next present additional relations between auction methods based on the concept of
equilibrium.

12.4 Equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Having defined games, buyers, strategies, and payoffs, we next introduce the concept
of equilibrium. In actual fact, since an auction is a game with incomplete information
(because the type of each buyer, which is his private value, is known to him but not to the
other buyers), the concept of equilibrium introduced here is that of Bayesian equilibrium
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(see Definition 9.49 on page 354), corresponding to the interim stage, when each buyer
knows his private value.

Let β = (β1, β2, . . . , βn) be a strategy vector. Denote by

β−i(x−i) := (βj (xj ))j �=i (12.8)

the vector of bids of the buyers other than i, given their types and their strategies. Denote
by ui(β; vi) buyer i’s expected profit under the strategy vector β, when his private value
is vi ,

ui(β; vi) : =
∫

V−i

(pi(βi(vi), β−i(x−i))vi

−
∑
i∗∈N

pi∗(βi(vi), β−i(x−i))Ci(i∗; βi(vi), β−i(x−i))) dF−i(x−i). (12.9)

Here, V−i := ×j �=iVj is the space of the vectors of the private values of all the buyers
except for buyer i, and F−i := ×j �=iFj is the cumulative distribution function of the
multidimensional random variable V−i = (Vj )j �=i .

Note that the expected profit ui(β; vi) depends on βi , buyer i’s strategy, only via βi(vi),
the bid of buyer i with private value vi . We denote by ui(bi, β−i ; vi) the expected profit
of buyer i with private value vi when he submits bid bi and the other buyers use strategy
vector β−i .

Definition 12.5 A strategy vector β∗ is an equilibrium (or a Bayesian equilibrium) if for
every buyer i ∈ N and every private value vi ∈ Vi

ui(β∗; vi) ≥ ui(bi, β
∗
−i ; vi), ∀bi ∈ [0,∞). (12.10)

In other words, β∗ is an equilibrium if no buyer i with private value vi can profit by
deviating from his equilibrium bid β∗

i (vi) to another bid bi .

Remark 12.6 Analyzing auctions using mixed strategies is beyond the scope of this book.
In the auctions covered in this chapter, the distribution of the private value of each buyer
is continuous, and we will show that under appropriate assumptions, equilibria in pure
strategies exist in these auctions. Note that if β∗ is an equilibrium in pure strategies, then
no buyer can increase his payoff by deviating to a mixed strategy. To see this, recall that a
mixed strategy is a distribution over pure strategies. If the buyer could increase his payoff
by deviating to a mixed strategy, then he could do the same by deviating to one of the pure
strategies in the support of the mixed strategy. This shows that every equilibrium in pure
strategies is also an equilibrium in mixed strategies. In general, however, it is possible
for all the equilibria in an auction to be equilibria in completely mixed strategies (see for
example Vickrey [1961]). �

In Section 4.6 (page 91) we considered sealed-bid second-price auctions, and proved
the following result (see Theorem 4.15 on page 92).

Theorem 12.7 In a sealed-bid second-price auction, the strategy of buyer i in which he
bids his private value weakly dominates all his other strategies.
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Remark 12.8 As noted in Remark 12.4, Theorem 12.7 obtains under very few assump-
tions: we assume nothing regarding the behavior of the other buyers, the number of other
buyers, or their identities. In other words, in a sealed-bid second-price auction, revealing
your private value is a (weakly) dominant strategy. This is a great advantage that the
sealed-bid second-price auction has over other auction methods: it incentivizes every
buyer to reveal his true preferences, i.e., how much he truly is willing to pay for the object.
From the seller’s perspective, this is an advantage, because he need not be concerned that
the buyers will conceal their preferences and act as if they value the object less than they
really do. Another, secondary advantage for the seller is that if a buyer who submitted a
high bid does not win the auction, the seller, knowing his true preferences, might be able
to offer him a similar object. �

An important consequence of Theorem 12.7 is:

Theorem 12.9 In a sealed-bid second-price auction, the strategy vector in which every
buyer’s bid equals his private value is an equilibrium.

Proof: As stated in Theorem 12.7, in a second-price auction, bidding the true value is a
dominant strategy. Corollary 4.27 (page 105; see also Exercise 10.52 on page 433) states
that a vector of dominant strategies is an equilibrium, and therefore this strategy vector is
a Bayesian equilibrium. �

Although we have not defined a game corresponding to an open-bid ascending auctions,
and in particular not defined a strategy in such an auction, it is possible to regard a behavior
under which the buyer lowers his hand and no longer participates in the auction when the
declared price reaches his private value as a “strategy” in this type of auctions. We will
show that this is a dominant strategy for such a buyer. Since we have not presented the
necessary definitions, the proof here is not a formal proof.

Theorem 12.10 In an open ascending auction (English auction), the strategy of buyer i

that calls on him to lower his hand when the declared price reaches his private value,
weakly dominates all his other strategies.

Proof: As long as the declared price is lower than buyer i’s private value, he receives 0
with certainty if he quits the auction. On the other hand, if he continues to bid, he stands to
receive a positive profit (and certainly cannot lose). When the declared price equals buyer
i’s private value, if he quits he receives 0 with certainty, but if he continues to bid he may
win the auction and end up paying more for the object than he values it for. Here we are
relying on the fact that buyer i knows his private value, and that this value is independent
of the values of the other buyers, so that the information given by the timing that the other
buyers choose for quitting the auction is irrelevant to his strategic considerations. �

Similarly to the proof of Theorem 12.9, and referring to Theorem 12.10, we can prove
the following theorem.

Theorem 12.11 In an open-bid ascending auction, the strategy vector in which every
buyer lowers his hand when the declared price equals his private value is an equilibrium.
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Remark 12.12 Note that in the dominant strategy equilibrium of the English auction
established in Theorem 12.11, the winner of the object is the buyer with the highest
private value and the selling price is the second highest private value. This is the same
allocation and the same payment as in the dominant strategy equilibrium of the sealed-bid
second-price auction established in Theorem 12.7. �

Remark 12.13 There are other equilibria in sealed-bid second-price auctions, in addition
to the equilibrium in which every buyer’s bid equals his private value. For example, if
the private values of two buyers are independent and uniformly distributed over the
interval [0, 1], the strategy vector in which buyer 1’s bid is b1 = 1 (for every private
value v1), and buyer 2’s bid is b2 = 0 (for every private value v2), is an equilibrium
(Exercise 12.4) �

12.5 The symmetric model with independent private values
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we will study models of sealed-bid auctions that satisfy the following
assumptions:

(A1) Single object for sale: There is only one object offered for sale in the auction, and it
is indivisible.

(A2) The seller is willing to sell the object at any nonnegative price.
(A3) There are n buyers, denoted by 1, 2, . . . , n.
(A4) Private values: All buyers have the same set of possible private values V. This set can

be a closed bounded interval [0, v] or the set of nonnegative numbers [0,∞). Every
buyer knows his private value of the object. The random values V1, V2, . . . , Vn of
the private values of the buyers are independent and identically distributed. Denote
by F the common cumulative distribution function of the random variables Vi ,
i = 1, 2, . . . , n. The support of this distribution is V.

(A5) Continuity: For each i, the random variable Vi is continuous, and its density function,
which we denote by f , is continuous and positive (this is the density function of the
cumulative distribution function F of (A4)).

(A6) Risk neutrality: All the buyers are risk neutral, and therefore seek to maximize their
expected profits.

We further assume that Assumptions (A1)–(A6) are common knowledge among the buyers
(see Definition 9.17 on page 331). An auction model satisfying Assumptions (A1)–(A6)
is called a symmetric auction with independent private values. This is the model studied
in this section.

Since every buyer knows his own private value, any additional information, and in
particular information regarding the private values of the other buyers, has no effect on
his private value. That means that when buyer i’s private value is vi , then if he wins the
auctioned object at price p, his profit is vi − p, whether or not he knows the private values
of the other buyers. In more general models in which buyers do not know with certainty
the value of the auctioned object, the information a buyer has regarding the private values
of the other buyers may be important to him, because it may be relevant to updating his
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own private value. Note that even if, after the auction is completed, the winner knows
only that he has won, and not the details of the private values of the other buyers, he
still obtains information about the other buyers’ private values: he knows that the private
values of the other buyers were sufficiently low for them not to submit bids higher than
his bid.

The assumption that V1, V2, . . . , Vn are identically distributed is equivalent to the
statement that prior to the random selection of the private values, the buyers are symmetric;
each buyer, in his strategic considerations, assumes that all of the other buyers are similar
to each other and to him.

12.5.1 Analyzing auctions: an example
Definition 12.14 In a symmetric auction with independent private values, an equilibrium
(β∗

1 , β∗
2 , . . . , β∗

n ) is called a symmetric equilibrium β∗
i = β∗

j for all 1 ≤ i, j ≤ n; that is,
all buyers implement the same strategy.

When β∗ = (β∗
i )i∈N is a symmetric equilibrium, we abuse notations and denote the com-

mon strategy also by β∗, that is, β∗ = β∗
i for every i ∈ N . Such a strategy is called a

symmetric equilibrium strategy. We will denote by β∗
−i the vector of strategies in which

all buyers except buyer i implement strategy β∗. We will sometimes denote the symmetric
equilibrium strategy also by β∗

i when we want to focus on the strategy implemented by
buyer i.

Example 12.15 Two buyers with uniformly distributed private values3 Suppose that there are two buyers,

and that Vi has uniform distribution over [0, 1] for i = 1, 2 (and by Assumption (A4) V1 and V2

are independent). We will show that in a sealed-bid first-price auction the following strategy is a
symmetric equilibrium:

β∗
i (vi) = vi

2
, i = 1, 2. (12.11)

This equilibrium calls on each buyer to submit a bid that is half of his private value. Suppose that
buyer 2 implements this strategy. Then if buyer 1’s private value is v1, and her submitted bid is b1,
her expected profit is

u1(b1, β
∗
2 ; v1) = u1

(
b1,

V2

2
; v1

)
(12.12)

= P
(

b1 >
V2

2

)
(v1 − b1) (12.13)

= P(2b1 > V2)(v1 − b1) (12.14)

= min{2b1, 1}(v1 − b1). (12.15)

This function is quadratic over the interval b1 ∈ [0, 1
2 ] (attaining its maximum at b1 = v1

2 ), and
linear, with a negative slope, when b1 ≥ 1

2 . The graph of the function b1 #→ u1(b1, β
∗
2 ; v1) is shown

in Figure 12.1 for the case v1 ≤ 1
2 and the case v1 > 1

2 .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 This example also appears on page 412 in Chapter 10.
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b1

u1 (b1, β
∗
2; v1) u1 (b1, β

∗
2; v1)

1
2

v1v v1
2

The case v1 ≤ 1
2 The case v1 > 1

2

1
2

b1
1
2

v1

Figure 12.1 The payoff to buyer 1, as a function of b1, when buyer 2 implements β∗
2

In both cases, the function attains its maximum at the point b1 = v1
2 . This implies that b∗1(v1) = v1

2
is the best response to β∗

2 , which in turn means that the strategy vector β∗ = (β∗
1 , β∗

2 ) is a symmetric
equilibrium.

We note that from our results so far we can observe that different auction methods have different
equilibria:

� In the sealed-bid first-price auction in Example 12.15, a symmetric equilibrium is given by
β∗

i (vi) = vi

2 .
� In a sealed-bid second-price auction, a symmetric equilibrium is given by β∗

i (vi) = vi

(Theorem 12.9, and Exercise 12.3).

Which auction method is preferable from the perspective of the seller? To answer this question,
we need to calculate the seller’s expected revenue in each of the two auction methods. The seller’s
expected revenue equals the expected sale price. At the equilibrium that we have calculated, the
expected sale price is

E
[

max

{
V1

2
,
V2

2

}]
= 1

2
E[max{V1, V2}]. (12.16)

Denote Z := max{V1, V2}. Since V1 and V2 are independent, and have uniform distribution over
[0, 1], the cumulative distribution function of Z is

FZ(z) = P(Z ≤ z) = P(max{V1, V2} ≤ z) = P(V1 ≤ z) × P(V2 ≤ z) = z2. (12.17)

It follows that the density function of Z is

fZ(z) =
{

2z if 0 ≤ z ≤ 1,

0 otherwise.
(12.18)

We deduce from this that the expected revenue is

1
2 E[Z] = 1

2

∫ 1
0 zfZ(z)dz = ∫ 1

0 z2dz = 1
3 . (12.19)

The seller’s expected revenue in a sealed-bid second-price auction is given by E[min{V1, V2}]. Note
that

min{V1, V2} + max{V1, V2} = V1 + V2, (12.20)

and hence

E[min{V1, V2}] + E[max{V1, V2}] = E[V1] + E[V2] = 1
2 + 1

2 = 1. (12.21)

We have already calculated that E[max{V1, V2}] = E[Z] = 2
3 , so E[min{V1, V2}] = 1

3 . In other
words, the seller’s expected revenue in a sealed-bid second-price auction is 1

3 . �
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Corollary 12.16 In Example 12.15, in equilibrium, the expected revenue of the seller is
the same, whether the auction method used is a sealed-bid first-price auction or second-
price auction.

This result is surprising at first sight, because one “would expect” that the seller would
be better off selling the object at the price of the highest bid submitted, rather than the
second-highest bid. However, buyers in a sealed-bid first-price auction will submit bids
that are lower than those they would submit in a sealed-bid second-price auction, because
in a sealed-bid first-price auction the winner pays what he bids, while in a sealed-bid
second-price auction the winner pays less than his bid. The fact that these two opposing
elements (on one hand, the sale price in a sealed-bid first-price auction is the highest bid,
while on the other hand, bids are lower in a sealed-bid first-price auction) cancel each
other out and lead to the same expected revenue, is a mathematical result that is far from
self-evident.

The equivalence between sealed-bid first-price auctions and open-bid descending auc-
tions (Theorem 12.3), and the equivalence between the equilibrium payments in sealed-bid
second-price auctions and open-bid ascending auctions (Remark 12.12), lead to the fol-
lowing corollary.

Corollary 12.17 In Example 12.15, all four auction methods presented, the sealed-bid
first price auction, sealed-bid second price auction, open-bid ascending auction and
open-bid descending auction yield the seller the same expected revenue in equilibrium.

As we will see later, the equivalence of the expected profit in these four auction methods
follows from a more general result (Theorem 12.23), called the Revenue Equivalence
Theorem.

12.5.2 Equilibrium strategies
In this section, we will compute the equilibria of several auction methods.

Definition 12.18 A symmetric equilibrium strategy β∗ is monotonically increasing if the
higher the private value, the higher the buyer’s bid:

v < v′ =⇒ β∗(v) < β∗(v′), ∀v, v′ ∈ V. (12.22)

If β is a monotonically increasing symmetric equilibrium, the winner of the auction is
the buyer with the highest private value. Since the distribution of V is continuous, the
probability that two buyers have the same private value is 0. We proceed now to find
monotonically increasing symmetric equilibria. Define

Y = max{V2, V3, . . . , Vn}. (12.23)

This is a random variable, whose value equals the highest private value of buyers 2, . . . , n.
From buyer 1’s perspective, this is the highest private value of his competitors. In a
monotonically increasing symmetric equilibrium, buyer 1 wins the auction if and only if
Y < V1. (As we previously stated, the event Y = V1 has probability 0, so we ignore it, as
it has no effect on the expected profit.)

The following theorem identifies a specific symmetric equilibrium, in symmetric auc-
tions with independent private values.
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Theorem 12.19 In a symmetric auction with independent private values the following
strategy defines a symmetric equilibrium:

β(v) := E[Y | Y ≤ v], ∀v ∈ V \ {0}, (12.24)

and β(0) := 0.

Proof:
Step 1: β is a monotonically increasing function.
Recall that for every random variable X, and every pair of disjoint events A and B:

E[X | A ∪ B] = P(A | A ∪ B)E[X | A] + P(B | A ∪ B)E[X | B]. (12.25)

Note that by the assumption that the density function f is positive (Assumption (A5)),
it follows that Y is a continuous random variable with positive density function fY . Let
v be an interior point of V1; that is, v > 0 and if V = [0, v] is a bounded interval, then
v < v. For every δ > 0 satisfying v + δ ∈ V,

β(v + δ) = E[Y | Y ≤ v + δ]

= P(Y ≤ v | Y ≤ v + δ) × E[Y | Y ≤ v]

+ P(v < Y ≤ v + δ | Y ≤ v + δ) × E[Y | v < Y ≤ v + δ]

= P(Y ≤ v)

P(Y ≤ v + δ)
E[Y | Y ≤ v]

+ P(v < Y ≤ v + δ)

P(Y ≤ v + δ)
E[Y | v < Y ≤ v + δ]. (12.26)

Since the density function fY is positive, and since v is an interior point of V1,

E[Y | Y ≤ v] ≤ v < E[Y | v < Y ≤ v + δ]. (12.27)

From Equations (12.26)–(12.26), we deduce that the β(v + δ) is the weighted average
of two numbers, which, by Equation (12.27), satisfy the property that one is strictly greater
than the other. Since the density function fY is positive, and since v > 0, the weights of
both terms are positive. It follows that β(v + δ) is strictly greater than the minimal number
among the two, which is, according to Equation (12.27), E[Y | Y ≤ v], that is,

β(v + δ) > E[Y | Y ≤ v] = β(v). (12.28)

Therefore, β is an increasing function.

Step 2: β is a continuous function.
We will first show that β is continuous at v = 0. This obtains because for each v ∈ V,
v > 0,

0 ≤ β(v) = E[Y | Y ≤ v] ≤ v, (12.29)

leading to limv→0 β(v) = 0 = β(0). We next show that β is continuous at each interior
point v of V. By the definition of conditional expectation,

β(v) = E[Y | Y ≤ v] =
∫ v

0 yfY (y)dy

P(Y ≤ v)
= 1

FY (v)

∫ v

0
yfY (y)dy. (12.30)
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Since the random variable Y is continuous, the cumulative distribution function FY is a
continuous function. Since the density function fY is positive for all v > 0, FY (v) > 0;
the denominator is not zero. It follows that β is the quotient of two continuous functions
of v in which the function in the denominator is non-zero for v > 0, and hence it is a
continuous function.

Note that from Equation (12.30) we can deduce, by integrating by parts, that

FY (v)E[Y | Y ≤ v] =
∫ v

0
yfY (y)dy = vFY (v) −

∫ v

0
FY (y)dy. (12.31)

This equation will be useful later in the proof.

Step 3: β is a symmetric equilibrium strategy.
Suppose that buyers 2, 3, . . . , n all implement strategy β. We will show that in that case,
buyer 1’s best reply is the same strategy β. Let v1 be buyer 1’s private value. If V = [0, v]
is a bounded interval, suppose that v < v, which occurs with probability 1 (why?). Since
the function β is monotonically strictly increasing (Step 1) and continuous (Step 2), it has
a continuous inverse β−1.

Buyer 1’s expected profit, when he bids b1, is

u1(b1, β−1; v1) = P(β(Y ) < b1)(v1 − b1). (12.32)

If buyer 1 bids b1 = 0, with probability 1 he does not win the auction: since the density
of Y is positive in the interval V, the probability that Y > 0 is 1, and since β is mono-
tonically increasing, with probability 1 another buyer bids more than 0. We deduce that
u1(0, β−1; v1) = 0.

If buyer 1 bids b1 greater than or equal to his private value v1, by Equation (12.32) his
expected payoff is nonpositive:

u1(b1, β−1; v1) ≤ 0, ∀b1 ≥ v1. (12.33)

Since the density of Vi is positive in the set V, the probability P(β(Y ) < b1) is positive for
every b1 > 0. It follows that in the domain V \ {0} the function b1 #→ u1(b1, β−1; v1) is
the product of two positive functions and it is therefore a positive function. To summarize,
we proved that u1(b1, β−1; v1) is positive for b1 ∈ (0, v1) and nonpositive for b1 �∈ (0, v1),
and therefore the function b1 #→ u1(b1, β−1; v1), attains its maximum at an interior point
of [0, v1]. We next present the expected profit u1(b1, β−1; v1) in a more useful form:

u1(b1, β−1; v1) = P(β(Y ) < b1)(v1 − b1) (12.34)

= P(Y < β−1(b1))(v1 − b1) (12.35)

= FY (β−1(b1)) × (v1 − β(β−1(b1))) (12.36)

= FY (β−1(b1)) × (v1 − E[Y | Y ≤ β−1(b1)]). (12.37)

Let b1 be an interior point of the interval β(V), which is the image of β, and denote
z1 := β−1(b1). Then b1 = β(z1), and hence

u1(β(z1), β−1; v1) = FY (z1) × (v1 − E[Y | Y ≤ z1]). (12.38)
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Denote the right-hand side of Equation (12.38) by h(z1):

h(z1) := FY (z1) × (v1 − E[Y | Y ≤ z1]) (12.39)

= FY (z1)(v1 − z1) + FY (z1)z1 − FY (z1)E[Y | Y ≤ z1] (12.40)

= FY (z1)(v1 − z1) +
∫ z1

0
FY (y)dy, (12.41)

where Equation (12.41) follows from Equation (12.31).
To find the point b1 ∈ V at which the maximum of u1(b1, β−1; v1) is attained, it suffices

to find the point z1 ∈ V at which the maximum of h(z1) is attained. To do so, differentiate
h; the function h is differentiable over the interval (0, v1), and its derivative is

h′(z1) = fY (z1)(v1 − z1) − FY (z1) + FY (z1) = fY (z1)(v1 − z1). (12.42)

The derivative h′ equals zero at a single point, z1 = v1, which is therefore the maximum of
h. In other words, buyer 1’s best reply, when his private value is v1 and the other buyers
implement strategy β, is β−1(b1) = z1 = v1, i.e., b1 = β(v1). �

In summary, our results on equilibrium strategies in sealed-bid first-price and second-
price auctions are as follows:

Corollary 12.20 In a symmetric sealed-bid auction with independent private values:

� β(v) = E[Y | Y ≤ v] is a symmetric equilibrium strategy in the sealed-bid first-price
auction.

� β(v) = v is a symmetric equilibrium strategy in the sealed-bid second-price auction.

Example 12.15 (Continued) When there are two buyers, with private values uniformly distributed over

[0, 1], β(v) = E[Y | Y ≤ v] = v
2 . This is the symmetric equilibrium strategy we found on

page 472. �

We next compute the expected profits of the buyers and the seller in these two auction
methods.

Theorem 12.21 In the symmetric equilibria given by Corollary 12.20, the expected pay-
ment that a buyer with private value v makes for the object is FY (v) × E[Y | Y ≤ v], in
both sealed-bid first-price and second-price auctions.

Proof: At equilibrium in a sealed-bid second-price auction, a buyer with private value v

submits a bid of v. He wins the auction with probability FY (v), and the expected amount
he pays is E[Y | Y ≤ v]. His expected payment is therefore FY (v) × E[Y | Y ≤ v], as
claimed above.

At equilibrium in a sealed-bid first-price auction, a buyer with private value v submits
a bid of E[Y | Y ≤ v]. He wins the auction with probability FY (v), and pays what he bid.
His expected payment for the object is therefore also FY (v) × E[Y | Y ≤ v]. �
Corollary 12.22 In a symmetric sealed-bid auction with independent private values, at
the symmetric equilibrium, the expected revenue of a seller in both sealed-bid first-price
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and second-price auctions, is

π = n

∫
V

FY (v)E[Y | Y ≤ v]f (v)dv. (12.43)

Proof: The expected payment of a buyer with private value v is FY (v)E[Y | Y ≤ v]. It
follows that the expected payment made by each buyer is

∫
V

FY (v)E[Y | Y ≤ v]f (v)dv.
Since the seller’s expected revenue is the sum of the expected payments of the n buyers,
the result follows. �

12.5.3 The Revenue Equivalence Theorem
In the previous section, we saw that the symmetric and monotonically increasing equilib-
rium that we found in sealed-bid first-price and second-price auctions always yields the
seller the same expected revenue. Is this coincidental, or is there a more general result
implying this? As we shall see in the sequel, the Revenue Equivalence Theorem shows
that there is indeed a more general result, ascertaining that the expected revenue of the
seller is constant over a broad family of auction methods.

Recall that we denote by (p, C) a sealed-bid auction in which the winner is determined
by the function p, and each buyer’s payment is determined by the function C. Let β :
V → [0,∞) be a monotonically increasing strategy. Denote by ei(vi) = e(p, C, β; vi) the
expected payment that buyer i with private value vi pays in auction method (p, C), when
all the buyers implement strategy β:

ei(vi)

:=
∫

V−i

∑
i∗∈N

pi∗(β(v1), β(v2), . . . , β(vn))Ci(i∗; β(v1), β(v2), . . . , β(vn))dF−i(v−i).

(12.44)

Theorem 12.23 Let β be a symmetric and monotonically increasing equilibrium in a
sealed-bid symmetric auction with independent private values satisfying the following
properties: (a) the winner of the auction is the buyer with the highest private value, and
(b) the expected payment made by a buyer with private value 0 is 0. Then

ei(vi) = FY (vi)E[Y | Y ≤ vi]. (12.45)

Property (a) of the equilibrium is known as the “efficiency condition”: an efficient
auction is one in which, at equilibrium, the auctioned object is allocated to the buyer
who most highly values it. Since the seller is willing to sell the auctioned object at
any nonnegative price, and since the private values of the buyers are nonnegative, in an
efficient auction the object is sold with probability 1. Under a symmetric and monotonically
increasing equilibrium, the object is sold to the highest bidder.

The expression on the right-hand side of Equation (12.45) is independent of the auction
methods, and depends solely on the distribution of Y , which is determined by the distribu-
tion of the private values of the buyers. Theorem 12.23 states therefore that the expected
payment that a buyer with private value v makes is independent of the auction method,
and depends only on the distribution of the private values of the buyers. It follows that if n

risk-neutral buyers are asked whether they prefer to participate in a sealed-bid first-price
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auction, or a sealed-bid second-price auction, they have no reason to prefer one to the
other.

By integrating Equation (12.45) over buyer types, we deduce that the seller’s expected
revenue is independent of the auction method:

Corollary 12.24 (The Revenue Equivalence Theorem) In a symmetric sealed-bid auc-
tion with independent private values, let β be a symmetric and monotonically increasing
equilibrium satisfying the following properties: (a) the winner is the buyer with the highest
private value, and (b) the expected payment of each buyer with private value 0 is 0. Then
the seller’s expected revenue is

π = n

∫
V

ei(v)f (v)dv, (12.46)

where

ei(v) = FY (v)E[Y | Y ≤ v]. (12.47)

Proof of Theorem 12.23: Since the private values are independent and identically dis-
tributed, the cumulative distribution function of Y is

FY = Fn−1. (12.48)

Let β be a symmetric and monotonically increasing equilibrium strategy in a sealed-bid
auction (p, C). Let v1 ∈ V be a private value of buyer 1 (which is not 0 and is not v

if V = [0, v] is a bounded interval). If buyer 1 with private value v1 deviates from the
strategy and plays as if his private value is z1, he wins only if z1 is higher than the private
values of the other buyers, and the probability of that occurring is FY (z1). His profit in
this case is

u1(βz1, β−1; v1) = v1FY (z1) − e1(z1). (12.49)

Since β is an equilibrium, buyer 1’s best reply is z1 = v1. In other words, the function
z1 #→ u1(βz1, β−1; v1) attains its maximum at z1 = v1, which is an interior point of V.

We next prove that the function e1 is differentiable, and compute its derivative. Since
the function z1 #→ u1(βz1, β−1; v1) attains its maximum at z1 = v1, for any pair of interior
points v1, z1 in the interval V one has

v1FY (z1) − e1(z1) = u1(βz1, β−1; v1) ≤ u1(βv1, β−1; v1) = v1FY (v1) − e1(v1).

(12.50)

By exchanging the roles of z1 and v1, we deduce that for every pair of interior points v1, z1

in the interval V one has

z1FY (v1) − e1(v1) = u1(βv1, β−1; z1) ≤ u1(βz1, β−1; z1) = z1FY (z1) − e1(z1).

(12.51)

From Equations (12.50) and (12.51), by rearrangement, we have:

e1(v1) − e1(z1) ≤ (FY (v1) − FY (z1))v1, (12.52)

e1(v1) − e1(z1) ≥ (FY (v1) − FY (z1))z1. (12.53)
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For z1 �= v1, dividing Equations (12.52) and (12.53) by v1 − z1, and taking the limit as z1

goes to v1, we get

lim
z1→v1

e1(v1) − e1(z1)

v1 − z1
= v1fY (v1), ∀v1 ∈ V, v1 �∈ {0, v}. (12.54)

In particular, e1 is a differentiable function and its derivative is e′1(v1) = v1fY (v1) for every
v1 ∈ V1. Note that the derivative e′1 is independent of the auction method. Since e1(0) = 0,
by integration, for every v1 ∈ V (including the extreme points) we get

e1(v1) = e1(0) +
∫ v1

0
e′1(y)dy =

∫ v1

0
yfY (y)dy = FY (v1)E[Y | Y ≤ v1],

(12.55)

which is what we wanted to prove. �

We now show how to use the Revenue Equivalence Theorem to find symmetric equi-
librium strategies in various auctions.

Theorem 12.25 Let β be a symmetric, monotonically increasing equilibrium strategy,
satisfying β(0) = 0 in a symmetric sealed-bid first-price auction with independent private
values. Then

β(v) = E[Y | Y ≤ v]. (12.56)

This theorem complements Theorem 12.19, where we proved that β(v) = E[Y | Y ≤ v]
is a symmetric equilibrium strategy that is monotonically increasing and satisfies β(0) = 0.
Theorem 12.25 shows that this is the unique such symmetric equilibrium in sealed-bid
first-price auctions.

Proof: Since the function β is monotonic, a buyer with private value v wins the auction
if and only if his private value is higher than the private values of all the other buyers. It
follows that the probability that a buyer with value v wins the auction is FY (v). If he wins,
he pays his bid, meaning that he pays β(v). The expected payment that the buyer makes
is therefore

e(v) = FY (v)β(v). (12.57)

Since β satisfies the conditions of Theorem 12.23 (note that the condition that β(0) = 0
guarantees that at this equilibrium, e(0) = 0), Theorem 12.23 implies that

e(v) = FY (v)E[Y | Y ≤ v]. (12.58)

Since FY (v) > 0 for every v > 0, from Equations (12.57)–(12.58) we get

β(v) = E[Y | Y ≤ v], (12.59)

which is what we wanted to show. �

The following theorem exhibits the equilibrium of an all-pay auction in which
every buyer pays the amount of his bid, whether or not he wins the auctioned object
(see page 465).
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Theorem 12.26 Let β be a symmetric, monotonically increasing equilibrium strategy,
satisfying β(0) = 0, in a symmetric sealed-bid all-pay auction with independent private
values. Then

β(v) = FY (v)E[Y | Y ≤ v]. (12.60)

Proof: In a sealed-bid all-pay auction, every buyer pays his bid, in any event, and it
follows that the payment that a buyer with private value v makes is e(v) = β(v). Since the
conditions of Theorem 12.23 are guaranteed by the monotonicity of β and the condition
β(0) = 0, we deduce that e(v) = FY (v)E[Y | Y ≤ v]. It follows that β(v) = FY (v)E[Y |
Y ≤ v], which is what we needed to prove. �

Example 12.15 (Continued) A sealed-bid first-price auction with two buyers Consider a sealed-bid first-

price auction with two buyers, where the private values of the buyers are independent and uniformly
distributed over [0, 1]. We will compute the following:

� e(v), the expected payment of a buyer with a private value v.
� e, the buyer’s expected payment, before he knows his private value.
� E = ne, the seller’s expected revenue.

For each v ∈ [0, 1], one has FY (v) = v and fY (v) = 1, and we have seen that β(v) = E[Y | Y ≤
v] = v

2 . Therefore,

e(v) = FY (v)E[Y | Y ≤ v] = v2

2
, (12.61)

e =
∫ 1

0

v2

2
dv = v3

6

]1

0

= 1
6 , (12.62)

π = 2
(

1
6

) = 1
3 . (12.63)

The seller’s expected revenue π is 1
3 , as we computed directly on page 473. �

Example 12.27 A sealed-bid first-price auction with an arbitrary number of buyers Consider a sym-

metric sealed-bid first-price auction with n ≥ 2 buyers. The private values of the buyers are inde-
pendent and uniformly distributed over [0, 1]. Then FY (v) = vn−1 and fY (v) = (n − 1)vn−2, for
each v ∈ [0, 1]. By Theorem 12.26, the symmetric equilibrium strategy is

β(v) = E[Y | Y ≤ v] =
∫ v

0 xfY (x)dx

FY (v)
=

∫ v

0 (n − 1)xn−1dx

vn−1
= n − 1

n
v. (12.64)

It follows that the expected payment of a buyer with private value v is

e(v) = FY (v)E[Y | Y ≤ v] = n − 1

n
vn. (12.65)

The buyer’s expected payment, before he knows his private value, is

e = n − 1

n

∫ 1

0
vndv = n − 1

n

1

n + 1
, (12.66)
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and the seller’s expected revenue is

π = ne = n − 1

n + 1
. (12.67)

This value converges to 1 as n increases to infinity. Since the seller’s revenue equals the sale price,
we deduce that the sale price converges to 1 as the number of buyers approaches infinity (explain
intuitively why this should be expected). �

12.5.4 Entry fees
We have assumed, up to now, that participation in an auction is free, and that buyers
therefore lose nothing in submitting bids. In this section, we explore, via examples, how
adding entry fees for auctions may affect the strategies of buyers, and the seller’s expected
revenue.

Example 12.28 Sealed-bid second-price auction with entry fee Consider a sealed-bid second-price auction

with entry fee λ ∈ [0, 1]. In such an auction, a buyer may decide not to participate; for example, he
may decline to participate if his private value is lower than the entry free. If there is only one buyer
submitting a bid, that buyer can win the auction by bidding 0.

As in second-price auctions without entry fees, when a buyer decides to participate in a second-
price auction with an entry fee, his bid will be his private value of the auctioned object. To formulate
this claim precisely, denote the set of actions of each buyer by A = R+ ∪ {“no”}, where “no” means
“don’t participate in the auction” and x ∈ R+ means “participate in the auction, pay the entry fee
λ and bid the price x”. A (pure) strategy of buyer i is a measurable function βi : Vi → A. That is,
when buyer i’s private value is vi he implements action βi(vi).

Theorem 12.29 In a sealed-bid second-price auction with entry fee, for every strategy βi of buyer
i the following strategy β̂i weakly dominates βi , if β̂i �= βi ,

β̂i(v) =
{

“no” βi (v) = “no”,

v βi (v) = x.
(12.68)

The proof of the theorem is similar to the proof of Theorem 4.15 (page 92); the proof is left
to the reader (Exercise 12.22). Theorem 12.29 implies that to find an equilibrium in a sealed-bid
second-price auction with entry fees, we have to find for each buyer the set of private values for
which he will participate in the auction.

Suppose that there are two buyers, and that the private values V1 and V2 are independent and
uniformly distributed over [0, 1]. Since the buyer knows his own private value before he submits
his bid, if his private value is low, he will not participate in the auction. There must therefore exist
a threshold value v0 such that no buyer with a private value below v0 will participate in the auction.

Suppose that buyer 1’s private value equals the threshold V1 = v0. If the equilibrium is monotonic,
this buyer will win the auction if and only if buyer 2 does not participate in the auction, since if
buyer 2 participates, with probability 1 his private value V2 is greater than v0, and therefore buyer
2’s bid is greater than buyer 1’s private value v0. It follows that P(winning the auction | v0) = v0.
On the other hand, when the private value of buyer 1 equals the threshold value v0, he is indifferent
between participating and not participating. The buyer’s expected profit if he participates is

P(winning the auction | v0) × v0 − λ = (v0)2 − λ, (12.69)
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and his profit if he does not participate is 0, we deduce that (v0)2 − λ = 0, or v0 = √
λ. An

equilibrium strategy in this game is therefore

β(v) =
{

“Don’t participate” if v <
√

λ,

v if v ≥ √
λ.

(12.70)

The probability that each buyer will participate in the auction is 1 −√
λ.

To compute the seller’s expected revenue, denote Vmax = max{V1, V2}, and Vmin =
min{V1, V2}.
� If Vmin ≥ v0, both buyers participate in the auction, the seller receives 2λ as entry fee, and the

sale price of the auctioned object is Vmin.
� If Vmax < v0, no buyer will participate, and the seller’s revenue is 0.
� If Vmin < v0 ≤ Vmax, only one buyer participates in the auction, the seller receives λ as entry fee,

and the sale price of the auctioned object will be 0.

The seller’s expected revenue, as a function of the entry fee λ, is therefore

π(λ) = P(Vmin ≥ v0)(2λ + E[Vmin | Vmin ≥ v0])

+P(Vmin < v0 ≤ Vmax) × λ. (12.71)

Now,

FVmin (z) = P(Vmin ≤ z) = z + (1 − z)z = z(2 − z), (12.72)

fVmin (z) = F ′
Vmin

(z) = 2(1 − z), (12.73)

P(Vmin ≥ v0) = (1 − v0)2, (12.74)

P(Vmin < v0 ≤ Vmax) = 2P(V1 < v0 ≤ V2) = 2v0(1 − v0), (12.75)

E[Vmin | Vmin ≥ v0] = 1

P(Vmin ≥ v0)

∫ 1

v0

vfVmin (v)dv

= 1

(1 − v0)2

∫ 1

v0

2v(1 − v)dv = 2v0 + 1

3
. (12.76)

By inserting the values of Equations (12.74)–(12.76) in (12.71), and using the fact that v0 = √
λ,

we get

π(λ) = (1 −
√

λ)2

(
2λ + 2

√
λ + 1

3

)
+ 2

√
λ(1 −

√
λ) × λ (12.77)

= (1 −√
λ)

3

(
(1 −

√
λ)(1 + 2

√
λ + 6λ) + (6λ

√
λ)
)

(12.78)

= (1 −√
λ)(4λ +√

λ + 1)

3
(12.79)

This is a concave function of λ, satisfying π(0) = 1
3 and π(1) = 0. Differentiating the function

π , we have:

π ′(λ) = [(1 −
√

λ)(4λ +
√

λ + 1)]′ = [1 + 3λ − 4λ
3
2 ]′ = 3 − 6

√
λ. (12.80)
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The derivative π ′ vanishes at λ∗ = 1
4 , where

π
(

1
4

) = 1
3

(
1 − 1

2

) (
4 · 1

4 + 1
2 + 1

) = 1
3 · 1

2 · 5
2 = 5

12 > 1
3 . (12.81)

Because π( 1
4 ) is greater than π(0) and greater than π(1), the function π attains its maximum at

the point λ∗ = 1
4 , and hence the entry fee maximizing the seller’s expected revenue is λ∗ = 1

4 . We
conclude that in this case, a sealed-bid second-price auction with entry fee 1

4 yields the seller an
expected revenue that is greater than what he can receive from a sealed-bid second-price auction
without entry fees. �

Remark 12.30 The fact that the seller’s expected revenue from a sealed-bid second-price
auction with entry fee is greater than his expected revenue from a sealed-bid second-price
auction without entry fee does not contradict the Revenue Equivalence Theorem (Theorem
12.23), because the auction with entry fees does not satisfy the efficiency property: if both
buyers have private values lower than the entry fee, the auctioned object is not sold,
despite the fact that there is a buyer willing to pay for it. �

12.6 The Envelope Theorem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Recall that, given the strategy of the other buyers β−i , the profit of buyer i with private
value vi who submits a bid bi , is ui(bi, β−i ; vi). The expected profit of the buyer is the
difference between the product of the probability he will win the auction and his private
value of the auctioned object, and his expected payment to the seller:

ui(bi, β−i ; vi) = P(buyer i wins the auction | bi, β−i) × vi

− E[buyer i’s payment to the seller | bi, β−i]. (12.82)

Both the probability of winning the auction and buyer i’s payment depend on the bid bi

that he submits (and the strategies of the other buyers), but not on his private value. The

vi

u∗
i (β− i ; vi )

ui (bi (1) − i ; vi)

ui (bi (2) − i ; vi)

ui (bi (3) − i ; vi)

ui (bi (4) − i ; vi)
ui (bi (5) − i ; vi)
ui (bi (6), β

, β
, β

, β

, β

, β

− i ; vi)

Figure 12.2 The function ui(b, β−i ; vi), for different values of bi and the upper
envelope u∗

i (β−i ; vi) (the bold curve)
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function ui(bi, β−i ; vi) is therefore linear in vi . At equilibrium, the buyer’s bid maximizes
his expected profit. The buyer’s profit at equilibrium is therefore

u∗
i (β−i ; vi) := max

bi≥0
ui(bi, β−i ; vi). (12.83)

This function is called the upper envelope, because if we draw the function vi #→
ui(bi, β−i ; vi) for every bi , then u∗

i (β−i ; vi) is the upper envelope of this family of linear
functions. Figure 12.2 shows some of these linear functions vi #→ ui(bi, β−i ; vi) for various
values of bi , along with the upper envelope. Denote by b∗i (vi) a value of bi at which the
maximum of ui(bi, β−i ; vi) for a given vi is obtained:

u∗
i (β−i ; vi) = ui(b

∗
i (vi), β−i ; vi). (12.84)

That is, b∗i is a best reply of the buyer to the strategy vector β−i . Assuming that the
function ui is differentiable4 and the function vi #→ b∗i (vi) is also differentiable, the
function vi #→ u∗

i (β−i ; vi) is differentiable, and its derivative is

∂u∗
i

∂vi

(β−i ; vi)

= ∂ui

∂vi

(bi, β−i ; vi)|bi=b∗i (vi ) +
∂ui

∂bi

(bi, β−i ; vi)|bi=b∗i (vi ) ·
db∗i (vi)

dvi

. (12.85)

If for each private value vi ,
∂ui

∂bi
(bi, β−i ; vi)|bi=b∗i (vi ) = 0 at the maximal point b∗

i (vi),
then the second term is zero, leading to the following conclusion, called the Envelope
Theorem, which has many applications in economics.

Theorem 12.31 (The Envelope Theorem) Let b∗i be a best response of buyer i to the
strategy vector β−i of the other buyers; i.e., b∗i satisfies Equation (12.84). If the function
ui(b1, β−i ; vi) is differentiable, and the function vi #→ b∗i (vi) is differentiable and satisfies
∂ui

∂bi
(bi, β−i ; vi)|bi=b∗i (vi ) = 0 for every private value vi , then

∂u∗
i

∂vi

(β−i ; vi) = ∂ui

∂vi

(bi, β−i ; vi)|bi=b∗i (vi ). (12.86)

Remark 12.32 The condition ∂ui

∂bi
(bi, β−i ; vi)|bi=b∗i (vi ) = 0 holds if 0 < b∗

i (vi) < ∞
because this is the first-order condition for a local maximum. If follows that it is nec-
essary to check that it holds only if the maximum is at an extreme point, i.e., only if
b∗i (vi) = 0. �

To apply the chain rule, the function vi #→ b∗i (vi) has to be differentiable. That means
that the equilibrium strategy must be differentiable. A symmetric equilibrium β∗ is called
a differentiable symmetric equilibrium if the function β∗ is differentiable.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 A real-valued multi-variable function is differentiable if it is continuously differentiable (i.e., its derivative is
continuous) with respect to each variable. This is equivalent to it being differentiable in every direction in the space
of variables.
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Example 12.33 Sealed-bid first-price auction Consider a sealed-bid first-price auction with n buyers.

Suppose that the private values of the buyers are independent of each other, that they are all in the
unit interval [0, 1], and that they share the same cumulative distribution function F . Assuming that
there exists a monotonically increasing and differentiable symmetric equilibrium strategy β∗, we
can compute it using the Envelope Theorem. Recall that β∗

−i is the strategy vector in which all the
buyers, except for buyer i, use the strategy β∗. The expected profit of buyer i with private value vi

who submits a bid bi is

ui(bi, β
∗
−i ; vi ) = P(the buyer wins the auction | bi, β

∗
−i) × (vi − bi) (12.87)

= (F ((β∗)−1(bi)))
n−1 × (vi − bi ). (12.88)

Since β∗ is an equilibrium, β∗
i (vi) is the best response of buyer i with private value vi to

β∗
−i , and therefore b∗

i (vi) = β∗
i (vi). If β is differentiable, then β−1 is also differentiable, and

then ui(bi, β
∗
−i ; vi ) is differentiable. Since the strategy β∗ is monotonically increasing, and

because β∗(0) ≥ 0 and β∗(1) ≤ 1, it follows that 0 ≤ β∗(vi) ≤ 1 for all vi ∈ (0, 1), and therefore
∂ui

∂bi
(bi, β

∗
−i ; vi)|bi=β∗

i (vi ) = 0. The Envelope Theorem implies that

∂u∗
i

∂vi

(β∗
−i ; vi ) = ∂ui

∂vi

(bi, β
∗
−i ; vi)|bi=β∗

i (vi ) = (F (vi))
n−1. (12.89)

Note that u∗
i (β∗

−i ; 0) = 0, i.e., the profit of a buyer with private value 0 is 0. By integrating, we get

u∗
i (β∗

−i ; vi ) =
∫ vi

0
(F (xi))

n−1dxi. (12.90)

From this equation, along with Equation (12.88), for bi = b∗i (vi) = β∗(vi ), we get

(F (vi))
n−1

(
vi − β∗(vi)

) = ∫ vi

0
(F (xi ))

n−1dxi . (12.91)

After moving terms from one side of the equals sign to the other, we have:

β∗(vi) = vi −
∫ vi

0 (F (xi ))n−1dxi

(F (vi))n−1
. (12.92)

In other words, if a monotonically increasing, differentiable, and symmetric equilibrium exists, it
is necessarily given by Equation (12.92).

Recall that, according to Theorem 12.19, in a symmetric sealed-bid first-price auction with
independent private values, the symmetric equilibrium is β∗(v) = E[Y | Y ≤ v]. It follows that
in the case before us, in which the distribution of the private values of the buyers is the uni-
form distribution over [0, 1], this expression must be equal to the expression given by Equation
(12.92). The reader is asked to check directly that these two expressions indeed equal each other in
Exercise 12.24. �

Example 12.34 Sealed-bid first-price auction with a reserve price An auction with a reserve price ρ

is an auction in which every bid below ρ is invalid. Consider a sealed-bid first-price auction with
a reserve price ρ ∈ [0, 1] and two buyers whose private values are independent and uniformly
distributed over [0, 1]. What is the symmetric equilibrium strategy β∗? A buyer with a private value
lower than or equal to ρ cannot profit no matter what bid he makes. Using the Envelope Theorem we
can find a symmetric, monotonically increasing and differentiable equilibrium strategy satisfying
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β∗(v1) = v1 for all v1 ∈ [0, ρ]. This choice is arbitrary and it guarantees that a bid by a buyer whose
private value is less than ρ is invalid.5

Step 1: ρ ≤ β∗(v1) < v1 for all v1 ∈ (ρ, 1].
u1(b1, β

∗; v1) = 0 for all b1 < ρ, and u1(b1, β
∗; v1) ≤ 0 for all b1 ≥ v1. For all b1 ∈ (ρ, v1),

u1(b1, β
∗; v1) ≥ P(V2 < ρ)(b1 − ρ) > 0. (12.93)

It follows that the maximum of the function b1 #→ u1(b1, β
∗; v1) is attained at a point in the interval

[ρ, v1).

Step 2: ρ < β∗(v1) < v1 for all v1 ∈ (ρ, 1].
Suppose by contradiction that there exists v1 ∈ (ρ, 1] such that β∗(v1) = ρ and let v̂1 ∈ (ρ, v1).
Since β∗ is a monotonic strategy,

β∗ (̂v1) < β∗(v1) = ρ, (12.94)

in contradiction to Step 1.

Step 3: Computing β∗.
For v1 ∈ (ρ, 1] the maximum of the function b1 #→ u1(b1, β

∗; v1) is attained at a point in the interval
(ρ, v1), this is a local maximum, and since β∗ is a differentiable function, ∂u1

∂b1
(b1, β

∗; v1)|b1=β∗(v1) =
0.

By the Envelope Theorem:

∂u∗
1

∂v1
(β∗; v1) = ∂u1

∂v1
(b1, β

∗; v1)|b1=β∗(v1). (12.95)

Since the distribution of V2 is the uniform distribution over [0, 1], and since β∗ is monotonically
increasing,

u1(b1, β
∗; v1) = P(β∗(V2) < b1) × (v1 − b1) = (β∗)−1(b1) × (v1 − b1). (12.96)

Therefore,

∂u1

∂v1
(b1, β

∗; v1) = (β∗)−1(b1), (12.97)

and Equations (12.82) and (12.95)–(12.97) imply that

∂u∗
1

∂v1
(β∗; v1) = (β∗)−1(β∗(v1)) = v1. (12.98)

For v1 ≤ ρ, the profit is zero: u∗
1(β∗

−1; v1) = 0. By integration, we get

u∗
1(β∗; v1) =

∫ v1

ρ

∂u∗
1

∂t1
(β∗; t1)dt1 =

∫ v1

ρ

t1dt1 = (t1)2

2

∣∣∣∣v1

ρ

= (v1)2

2
− ρ2

2
. (12.99)

On the other hand, the buyer’s profit u∗
1(β∗; v1) can be computed directly: in a symmetric, mono-

tonically increasing equilibrium, buyer 1’s profit is the probability that the private value of buyer 2
is lower than v1 times the profit (v1 − β∗(v1)) if he wins:

u∗
1(β∗; v1) = u1(β∗(v1), β∗; v1) = v1(v1 − β∗(v1)), ∀v1 ∈ (ρ, 1]. (12.100)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 In this example we have two buyers, and therefore the vector β∗
−1 of the strategies played in the symmetric

equilibrium by all players except Player 1 is β∗. We therefore write β∗ instead of β∗
−1.
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From Equations (12.99)–(12.100) we conclude that

β∗(v1) = v1

2
+ ρ2

2v1
, ∀v1 ∈ (ρ, 1]. (12.101)

Step 4: Computing the seller’s expected revenue.
We have shown that if there exists a monotonically increasing and differentiable symmetric equilib-
rium strategy in the interval (ρ, 1) then that strategy is defined by Equation (12.101). The strategy
that we found is indeed differentiable. To see that it is monotonically increasing, we look at its
derivative:

(β∗)′(v1) = 1
2 − ρ2

2(v1)2 , ∀v1 ∈ (ρ, 1]. (12.102)

We see that for v1 ∈ (ρ, 1] it is indeed the case that (β∗)′(v1) > 0.
Note that for ρ = 0 (an auction without a minimum price), by Equation (12.101), β∗(v1) = v1

2 ,
which is the solution that we found for sealed-bid first-price auctions without a reserve price
(Example 12.15 on page 472).

What is the seller’s expected revenue? Computing this requires first computing each buyer’s
expected payment. Buyer 1’s payment is 0 when v1 ≤ ρ. If v1 > ρ, he wins only if v1 > v2 (an
event that occurs with probability v1), and then he pays β∗(v1) (we are ignoring the possibility that
v1 = v2, which occurs with probability 0). The expected payment of buyer 1 is, therefore,

e =
∫ 1

ρ

v1β
∗(v1)dv1 =

∫ 1

ρ

v1

(
v1

2
+ ρ2

2v1

)
dv1 = 1

2

(
(v1)3

3 + ρ2v1

)∣∣∣1
ρ

= 1
6 + ρ2

2 − 2
3ρ3. (12.103)

Since there are two buyers, the seller’s expected revenue is

π(ρ) = 2e = 1
3 + ρ2 − 4

3 ρ3. (12.104)

Note that π(0) = 1
3 : in a sealed-bid first-price auction without a reserve price, the seller’s expected

revenue is 1
3 . Similarly, π(1) = 0: when the reserve price is 1, with probability 1 no buyer wins the

object and the seller’s expected revenue is 0. What is the reserve price that maximizes the seller’s
expected payoff? To compute that, differentiate the function π , and set the derivative to 0:

0 = π ′(ρ) = 2ρ − 4ρ2. (12.105)

It follows that the reserve price that maximizes the seller’s expected revenue is ρ = 1
2 , at which the

seller’s expected revenue is π( 1
2 ) = 5

12 . Since 5
12 ≥ 1

3 , introducing a reserve price is beneficial for
the seller. Note that 5

12 is also the seller’s expected revenue in a sealed-bid second-price auction
with entry fee 1

4 (see Example 12.28). �

12.7 Risk aversion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

One of the underlying assumptions of our analysis so far has been that the buyers partici-
pating in auctions are risk neutral, and therefore their goal is to maximize their expected
profits. What happens if we drop this assumption? In this section, we will see how
risk-averse buyers behave in sealed-bid first-price and second-price auctions. We will
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consider auction models satisfying Assumptions (A1)–(A5), thus omitting the risk neu-
trality Assumption (A6). For simplicity we maintain the term “symmetric auction with
independent private values” for this model.

Suppose that the buyers satisfy the von Neumann–Morgenstern axioms with respect
to their utility for money (for a review of utility theory, see Chapter 2). In addition,
suppose that each buyer has the same monotonically increasing utility function for money,
U : R → R, satisfying U (0) = 0.

If buyer i’s private value is vi , and his bid is bi , the buyer’s profit is:

� 0, if he does not win the auction.
� vi − bi , if he wins.

If we denote by αbi
the probability that the buyer wins the auction if he bids bi , then when

he bids bi , he is effectively facing the lottery:

[αbi
(vi − bi), (1 − αbi

)0]. (12.106)

Since the buyer’s preference relation satisfies the von Neumann–Morgenstern axioms, and
since U (0) = 0, his utility from this lottery is

U [αbi
(vi − bi), (1 − αbi

)0] = αbi
U (vi − bi). (12.107)

Recall (see Section 2.7 on page 23), that a buyer is risk-averse if his utility function for
money U is concave, is risk-neutral if his utility function U is linear, and is risk-seeking
if his utility function U is convex.

In a sealed-bid second-price auction, the strategy

β(v) = v (12.108)

still weakly dominates all other strategies, even if the buyers are risk-averse (or risk-
seeking). The reasoning behind this is the same reasoning behind the similar conclusion
we presented in the case of risk-neutral buyers, using the fact that U is monotonic (see
Exercise 12.25). The situation is quite different in a sealed-bid first-price auction.

Theorem 12.35 Consider a symmetric sealed-bid first-price auction with independent
private values. Suppose that each buyer has the same utility function for money U that is
monotonically increasing, differentiable, and strictly concave. Let γ be a monotonically
increasing, differentiable, and symmetric equilibrium strategy satisfying γ (0) = 0. Then
γ is the solution of the differential equation

γ ′(v) = (n − 1) × f (v)

F (v)
× U (v − γ (v))

U ′(v − γ (v))
, ∀v > 0 (12.109)

with initial condition γ (0) = 0.

Proof: Since γ is monotonically increasing, if buyer i bids bi , and the other buyers
implement strategy γ , the probability that buyer i wins the auction is (F (γ−1(bi)))n−1.
Since U (0) = 0, the buyer’s utility is

ui(bi, γ−i ; vi) = (F (γ−1(bi)))
n−1 × U (vi − bi). (12.110)
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We will first check that for vi > 0, the maximum of this function is attained at a value
bi , which is in the interval (0, vi). This is accomplished by showing that ui(0, γ−i ; vi) =
ui(γi, γ−i ; vi) = 0 and ui(bi, γ−i ; vi) < 0 for each bi > vi , while ui(bi, γ−i ; vi) > 0 for
each bi ∈ (0, vi).

� If buyer i’s bid is bi = vi , his utility from winning is 0, and therefore ui(γi, γ−i ; vi) = 0.
� Since γ (0) = 0 it follows that F (γ −1(0)) = 0, and therefore ui(0, γ−i ; vi) = 0.
� Since U is monotonically increasing and U (0) = 0, vi − bi < 0 for bi > vi , and there-

fore U (vi − bi) < 0. By Assumptions (A4) and (A5), F (γ−1(bi)) > 0 for every bi > vi ,
and therefore ui(bi, γ−i ; vi) < 0 for every bi > vi .

� Finally, we show that ui(bi, γ−i ; vi) > 0 for every bi ∈ (0, vi). For every bi > 0, since
γ is monotonically increasing, γ−1(bi) > 0, and Assumptions (A4) and (A5) imply that
F (γ−1(bi)) > 0. Since the utility function is monotonically increasing, U (vi − bi) > 0,
and therefore ui(bi, γ−i ; vi) > 0.

We deduce that the maximum of the function bi #→ ui(bi, γ−i ; vi) is indeed attained at a
point in the open interval (0, vi).

We next differentiate the function ui in Equation (12.110) (which is differentiable
because both U and γ are differentiable), yielding

∂ui

∂bi

(bi, γ−i ; vi) = (n − 1)
f (γ −1(bi))

γ ′(γ−1(bi))
(F (γ −1(bi)))

n−2U (vi − bi)

− (F (γ−1(bi)))
n−1U ′(vi − bi). (12.111)

Since the strategy γ is a symmetric equilibrium strategy, the maximum of this function
is attained at bi = γ (vi); and at that point, the derivative vanishes. Thus, by substituting
bi = γ (vi) in Equation (12.111) one has

0 = ∂ui

∂bi

(bi, γ−i ; vi)|bi=γ (vi )

= (n − 1)
f (vi)

γ ′(vi)
(F (vi))

n−2U (vi − γ (vi)) − (F (vi))
n−1U ′(vi − γ (vi)). (12.112)

Because vi > 0, and by Assumption (A5), F (vi) > 0. Reducing the factor (F (vi))n−2 in
Equation (12.112), and rearranging the remaining equation, yields Equation (12.109). �

We now prove that when all the buyers are risk averse and have the same utility function,
the submitted bids in equilibrium are higher than the bids that would be submitted by
risk-neutral buyers. The intuition behind this result is that risk-averse buyers are more
concerned about not winning the auction, and therefore they submit higher bids than
risk-neutral buyers.

Theorem 12.36 Suppose that in a symmetric sealed-bid first-price auction with indepen-
dent private values, each buyer’s utility function U is monotonically increasing, differ-
entiable, strictly concave, and satisfies U (0) = 0. Let γ be a monotonically increasing,
differentiable, symmetric equilibrium strategy satisfying γ (0) = 0, and let β be monoton-
ically increasing, differentiable, symmetric equilibrium strategy satisfying β(0) = 0 in the
auction when the buyers are risk-neutral. Then γ (v) > β(v) for each v > 0.
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x

U(v)

Slope U(v)
v

Slope U (v)

Figure 12.3 U (v)
v

> U ′(v) for a strictly concave function U

Proof: Theorem 12.35 implies that

γ ′(v) = (n − 1)
f (v)

F (v)
× U (x − γ (v))

U ′(v − γ (v))
, ∀v > 0 (12.113)

Since the strategy β also satisfies the conditions of Theorem 12.35, this strategy, for
risk-neutral buyers, satisfies Equation (12.113) with utility function U (v) = v

β ′(v) = (n − 1)
f (v)

F (v)
× (v − β(v)), ∀v > 0. (12.114)

Since U is a strictly concave function, and U (0) = 0, it follows that U ′(v) < U (v)
v

(see
Figure 12.3), or equivalently, U (v)

U ′(v) > v.
It follows that

γ ′(v) = (n − 1)
f (v)

F (v)
× U (v − γ (v))

U ′(v − γ (v))
> (n − 1)

f (v)

F (v)
× (v − γ (v)). (12.115)

To show that γ (v) > β(v) for each v > 0, note that if v0 > 0 satisfies γ (v0) ≤ β(v0), then

γ ′(v0) > (n − 1)
f (v0)

F (v0)
× (v0 − γ (v0)) (12.116)

≥ (n − 1)
f (v0)

F (v0)
× (v0 − β(v0)) = β ′(v0) > 0. (12.117)

Define δ(v) := γ (v) − β(v) for all v ∈ V. Equations (12.116)–(12.117) show that δ′(v) >

0 for each v > 0 such that δ(v) ≤ 0. It follows that if there exists v0 > 0 such that
δ(v0) ≤ 0, then δ(v) < 0 for each v ∈ [0, v0). Since δ(0) = γ (0) − β(0) = 0, there does
not exist v0 > 0 such that δ(v0) ≤ 0. In other words, γ (v) > β(v) for each v > 0. �

In the model used in this section, in which all the buyers have the same utility function
for money, the bids submitted by the buyers in the symmetric equilibrium of the sealed-
bid first-price auctions are higher if all buyers are risk averse, which implies that the
seller’s expected revenue is higher. In contrast, in sealed-bid second-price auctions, the
bids submitted by buyers in the symmetric equilibrium equal their private values, whether
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they are risk-averse or risk-neutral, and hence the seller’s expected revenue is equal in
either case. This leads to the following corollary.

Corollary 12.37 In a symmetric sealed-bid auction with independent private values,
when buyers are risk averse, and they all have the same monotonically increasing, dif-
ferentiable, and strictly concave utility function, the seller’s expected revenue in the
symmetric equilibrium is higher in a sealed-bid first-price auction than in a sealed-bid
second-price auction. In particular, this proves that the Revenue Equivalence Theorem
does not apply when the buyers are risk averse.

The converse corollary can similarly be proved for risk-seeking buyers (Exercise 12.26):
In a symmetric sealed-bid auction with independent private values, when the buyers are risk
seeking and they all have the same monotonically increasing, differentiable, and strictly
convex utility functions the seller’s expected revenue in the symmetric equilibrium is
lower in a first-price auction than in a second-price auction.

12.8 Mechanism design
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have presented up to now several auction methods, which we analyzed by computing an
equilibrium in each auction, and studying its properties. The advantages and disadvantages
of a particular auction method were then judged by the properties of its equilibrium. A
natural question that arises is whether one can plan an auction method, or more generally
a selling mechanism, that can be expected to yield a “desired outcome.” In other words,
what we seek is a selling mechanism whose equilibrium has “desired properties,” such
as efficiency and maximizing the revenue of the seller. In this section we will study
mechanism design, a subject that focuses on these sorts of questions.

Definition 12.38 A selling problem is a vector (N ; (Vi , fi)i∈N ) such that:

� N = {1, 2, . . . , n} is a set of buyers.
� Vi is a bounded interval [0, v] or an infinite interval [0,∞).
� fi : Vi → [0,∞) is a density function, i.e.,

∫
Vi

fi(v)dv = 1.

A selling problem serves as a model for the following situation:

� A seller wishes to sell an indivisible object, whose value for the seller is normalized to
be 0.

� The set of buyers is N = {1, 2, . . . , n}. The buyers are all risk-neutral, and each seeks
to maximize the expected value of his profit.

� The private value of buyer i is a random variable Vi with values in the interval Vi . This is
a continuous random variable whose density function is fi . The random variables (Vi)i∈N

are independent random variables that do not necessarily have the same distribution; we
do not rule out the possibility that fi �= fj for different buyers i and j .

� Each buyer knows his private value and does not know the private values of the other
buyers, but he knows the distributions of the random variables (Vj )j �=i .
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Denote by VN := V1 × V2 × · · · × Vn the space of all possible vectors of private
values. Since the private value of the buyers are independent, the joint density function of
the vector V = (V1, V2, . . . , Vn) is

fV (v) =
∏
i∈N

fi(vi). (12.118)

Denote:

f−i(v−i) :=
∏
j �=i

fj (vj ). (12.119)

f−i is the joint density function of V−i = (Vj )j �=i . Since the private values are independent,
this is also the marginal density of V over V−i , conditioned on Vi , where V−i := ×j �=iVj

is the set of all possible private value vectors of all the buyers except for buyer i.

Definition 12.39 A selling mechanism for a selling problem (N, (Vi , fi)i∈N ) is a vector
((�i, q̂i, μ̂i)i∈N ) where, for each buyer i ∈ N:

1. �i is a measurable space6 of messages that buyer i can send to the seller. The space
of the message vectors is � = �1 × �2 × · · · × �n.

2. q̂i : � → [0, 1] is a function mapping each vector of messages to the probability that
buyer i wins the object. (Necessarily,

∑
i∈N q̂i(θ) ≤ 1, for every θ ∈ �.)

3. μ̂i : � → R is a function mapping every vector of messages to the payment that buyer
i makes to the seller (whether or not he wins the object).

If
∑

i∈N q̂i(θ) < 1 for a particular θ ∈ �, then when the message vector received by the
seller is θ there is a positive probability that the object will not be sold (and will therefore
remain in the possession of the seller).

Given a selling mechanism, we define the following game:

� The set of players (buyers) is N .
� Each buyer i ∈ N chooses a message θi ∈ �i . Denote θ = (θ1, θ2, . . . , θn).
� Buyer i wins the object with probability q̂i(θ). The object remains in the possession of

the seller with probability 1 −∑
i∈N q̂i(θ).

� Every buyer i pays to the seller the amount μ̂i(θ).

The space of messages in a selling mechanism may be very complex: if the selling
mechanism includes negotiations, the message space may include the buyer’s first offer,
his second offer to every counteroffer of the seller, and so on.

From now on we study selling mechanisms for a given selling problem.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Recall that �i is a measurable space if it has an associated σ -algebra, i.e., a collection of subsets of �i containing
the empty set that is closed under countable unions and set complementation.
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Example 12.40 Sealed-bid first-price auction A sealed-bid first-price auction with risk-neutral buyers can

be presented as a selling mechanism as follows:

� �i = [0,∞): Buyer i’s message is a nonnegative number; this is buyer i’s bid.
� Denote by

N (θ ) := |{i ∈ N : θi = max
j∈N

θj }| (12.120)

the number of buyers who submit the highest bid.7

q̂i (θ ) =
{ 1

N (θ ) if θi = maxj∈N θj ,

0 if θi < maxj∈N θj .
(12.121)

� The payment that buyer i makes is

μ̂i (θ ) =
{ θi

N (θ ) if θi = maxj∈N θj ,

0 if θi < maxj∈N θj .
(12.122)

This description differs from the auction descriptions we previously presented only in the payment
that the buyer who submits the highest bid makes, and only in the case that several buyers submit
the same bid. In the description of an auction as a selling mechanism, all the buyers who submitted
the highest bid equally share the cost of that bid whether or not they finally get the object, while
in the description on page 465, only the winner of the object pays its full price, which equals his
bid. But this difference does not change the strategic considerations of the buyers: when there are
several buyers submitting the same highest bid and the winner of the object is chosen from among
them according to the uniform distribution, in both cases the expected payment that the buyer who
wins the auction makes is the amount that he bid, divided by N (θ ), and his probability of winning
is 1

N (θ ) . Since the buyers are risk-neutral and the goal of each buyer is to maximize his expected
profit, the strategic considerations of the buyers, under both definitions, are unchanged. �

Example 12.41 Sealed-bid second-price auction Similar to a sealed-bid first-price auction, a sealed-bid

second-price auction with risk-neutral buyers can also be presented as a selling mechanism. The
only difference is in the payment function, μ̂, which is given as follows:

μ̂i(θ ) =
{

maxj �=i θj

N (θ ) if θi = maxj∈N θj ,

0 if θi < maxj∈N θj .
(12.123)

Again, N (θ ) is the number of buyers who submitted the highest bid. �

As the following theorem states, every sealed-bid auction is an example of a selling
mechanism. The proof of the theorem is left to the reader (Exercise 12.28).

Theorem 12.42 Every sealed-bid auction with risk-neutral buyers can be presented as
a selling mechanism.

The game that corresponds to a selling mechanism is a Harsanyi game with incomplete
information (see Definition 9.39 on page 347).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Recall that for every finite set A, the number of elements in A is denoted by |A|.
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� The set of players is the set of buyers N = {1, 2, . . . , n}.
� Player i’s set of types is Vi . Denote VN := ×i∈N Vi .
� The distribution of the set of type vectors is a product distribution, whose density is fV .
� For each type vector v ∈ VN , the state of nature sv is the state game defined by

� player i’s set of actions is �i ;
� for each vector of actions θ ∈ �, buyer i’s utility is

ui(v; θ) = q̂(θ)vi − μ̂i(θ). (12.124)

In other words, the buyer pays μ̂i(θ) in any event, and if he wins the auctioned object,
he receives vi , his value of the object.

A pure strategy for player i is a measurable function βi : Vi → �i . For each strategy
vector β−i = (βj )j �=i of the other buyers, denote by ui(θi, β−i; vi) buyer i’s expected
profit, when his private value is vi , and he sends message θi :

ui(θi, β−i ; vi)

=
∫

V−i

ui(vi ; β1(v1), . . . , βi−1(vi−1), θi, βi+1(vi+1), . . . , βn(vn))f−i(v)dv−i . (12.125)

The definition of a Bayesian equilibrium of the game with incomplete information that
corresponds to a selling mechanism is as follows (see Definition 9.49 on page 354).

Definition 12.43 A vector β = (β1, β2, . . . , βn) of strategies is a (Bayesian) equilibrium
if for each buyer i ∈ N , and every private value vi ∈ Vi ,

ui(βi(vi), β−i ; vi) ≥ ui(θi, β−i ; vi), ∀θi ∈ �i. (12.126)

A simple set of mechanisms is the set of direct selling mechanisms, in which the set of
messages of each buyer is his set of private values.

Definition 12.44 A selling mechanism (�i, q̂i, μ̂i)i∈N is called direct if �i = Vi for each
buyer i ∈ N .

A direct selling mechanism is a mechanism in which every buyer is required to report a
private value; he may report his true private value or make up any other value to report.
We will denote a direct selling mechanism by (̂q, μ̂) for short, where q̂ = (̂qi)i∈N and
μ̂ = (μ̂i)i∈N .

When a mechanism is direct, a possible strategy that a buyer may use is to report his
true private value:

β∗
i (vi) = vi, ∀vi ∈ Vi . (12.127)

We refer to this as the “truth-telling” strategy.

Definition 12.45 A direct selling mechanism (̂q, μ̂) is incentive compatible if the vector
β∗ = (β∗

i )i∈N of truth-telling strategies β∗
i (vi) = vi is an equilibrium.

The reason we use the term “incentive compatible” is because if β∗ is an equilibrium,
then each buyer has an incentive to report his private value truthfully: he cannot profit by
lying in reporting his private value. This property is analogous to the nonmanipulability
property that we will discuss in Chapter 21, on social choice theory.
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The direct selling mechanism depicted in Example 12.41 for a sealed-bid second-
price auction is an incentive compatible mechanism, because in a sealed-bid second-price
auction, the strategy vector β∗ in which every buyer’s bid equals his private value is
an equilibrium. In contrast, the direct selling mechanism depicted in Example 12.40,
corresponding to a sealed-bid first-price auction, is not incentive compatible, because in
sealed-bid first-price auction the strategy vector β∗ is not an equilibrium. As the next
example shows, when the buyers are symmetric, it is nevertheless possible to describe
sealed-bid first-price auctions as incentive-compatible direct selling mechanisms.

Example 12.46 Sealed-bid first-price auction: another representation as a selling mechanism Consider

a symmetric sealed-bid first-price auction that satisfies Assumptions (A4)–(A6). Let β = (βi)i∈N

be an equilibrium of the auction. Consider the following direct selling mechanism:

� �i = [0,∞): buyer i’s message is a nonnegative number.
� The probability that buyer i wins the auctioned object is

q̂i (θ ) =
{ 1

N (θ ) if θi = maxj∈N θj ,

0 if θi < maxj∈N θj .
(12.128)

� The expected payment that buyer i makes is

μ̂i(θ ) =
{

βi(θi) if θi = maxj∈N θj ,

0 if θi < maxj∈N θj .
(12.129)

In words, a buyer submitting the highest bid pays the expected sum that he would pay under
equilibrium β when the private values are (θi)i∈N . Since β is a symmetric equilibrium strategy, the
strategy vector β∗, under which each buyer reports his private value, is an equilibrium in this selling
mechanism, and therefore in particular this selling mechanism is incentive compatible. �

12.8.1 The revelation principle
The idea in Example 12.46 can be generalized to any selling mechanism: let (�i, q̂i, μ̂i)i∈N

be a selling mechanism, and let β̂ be an equilibrium of this mechanism. We can then define
a direct selling mechanism (q, μ), as follows: if the buyers report the private values vector
v = (vi)i∈N , the mechanism computes what message β̂i(vi) the buyer would have sent in
the original mechanism, and then proceeds exactly as that mechanism would have done
under those messages: for each buyer i ∈ N ,

qi(v) := q̂i(β̂1(v1), . . . , β̂n(vn)), (12.130)

μi(v) := μ̂i(β̂1(v1), . . . , β̂n(vn)). (12.131)

The mechanism (q, μ) is schematically described in Figure 12.4. Since the strategy vector
β̂ is an equilibrium of the mechanism (�i, q̂i, μ̂i)i∈N , the strategy vector β∗ according
to which every buyer reports his true private value is an equilibrium of the mechanism
(q, μ). This leads to the following theorem, which is called the revelation principle.

Theorem 12.47 (Myerson [1979]) Let (�i, q̂i, μ̂i)i∈N be a selling mechanism, and let β̂

be an equilibrium of this mechanism. There exists an incentive-compatible direct selling
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v1

v2

vn

β1

β2

βn

θ1

θ2

θn

(Θi , qi , µ i ) i ∈N

(q, µ )

Figure 12.4 A selling mechanism, along with a θ incentive-compatible direct selling
mechanism that is equivalent to it

mechanism (q, μ) satisfying that the outcome of the original mechanism under β̂ is
identical to the outcome of (q, μ) under β∗ (which is the truth-telling equilibrium):

q̂
(
β̂1(v1), β̂2(v2), . . . , β̂n(vn)

) = q(v1, v2, . . . , vn), ∀(v1, . . . , vn) ∈ V,

(12.132)

μ̂
(
β̂1(v1), β̂2(v2), . . . , β̂n(vn)

) = μ(v1, v2, . . . , vn), ∀(v1, . . . , vn) ∈ V.

(12.133)

The proof of the theorem is left to the reader as an exercise (Exercise 12.30). The theo-
rem’s importance stems from the fact that incentive-compatible direct selling mechanisms
are simple and easy to work with, resulting in simpler mathematical analysis. The space of
messages in a generic selling mechanism may be quite large, and the revelation principle
simplifies the effort required to analyze selling mechanisms. It implies that it suffices
to consider only incentive-compatible direct selling mechanisms, because every general
selling mechanism has an incentive-compatible, direct mechanism that is equivalent to it
in the sense of Theorem 12.47.

12.8.2 The Revenue Equivalence Theorem
In this section we prove a general Revenue Equivalence Theorem for selling mechanisms,
which includes the Revenue Equivalence Theorem for auctions as a special case (Theo-
rem 12.23 on page 478). To that end, we first introduce some new notation, and prove
intermediate results.

Consider a direct selling mechanism (q, μ). When buyer i reports that his private value
is xi , and the other buyers report their true private values, the probability that buyer i wins
the object is

Qi(xi) =
∫

V−i

qi(xi, v−i)f−i(v−i)dv−i , (12.134)
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and the expected payment he makes is

Mi(xi) =
∫

V−i

μi(xi, v−i)f−i(v−i)dv−i . (12.135)

Because the private value of the buyers are independent, these two quantities are inde-
pendent of buyer i’s true private value, and depend solely on the message xi that he
reports.

Buyer i’s expected profit, when his true private value is vi and he reports xi , is

ui(xi, β
∗
−i ; vi) = Qi(xi)vi − Mi(xi). (12.136)

In other words, the buyer’s expected profit is the probability that he wins the auction,
times his private value, less the expected payment that he makes. Given this, the following
equation is obtained:

ui(xi, β
∗
−i; vi) = Qi(xi)vi − Mi(xi) (12.137)

= Qi(xi)xi − Mi(xi) + Qi(xi)(vi − xi) (12.138)

= ui(xi, β
∗
−i ; xi) + Qi(xi)(vi − xi). (12.139)

Denote buyer i’s expected profit when he reports his true private value by

Wi(vi) = ui(vi, β
∗
−i ; vi). (12.140)

Inserting xi = vi into Equation (12.136), one has

Wi(vi) = Qi(vi)vi − Mi(vi). (12.141)

Theorem 12.48 A direct selling mechanism (q, μ) is incentive compatible if and only if

Wi(vi) ≥ Wi(xi) + Qi(xi) (vi − xi) , ∀i ∈ N, ∀vi ∈ Vi, ∀xi ∈ Vi . (12.142)

Proof: A direct selling mechanism (q, μ) is incentive compatible if and only if equilibrium
is attained when all buyers report their true private values. This means that for each buyer i,
each private value vi ∈ Vi , and each possible report xi ∈ Vi ,

ui(vi, β
∗
−i ; vi) ≥ ui(xi, β

∗
−i ; vi). (12.143)

Since ui(vi, β
∗
−i ; vi) = Wi(vi) (Equation (12.140)), Equations (12.137)–(12.139) imply

that Equation (12.143) is equivalent to

Wi(vi) ≥ ui(xi, β
∗
−i; xi) + Qi(xi)(vi − xi) = Wi(xi) + Qi(xi)(vi − xi). (12.144)

In other words, (q, μ) is incentive compatible if and only if Equation (12.144) obtains,
which is what we needed to prove. �

The following theorem yields an explicit formula for computing a buyer’s expected
profit in an incentive-compatible direct selling mechanism.
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Theorem 12.49 Let (q, μ) be an incentive-compatible direct selling mechanism. Then
for each vi ∈ Vi ,

Wi(vi) = Wi(0) +
∫ vi

0
Qi(ti)dti (12.145)

= −Mi(0) +
∫ vi

0
Qi(ti)dti . (12.146)

We see from Equation (12.146) that buyer i’s expected profit depends on the payment
he makes for the object, Mi , only through Mi(0) – the sum that he pays when the private
value that he reports is 0. Inserting Equation (12.141) into Equation (12.146), one gets

Mi(vi) = Mi(0) + Qi(vi)vi −
∫ vi

0
Qi(ti)dti . (12.147)

This equation is an explicit formula for a buyer’s expected payment under the truth-telling
equilibrium β∗ as a function of Mi(0), and of his probability of winning.

Proof of Theorem 12.49: Note that if Equation (12.145) is satisfied, then Equation
(12.146) also holds, since

Wi(0) = ui(0, β∗
−i ; 0) = Qi(0) × 0 − Mi(0) = −Mi(0). (12.148)

To prove Equation (12.145), we first prove that the function Qi is monotonically non-
decreasing. Since (q, μ) is an incentive-compatible mechanism, Theorem 12.48 implies
that

Wi(vi) − Wi(xi) ≥ Qi(xi) (vi − xi) , ∀i ∈ N, ∀vi ∈ Vi , ∀xi ∈ Vi . (12.149)

In particular:

Wi(vi) − Wi(xi) ≥ Qi(xi) (vi − xi) , ∀vi ≥ xi. (12.150)

Reversing the roles of xi and vi in Equation (12.149), and re-inserting vi ≥ xi , one gets

Wi(xi) − Wi(vi) ≥ Qi(vi) (xi − vi) , ∀vi ≥ xi. (12.151)

Multiplying both sides of the inequality sign in this equation by −1 yields:

Wi(vi) − Wi(xi) ≤ Qi(vi) (vi − xi) , ∀vi ≥ xi. (12.152)

Note the resemblance between the inequalities in Equations (12.150) and (12.152): the
only difference is the argument of Qi , and the direction of the inequality sign. Equations
(12.150) and (12.152) imply that for each xi and vi ,

Qi(xi) (vi − xi) ≤ Wi(vi) − Wi(xi) ≤ Qi(vi) (vi − xi) , ∀vi ≥ xi. (12.153)

For vi > xi , we can divide Equation (12.153) by vi − xi , which yields

If vi > xi then Qi(vi) ≥ Qi(xi). (12.154)

That is, the function Qi is a monotonically nondecreasing function, and is therefore in
particular integrable.

We next turn to the proof that Equation (12.145) is satisfied. Let vi ∈ Vi , vi > 0, and
consider the integral

∫ vi

0 Qi(ti)dti as the limit of Riemann sums of the function Qi . Divide
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the interval [0, vi] into L intervals of length δ = vi

L
; denote by zk = (k + 1)δ the rightmost

(upper) end of the k-th interval, and by xk = kδ its leftmost (lower) end. Inserting vi = zk

and xi = xk in Equation (12.153) and summing over k = 0, 1, . . . , L − 1 yields

L−1∑
k=0

Qi(x
k)(zk − xk) ≤

L−1∑
k=0

(Wi(z
k) − Wi(x

k)) ≤
L−1∑
k=0

Qi(z
k)(zk − xk). (12.155)

The middle series is a telescopic series that sums to Wi(vi) − Wi(0). The left series is a
Riemann sum, where the value of the function is taken to be its value at the leftmost end
of each interval, and the right series is a Riemann sum, where the value of the function
is taken to be its value at the rightmost end of the interval. By increasing L (letting δ

approach 0), both the right series and the left series converge to
∫ vi

0 Qi(ti)dti , which yields∫ vi

0
Qi(ti)dti = Wi(vi) − Wi(0), (12.156)

and hence Equation (12.145) is satisfied. �

Corollary 12.50 Let (q, μ) and (̃q, μ̃) be two incentive-compatible direct selling mech-
anisms defined over the same selling problem (N, (Vi , fi)i∈N ) and satisfying:

� q = q̃: the rule determining the winner is identical in both mechanisms.
� μi(0, v−i) = μ̃i(0, v−i): a buyer who reports that his private value is 0 pays the same

sum in both mechanisms.

Then at the truth-telling equilibrium β∗ the expected profit of each buyer is the same in
both mechanisms:

ui(vi, β
∗
−i ; vi) = ũi(vi, β

∗
−i; vi), (12.157)

where ũi(vi, β
∗
−i ; vi) is seller i’s expected revenue under equilibrium β∗ using the selling

mechanism (̃q, μ̃).

Proof: Since both mechanisms apply identical rules for determining the winner, the
probability that a buyer with private value vi wins is equal in both mechanisms: the
second term in Equation (12.146) is therefore the same in both mechanisms. Since in both
cases a buyer who reports 0 pays the same amount, the first term in Equation (12.146) is
also the same in both mechanisms. Equation (12.146) therefore implies that the expected
profit of each buyer is equal in both mechanisms. �

Since every auction is, in particular, a selling mechanism, Corollary 12.50 implies the
Revenue Equivalence Theorem (Corollary 12.24, page 479) as the reader is asked to prove
in Exercise 12.31.

12.9 Individually rational mechanisms
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A direct selling mechanism is called individually rational if at the truth-telling equilibrium
β∗, the expected profit of each buyer is nonnegative.



501 12.10 Finding the optimal mechanism

Definition 12.51 A direct selling mechanism is called individually rational if Wi(vi) ≥ 0
for each buyer i and for every vi ∈ Vi .

If Wi(vi) < 0, buyer i with private value vi will not want to participate, because by
doing so he is liable to lose. Therefore, assuming that the equilibrium β∗ is attained, a
buyer cannot lose by participating in a sale by way of a direct and individually rational
selling mechanism.

Theorem 12.52 An incentive-compatible direct selling mechanism is individually ratio-
nal if and only if Mi(0) ≤ 0, for each buyer i ∈ N .

Proof: From Equations (12.145)–(12.146):

Wi(vi) = −Mi(0) +
∫ vi

0
Qi(ti)dt. (12.158)

Since the function Qi is nonnegative, the right-hand side of the equation is minimal when
vi = 0. That is, Wi(vi) is minimal at vi = 0. Therefore, the mechanism is individually
rational if and only if 0 ≤ Wi(0) = −Mi(0), that is, if and only if Mi(0) ≤ 0, for each
buyer i ∈ N , which is what we needed to prove. �

12.10 Finding the optimal mechanism
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we will find the incentive-compatible and individually rational mechanism
that maximizes the seller’s expected revenue. We will assume the following condition,
which is similar to Assumption (A5):

(B) For every buyer i, the density function fi of buyer i’s private values is positive over
the interval Vi .

Remark 12.53 Changing a density function at a finite (or countable) number of points
does not affect the distribution. Therefore, if a density function is zero at a finite number
of points, it can be changed to satisfy Assumption (B). �

Define, for each buyer i, a function ci : Vi → R as follows:

ci(vi) = vi − 1 − Fi(vi)

fi(vi)
. (12.159)

This function depends only on the distribution of the buyer’s private values. From Assump-
tion (B), the function ci is well defined over the interval Vi .

Example 12.54 The private value is uniformly distributed over [0, 1] Since fi (vi ) = 1 and Fi(vi) = vi ,

for each vi ∈ [0, 1]:

ci (vi ) = vi − 1 − vi

1
= 2vi − 1. (12.160)

�
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Example 12.55 The distribution of the private values over [0, 1] is given by the cumulative distribution

function Fi(vi ) = vi(2 − vi) In this case, fi (vi) = 2(1 − vi ), and therefore

ci (vi ) = vi − 1 − vi(2 − vi )

2(1 − vi)
= 3vi − 1

2
. (12.161)

�

We will first prove the following claim:

Theorem 12.56 E[ci(Vi)] = 0 for each buyer i ∈ N .

Proof:

E[ci(Vi)] =
∫

Vi

(
vi − 1 − Fi(vi)

fi(vi)

)
fi(vi)dvi

= E[Vi] −
∫

Vi

(1 − Fi(vi))dvi = 0, (12.162)

where the last equality obtains because for every nonnegative random variable,

E[X] =
∫ ∞

0
(1 − FX(x))dx. (12.163)

�

Using the functions (ci)i∈N , we define a direct selling mechanism (q∗, μ∗).

Definition 12.57 Define the direct mechanism (q∗, μ∗) as follows:

q∗
i (v) =

⎧⎨⎩
0 ci(vi) ≤ 0,

0 ci(vi) < maxj∈N cj (vj ),
1

|{l : cl (vl )=maxj∈N cj (vj )}| ci(vi) = maxj∈N cj (vj ) > 0.
(12.164)

μ∗
i (v) = viq

∗
i (v) −

∫ vi

0
q∗

i (ti , v−i)dti . (12.165)

In other words, buyer i wins the object (with positive probability) only if ci(vi) is
positive and maximal.

First, we will show that if the function ci is nondecreasing, then the mechanism (q∗, μ∗)
is incentive compatible and individually rational. Then we will show that, if ci is monotoni-
cally nondecreasing, (q∗, μ∗) maximize the seller’s expected revenue among the incentive-
compatible and individually rational direct selling mechanisms.

Theorem 12.58 If for each buyer i ∈ N the function ci is nondecreasing, then the direct
mechanism (q∗, μ∗) is incentive compatible and individually rational.

Proof: In the direct mechanism (q∗, μ∗), when each buyer reports his true private value,
for each buyer i with private value is vi denote by Q∗

i (vi) buyer i’s probability of winning
the object, by M∗

i (vi) the expected payment that buyer i makes, and by U ∗
i (vi) his expected

profit in this case. Also denote by u∗
i (xi, β

∗
−i ; vi) the expected profit of buyer i with private

value vi if he reports xi while all other buyers truthfully report their private value.
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Step 1: The function Q∗
i is nondecreasing: Q∗

i (ti) ≥ Q∗
i (xi) for all ti ≥ xi .

Since the function ci is nondecreasing, the definition of q∗ (Equation (12.164)) implies
that the greater the buyer’s private value, the greater his probability of winning, i.e., for
each buyer i, for any ti ≥ xi and for any v−i ∈ V−i ,

q∗
i (ti , v−i) ≥ q∗

i (xi, v−i). (12.166)

Integrating over V−i yields∫
V−i

q∗
i (ti , v−i)f−i(v−i)dv−i ≥

∫
V−i

q∗
i (xi, v−i)f−i(v−i)dv−i . (12.167)

By the definition of Q∗
i (see Equation (12.134)),

Q∗
i (ti) ≥ Q∗

i (xi), ∀i ∈ N, ∀ti ≥ xi. (12.168)

Step 2: u∗
i (xi, β

∗
−i ; vi) = Q∗

i (xi)(vi − xi) +
∫ xi

0 Q∗
i (ti)dti for each i ∈ N and every xi ∈ Vi .

By definition (see Equation (12.136)),

u∗
i (xi, β

∗
−i; vi) = Q∗

i (xi)vi − M∗
i (xi), (12.169)

and

M∗
i (xi) =

∫
V−i

μ∗
i (xi, v−i)f−i(v−i)dv−i (12.170)

=
∫

V−i

(
xiq

∗
i (xi, v−i) −

∫ xi

0
q∗

i (ti , v−i)dti

)
f−i(v−i)dv−i

= xiQ
∗
i (xi) −

∫ xi

0
Q∗

i (ti)dti ,

where the first equality follows from Equation (12.135), the second equality follows the
definition of μ∗ (Equation (12.165)), and the third equality follows from the definition of
Q∗

i , and changing the order of integration. Inserting this equation into Equation (12.169),
one has

u∗
i (xi, β

∗
−i ; vi) = Q∗

i (xi)(vi − xi) +
∫ xi

0
Q∗

i (ti)dti , (12.171)

as claimed. This equation obtains for every xi ∈ Vi , and in particular, for xi = vi , it
becomes u∗

i (vi, β
∗
−i ; vi) =

∫ vi

0 Q∗
i (ti)dti .

Step 3: The mechanism (q∗, μ∗) is a incentive-compatible direct selling mechanism.
The mechanism is incentive compatible if and only if reporting the truth is an equilibrium:

u∗
i (vi, β

∗
−i; vi) ≥ u∗

i (xi, β
∗
−i ; vi), ∀vi, xi ∈ Vi . (12.172)

By substituting the expression for u∗
i (xi, β

∗
−i; vi) obtained in Equation (12.171) into both

the left-hand side and the right-hand side of Inequality (12.172) we deduce that the
mechanism is incentive compatible if and only if

Q∗
i (xi)(vi − xi) +

∫ xi

0
Q∗

i (ti)dti ≤
∫ vi

0
Q∗

i (ti)dti , ∀vi, xi ∈ Vi . (12.173)
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The last equation holds if and only if

Q∗
i (xi)(vi − xi) ≤

∫ vi

xi

Q∗
i (ti)dti , ∀vi, xi ∈ Vi . (12.174)

By Step 1 the function Q∗
i is nondecreasing. Thus, if xi ≤ vi then Q∗

i (xi) ≤ Q∗
i (t) for all

t ∈ [xi, vi], and therefore

Q∗
i (xi)(vi − xi) =

∫ vi

xi

Q∗
i (xi)dti ≤

∫ vi

xi

Q∗
i (ti)dti (12.175)

and Equation (12.174) holds. If xi > vi ,

Q∗
i (xi)(xi − vi) =

∫ xi

vi

Q∗
i (xi)dti ≥

∫ xi

vi

Q∗
i (ti)dti, (12.176)

and therefore

Q∗
i (xi)(vi − xi) = −Q∗

i (xi)(xi − vi) ≤ −
∫ xi

vi

Q∗
i (ti)dti =

∫ vi

xi

Q∗
i (ti)dti ,

and Equation (12.174) also holds.

Step 4: The mechanism (q∗, μ∗) is individually rational.
Since the mechanism is direct and incentive compatible, by Theorem 12.52 it suffices to
show that M∗

i (0) ≤ 0 for every buyer i ∈ N . By Equation (12.165), for every v−i ∈ V−i ,

μ∗
i (0, v−i) = 0 · q∗

i (0, v−i) +
∫ 0

0
q∗

i (ti , v−i)dti = 0. (12.177)

It follows that

M∗
i (0) =

∫
V−i

μ∗
i (0, v−i)f−i(v−i)dv−i = 0, (12.178)

and therefore in particular M∗
i (0) ≤ 0. �

The next theorem shows that if the functions (ci)i∈N are monotonically nondecreasing,
then the mechanism (q∗, μ∗) is optimal from the seller’s perspective.

Theorem 12.59 Consider the selling problem (N, (Vi , fi)i∈N ) and suppose that the
functions (ci)i∈N defined by Equation (12.159) are monotonically nondecreasing. Then
the mechanism (q∗, μ∗) defined by Equations (12.164)–(12.165) maximizes the seller’s
expected revenue within all incentive-compatible, individually rational direct selling
mechanisms.

Proof: The seller’s revenue is the sum of the payments made by the buyers. His expected
revenue, which we will denote by π , is therefore

π =
∑
i∈N

E[Mi(Vi)]. (12.179)
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From8 Equation (12.147),

E[Mi(Vi)] =
∫ vi

0
Mi(vi)fi(vi)dvi

= Mi(0) +
∫ vi

0
Qi(vi)vifi(vi)dvi

−
∫ vi

0

(∫ vi

0
Qi(ti)dti

)
fi(vi)dvi. (12.180)

Changing the order of integration in the last term, and using the fact that Fi(vi) = 1 yields:∫ vi

0

(∫ vi

0
Qi(ti)dti

)
fi(vi)dvi =

∫ vi

0

(∫ vi

ti

Qi(ti)fi(vi)dvi

)
dti

=
∫ vi

0
Qi(ti)(1 − Fi(ti))dti . (12.181)

It follows that

E[Mi(Vi)] = Mi(0) +
∫ vi

0
Qi(vi)vifi(vi)dvi −

∫ vi

0
Qi(ti)(1 − Fi(ti))dti (12.182)

= Mi(0) +
∫ vi

0
Qi(vi)fi(vi)

(
vi − 1 − Fi(vi)

fi(vi)

)
dvi (12.183)

= Mi(0) +
∫ vi

0
Qi(vi)ci(vi)fi(vi)dvi (12.184)

= Mi(0) +
∫

VN

qi(v)ci(vi)fV (v)dv. (12.185)

Equation (12.184) follows from the definition of ci , and Equation (12.185) holds by
Equation (12.134) (page 497) together with the fact that the private values are independent.
By summing over i ∈ N , we deduce that the seller should maximize the quantity

π =
∑
i∈N

Mi(0) +
∫

VN

(∑
i∈N

qi(v)ci(vi)

)
fV (v)dv. (12.186)

The first term depends only on (Mi(0))i∈N , i.e., only on (μi)i∈N , and the second term
depends only on (qi)i∈N . To maximize π it therefore suffices to maximize each term
separately.

Start with the second term. For each v ∈ V, consider
∑

i∈N qi(v)ci(vi). What are the
coefficients (qi(v))i∈N that maximize this sum?

� If ci(vi) < 0 for every i ∈ N , the sum is maximized when qi(v) = 0 for each i ∈ N .
� If maxi∈N ci(vi) ≥ 0, the maximum of the sum (under the constraint

∑
i∈N qi(v) ≤ 1)

is maxi∈N ci(vi): give positive weights (summing to 1) only to those buyers for whom
ci(vi) is maximal.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 When Vi is not bounded we denote vi = ∞ and Fi (vi ) := limvi→∞ Fi (vi ).



506 Auctions

Since (q∗
i )i∈N have been defined to satisfy these conditions (see Equation (12.164)), it

follows that the second term in Equation (12.186) is maximal for q = q∗. We next turn to
the first term in Equation (12.186). By Theorem 12.52, Mi(0) ≤ 0 for every individually
rational direct selling mechanism. Therefore, the first term is not greater than 0. As we
proved in Step 4 above (Equation (12.178)), M∗

i (0) = 0 for all i ∈ N , and therefore μ∗

maximizes the first term in Equation (12.186). The definition of (μ∗
i )i∈N implies that

M∗
i (0) = 0. It follows that there is no incentive-compatible direct selling mechanism that

yields the seller an expected revenue greater than his expected revenue yielded by (q∗, μ∗).
�

Example 12.60 Private values distributed over different intervals Suppose that there are two buyers,

where buyer 1’s private value is uniformly distributed over [0, 1], and buyer 2’s private value is
uniformly distributed over [0, 2]. As we saw in Example 12.54, c1(v1) = 2v1 − 1, and therefore
c1(v1) < 0 if and only if v1 < 1

2 . For buyer 2, f2(v2) = 1
2 and F2(v2) = v2

2 , and therefore c2(v2) =
v2 − 1−v2/2

1/2 = 2v2 − 2. It follows that c2(v2) < 0 if and only if v2 < 1. Since

c1(v1) > c2(v2) ⇐⇒ 2v1 − 1 > 2v2 − 2 ⇐⇒ v1 > v2 − 1
2 , (12.187)

the optimal allocation rule q∗ is defined as follows:

� If v1 < 1
2 and v2 < 1, the object is not sold (q∗

i (vi ) = 0 for i = 1, 2).
� If v1 ≥ 1

2 and v1 > v2 − 1
2 , buyer 1 wins the object, (q∗

1 (v1) = 1 and q∗
2 (v2) = 0).

� If v2 > 1 and v2 > v1 + 1
2 , buyer 2 wins the object, (q∗

2 (v2) = 1 and q∗
1 (v1) = 0).

� If v1 ≥ 1
2 , v2 ≥ 1 and v1 = v2 − 1

2 , each buyer wins the object with probability 1
2 , (q∗

1 (v1) =
q∗

2 (v2) = 1
2 ).
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Figure 12.5 The function q∗ in Example 12.60
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To compute the payment function we first compute∫ v1

0
q∗

1 (t1, v2)dt1 =
⎧⎨⎩

0 v1 < 1
2 ,

0 v1 < v2 − 1
2 ,

v1 − max
{

1
2 , v2 − 1

2

}
v1 ≥ 1

2 and v1 ≥ v2 − 1
2 .

(12.188)

∫ v2

0
q∗

2 (v1, t2)dt2 =
⎧⎨⎩

0 v2 < 1,

0 v2 < v1 + 1
2 ,

v2 − max
{
1, v1 + 1

2

}
v1 ≥ 1 and v2 ≥ v1 + 1

2 .

(12.189)

Equation (12.165) yields

μ∗
1(v1, v2) =

{
0 Buyer 1 does not win,

max
{

1
2 , v2 − 1

2

}
Buyer 1 wins.

(12.190)

μ∗
2(v1, v2) =

{
0 Buyer 2 does not win,

max
{
1, v1 + 1

2

}
Buyer 2 wins.

(12.191)

Note that in this case, each buyer has a different minimum price: 1
2 for buyer 1 and 1 for buyer

2. Note also that when 1
2 < v1 < v2 < v1 + 1

2 (the shaded area in Figure 12.5), buyer 1 wins the
object, despite the fact that his private value is less than buyer 2’s private value. In other words, the
selling mechanism that maximizes the seller’s expected revenue is not efficient: the winner is not
necessarily the buyer with the highest private value. �

When private values are independent and identically distributed, Theorem 12.59 leads
to the following corollary.

Corollary 12.61 If the private values of the buyers are independent and identically dis-
tributed, and if the functions (ci)i∈N are monotonically nondecreasing, the incentive-
compatible direct selling mechanism that maximizes the seller’s expected revenue is a
sealed-bid second-price auction with a reserve price.

Proof: Since the private values of the buyers are identically distributed, ci = cj =: c for
every pair of buyers i, j . The function c is monotonically nondecreasing, and therefore a
buyer for whom c(vi) is maximal is one whose private value vi is maximal. Denote

ρ∗ = inf{ti ∈ Vi : ci(ti) > 0}, (12.192)

which is independent of i, since Vi = Vj for all i, j ∈ N .
To simplify the analysis, suppose that ci is a continuous function, and therefore ci(ρ∗) =

0. By the definition of q∗ (Equation (12.164)), the buyer who wins the object is the one
who submits the highest bid, as long as that bid is greater than ρ∗:

q∗
i (vi) =

{
0 if vi < ρ∗ or vi ≤ maxj∈N vj ,

1
|{l : vl=maxj∈N vj }| if vi > ρ∗ and vi = maxj∈N vj .

(12.193)

We next calculate μ∗(vi) = viq
∗
i (vi) −

∫ vi

0 q∗
i (ti , v−i)dti (see Equation (12.165) on

page 502):
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� If vi ≤ ρ∗ or vi < maxj �=i vj , then q∗
i (vi) = 0, and q∗

i (ti) = 0 for each ti ∈ [0, vi), and
hence in this case

μ∗
i (vi) = viq

∗
i (vi) −

∫ vi

0
q∗

i (ti , v−i)dti = 0. (12.194)

In other words, a buyer whose bid is lower than the highest bid or less than or equal to
ρ∗ pays nothing.

� If vi > ρ∗ and vi ≥ maxj �=i vj then q∗
i (vi) = 1

|{i : vi=maxj∈N vj }| , and q∗
i (ti) = 0 for all

ti ∈ [0, vi). Hence, in this case,

μ∗
i (vi) = viq

∗
i (vi) −

∫ vi

0
q∗

i (ti , v−i)dti = vi

|{l : vl = maxj∈N vj }| . (12.195)

In words, all the buyers who bid the maximum bid, provided it is at least ρ∗, equally
share the payment to the seller.

In summary,

μ∗(vi) = viq
∗
i (vi) −

∫ vi

0
q∗

i (ti , v−i)dti

=
{

0 vi < ρ∗ or vi < maxj∈N vj ,
maxj �=i vj

|{i : ci (vi )=maxj∈N cj (vj )}| vi ≥ ρ∗ and vi = maxj∈N vj .
(12.196)

In other words, (q∗, μ∗) is a sealed-bid second-price auction with a reserve price ρ∗. �

12.11 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The first use of game theory to study auctions was accomplished by economist William
Vickrey [1961, 1962]. Vickrey, 1914–96, was awarded the Nobel Memorial Prize in
Economics in 1996 for his contributions to the study of incentives when buyers have
different information, and the implications incentives have on auction theory. The results
in Section 12.7 are based on Holt [1980].

In this chapter we studied symmetric sealed-bid auction with independent private values.
The theory of asymmetric sealed-bid auctions and sealed-bid auctions in which the private
values of the buyers are not independent is mathematically complex. The interested reader
is directed to Milgrom and Weber [1982], Lebrun [1999], Maskin and Riley [2000], Fibich,
Gavious, and Sela [2004], Reny and Zamir [2004], and Kaplan and Zamir [2011, 2012].

The significance of mechanism design in economic theory was recognized by the
Nobel Prize Committee in 2007, when it awarded the prize to three researchers who were
instrumental in developing mechanism design, Leonid Hurwicz, Eric Maskin, and Roger
Myerson. The revelation principle was proved by Myerson [1979], and the structure
of the optimal mechanism was proved by Myerson [1981]. The reader interested in
further deepening his understanding of auction theory and mechanism design is directed
to Krishna [2002], Milgrom [2004], or Klemperer [2004].
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Exercise 12.1 is based on Wolfstetter [1996]. Exercises 12.19, 12.45 and 12.46 are
based on examples that appear in Krishna [2002]. Exercises 12.20 and 12.21 are based on
Kaplan and Zamir [2012].

The authors wish to thank Vijay Krishna for answering questions during the composition
of this chapter. Many thanks are due to the students in the Topics in Game Theory course
that was conducted at Tel Aviv University in 2005, for their many comments on this
chapter, with special thanks going to Ronen Eldan and Ayala Mashiah-Yaakovi.

12.12 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In each of the exercises in this chapter, assume that buyers are risk-neutral, unless it
is explicitly noted otherwise.

12.1 Selling an object at the monopoly price Andrew is interested in selling a rare
car (whose value in his eyes we will normalize to 0). Assume there are n buyers
and that buyer i’s private value of the car, Vi , is uniformly distributed over [0, 1].
The private values of the buyers are independent.

Instead of conducting an auction, Andrew intends on setting a price for the car,
publicizing this price, and selling the car only to buyers who are willing to pay this
price; if no buyer is willing to pay the price, the car will not be sold, and if more
than one buyer is willing to pay the price, the car will be sold to one of them based
on a fair lottery that gives each of them equal probability of winning.

Answer the following questions:

(a) Find Andrew’s expected revenue as a function of the price x that he sets.
(b) Find the price x∗ that maximizes Andrew’s expected revenue.
(c) What is the maximal expected revenue that Andrew can obtain, as a function

of n?
(d) Compare Andrew’s maximal revenue with the revenue he would gain if he sells

the car by way of a sealed-bid first-price auction. For which values of n does a
sealed-bid first-price auction yield a higher revenue?

12.2 (a) Explain what a buyer in an open-bid decreasing auction knows when the current
announced price is x that he did not know prior to the auction.

(b) Explain what a buyer in an open-bid increasing auction knows when the current
announced price is x that he did not know prior to the auction.

12.3 Prove that in a symmetric sealed-bid second-price auction with independent private
values the only monotonically increasing, symmetric equilibrium is the equilibrium
in which every buyer submits a bid equal to his private value.

12.4 Suppose that V = [0, v] is a bounded interval. Show that in a symmetric sealed-
bid second-price auction with independent private values the strategy vector under
which buyer 1 bids v and all the other buyers bid 0 is an (asymmetric) equilibrium.
Is it also an equilibrium in a sealed-bid first-price auction? Justify your answer. Is
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there an equilibrium in an open-bid ascending auction that is analogous to this
equilibrium?

12.5 Consider a sealed-bid second-price auction where the private values of the buyers
are independent and identically distributed with the uniform distribution over [0, 1].
Show that the strategy under which a buyer bids his private value does not strictly
dominate all his other strategies.

12.6 Brent and Stuart are the only buyers in a sealed-bid first-price auction of medical
devices. Brent knows that Stuart’s private value is uniformly distributed over [0, 2],
and that Stuart’s strategy is β(v) = v2

3 + v
3 .

(a) What is Brent’s optimal strategy?
(b) What is Brent’s expected payment if he implements this optimal strategy (as a

function of his own private value)?

12.7 (a) Suppose that the private values of two buyers in a sealed-bid first-price auction
are independent and uniformly distributed over the set {0, 1, 2}. In other words,
each buyer has three possible private values. The bids in the auction must be
nonnegative integers. Find all the equilibria.

(b) Find all the equilibria, under the same assumptions, when the auction is a
sealed-bid second-price auction.

(c) Compare the seller’s expected revenue under both auction methods. What have
you discovered?

12.8 Denote by EI the seller’s revenue in a sealed-bid first-price auction, and by EII

the seller’s revenue in a sealed-bid second-price auction. Find the variance of EI

and of EII when there are n buyers, whose private values are independent and
uniformly distributed over [0, 1]. Which of the two is the lesser?

12.9 Consider a sealed-bid second-price auction with n buyers whose private values are
independent and uniformly distributed over [0, 1]. Find an asymmetric equilibrium
at which every buyer wins with probability 1

n
. Can you find an equilibrium at which

every buyer i wins with probability αi , for any collection of nonnegative numbers
α1, α2, . . . , αn whose sum is 1?

12.10 Consider a sealed-bid first-price auction with three buyers, where the private values
of the buyers are independent and uniformly distributed over [0, 2].

(a) Find a symmetric equilibrium of the game.
(b) What is the seller’s expected revenue?

12.11 Prove that in a symmetric sealed-bid auction with independent private values the
random variable Y = max{V2, V3, . . . , Vn} is a continuous random variable and its
density function fY is a positive function.

12.12 Which of the following auction methods satisfy the conditions of the Revenue
Equivalence Theorem (Corollary 12.24 on page 479): sealed-bid first-price auctions
(see Example 12.15 on page 472), sealed-bid second-price auctions, sealed-bid
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first-price auctions with a reserve price (see Example 12.34 on page 486), sealed-
bid second-price auctions with a reserve price, sealed-bid second-price auctions
with entry fees (see Example 12.28 on page 482). When only some of the conditions
are satisfied, specify which conditions are not satisfied, and justify your answer.

12.13 Compute the seller’s expected revenue in a sealed-bid second-price auction with a
reserve price ρ, in which there are two buyers whose private values are independent
and uniformly distributed over [0, 1]. Compare the results here with the results
we computed for sealed-bid first-price auctions with a reserve price ρ (Equation
(12.104) on page 488).

12.14 (a) Compute the seller’s expected revenue in a sealed-bid first-price auction with
a reserve price ρ, with n buyers whose private values are independent and
uniformly distributed over [0, 1].

(b) What is the reserve price ρ∗ that maximizes the seller’s expected revenue?
(c) Repeat items (a) and (b) for a sealed-bid second-price auction with a reserve

price ρ.
(d) Did you obtain the same results in both cases? Explain why.
(e) Compare the expected revenue computed here with the expected revenue of

a seller who is selling the object by setting the monopoly price (see Exercise
12.1). Which expected revenue is higher?

(f) What does the optimal reserve price in items (b) and (c) above converge to
when the number of buyers increases to infinity?

12.15 Consider a symmetric sealed-bid first-price auction with independent private values
with n buyers whose cumulative distribution function F is given by F (v) = v2.
Find the symmetric equilibrium, compute ei(vi) (the expected payment of buyer
i if his private value is vi), compute ei (the payment that buyer i makes), and
compute π (the seller’s expected revenue).

12.16 Repeat Exercise 12.15 when the cumulative distribution function of each buyer i’s
private value is Fi(v) = v3.

12.17 Consider a sealed-bid second-price auction with entry fee λ and n buyers, whose
private values are independent and uniformly distributed over [0, 1].

(a) Find a symmetric equilibrium.
(b) What is the seller’s expected revenue?
(c) Which entry fee maximizes the seller’s expected revenue?
(d) What value does the optimal entry fee approach as the number of buyers

increases to ∞?

12.18 Repeat Exercise 12.17 when the auction method conducted is a sealed-bid first-
price auction with entry fee λ.

12.19 In this exercise, using Theorem 12.23 (page 478), compute a symmetric equilibrium
β in a sealed-bid third-price auction, with n buyers whose private values are
independent; each Vi has uniform distribution over [0, 1]. The winner of this
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auction is the buyer submitting the highest bid, and he pays the third-highest bid.9

If several buyers have submitted the highest bid, the winner is chosen from among
them by a fair lottery granting each equal probability of winning.

Denote the highest bid from among V2, V3, . . . , Vn by Y , and the second-highest
bid from among V2, V3, . . . , Vn by W . Denote by Fi the cumulative distribution
function of Vi , and by fi its density function.

(a) Prove that for every v1 ∈ (0, 1], the conditional cumulative distribution function
of W , given Y ≤ v1, is

F(W |Y≤v1)(w)

= (Fi(w))n−2 × (n − 1)Fi(v1) − (n − 2)Fi(w)

(Fi(v1))n−1
, ∀w ∈ [0, v1]. (12.197)

(b) Compute the conditional density function f(W |Y≤v1).
(c) Denote

h(y) = (n − 2)(F1(y))n−3f1(y), ∀y ∈ [0, 1]. (12.198)

The Revenue Equivalence Theorem implies that the expected payment of buyer
1 with private value v1 ∈ (0, 1] is given by FY (v1)E[β(W ) | Y ≤ v1]. Conclude
from this that∫ v1

0
β(y)(n − 1)h(y)(F1(v1) − F1(y))dy =

∫ v1

0
yfY (y)dy, ∀v1 ∈ (0, 1].

(12.199)

(d) Differentiate Equation (12.199) by v1, and show that∫ v1

0
β(y)h(y)dy = v1(F1(v1))n−2, ∀v1 ∈ (0, 1). (12.200)

(e) Differentiate Equation (12.200) by v1, and show that the solution to this equa-
tion is

β(v1) = v1 + F1(v1)

(n − 2)f1(v1)
, ∀v1 ∈ (0, 1). (12.201)

(f) Under what conditions is β a symmetric equilibrium?

12.20 Consider a sealed-bid first-price auction with two buyers whose private values are
independent; the private value of buyer 1 has uniform distribution over the interval
[0, 3], and the private value of buyer 2 has uniform distribution over the interval
[3, 4]. Answer the following questions:

(a) Prove that the following pair of strategies form an equilibrium

β1(v1) = 1 + v1
2 , (12.202)

β2(v2) = 1
2 + v2

2 . (12.203)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 If only two buyers have submitted the highest bid, the next-highest bid is the sum of money that the winner pays
for the auctioned object. If three buyers have submitted the highest bid, that bid is the amount of money the winner
pays for the auctioned object.



513 12.12 Exercises

(b) Is the probability that buyer 2 wins the auction equal to 1?
(c) Compute the seller’s expected revenue if the buyers implement the strategies

(β1, β2).
(d) Compute the seller’s expected revenue in a sealed-bid second-price auction. Is

that the same expected revenue as in part (c) above?

12.21 Consider a sealed-bid second-price auction with two buyers whose private values
are independent; the private value of buyer 1 has uniform distribution over the
interval [0, m + z], and the private value of buyer 2 has uniform distribution over
the interval [ 3m

2 , 3m
2 + z], where m, z > 0. Show that the following pair of strategies

form an equilibrium.

β1(v1) = v1
2 + m

2 , (12.204)

β2(v2) = v2
2 + m

4 . (12.205)

Note that these equilibrium strategies are independent of z. This is a generalization
of Exercise 12.20 (which is the special case in which m = 2, z = 1).

12.22 Prove Theorem 12.29 (page 482): in a sealed-bid second-price auction with a
reserve price, for each buyer strategy β the following strategy β̂ weakly dominates
β, if β̂ �= β,

β̂(v) =
{

“no” β(v) = “no”,
v β(v) = x.

(12.206)

12.23 Consider a sealed-bid second-price auction with two buyers, whose private values
are independent; buyer 1’s private value is uniformly distributed over [0, 1], and
buyer 2’s private value is uniformly distributed over [0, 2].

(a) For each buyer, find all weakly dominant strategies.
(b) Consider the equilibrium in which every buyer bids his private value. What is

the probability that buyer 1 wins the auction, under this equilibrium? What is
the seller’s expected revenue in this case?

(c) Prove that at any equilibrium β = (β1, β2) satisfying β1(v) = β2(v) for all
v ∈ [0, 1], one has β1(v) = β2(v) = v for all v ∈ [0, 1].

(d) Are there equilibria at which a buyer, whose private value vi is less than 1, does
not submit the bid βi(vi) = vi?

12.24 (a) Prove that if F is a cumulative distribution function over [0, 1], and if Y is the
maximum of n − 1 independent random variables with cumulative distribution
function F , then

E[Y | Y ≤ v] = v −
∫ v

0 (F (x))n−1dx

(F (v))n−1
. (12.207)

Hint: Differentiate the function x(F (x))n−1.
(b) Use Equation (12.207) to write explicitly the symmetric equilibrium β∗

in a symmetric sealed-bid first-price auction with independent private
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values with n buyers when V = [0, 1] and (a) F (x) = x, (b) F (x) = x2, and
(c) F (x) = x(2 − x).

12.25 Prove that in a sealed-bid second-price auction, the strategy under which a buyer
submits a bid equal to his private value weakly dominates all his other strategies,
also when the buyer is risk-averse or risk-seeking.

12.26 Prove that in a symmetric sealed-bid auction with independent private values in
which all the buyers are risk-seeking, and have the same strictly convex, differen-
tiable, and monotonically increasing utility function, the seller’s expected revenue
is lower in a sealed-bid first-price auction than in a sealed-bid second-price auction.

12.27 Suppose that in a sealed-bid first-price auction there are n buyers whose private
values are independent and uniformly distributed over [0, 1]. Suppose further that
the utility function of all buyers is U (x) = xc.

(a) Find the values c for which the buyers are risk-averse, risk-neutral, and risk-
seeking.

(b) Prove that a symmetric equilibrium γ must satisfy the following differential
equation:

γ ′(x) = n − 1

c

f (x)

F (x)
(x − γ (x)). (12.208)

(c) Show that the following strategy is a symmetric equilibrium:

γ (v) = v −
∫ v

0 F
n−1

c (x)dx

F
n−1

c (v)
. (12.209)

(d) Compute the symmetric equilibrium γ for the case that F is the uniform
distribution over [0, 1].

(e) Compare the strategy that you found for arbitrary c, with the symmetric equi-
librium in the case in which the buyers are risk-neutral (see Exercise 12.24).
Ascertain that risk-averse buyers submit higher bids than risk-neutral buyers,
and that risk-seeking buyers submit lower bids than risk-neutral buyers.

(f) What is the seller’s expected revenue as a function of c? Is this an increasing
function?

This exercise shows that a symmetric equilibrium in a sealed-bid first-price auction
with n buyers, where the utility function of each buyer is U (x) = xc, is also a
symmetric equilibrium in the same auction with n−1

c
+ 1 risk-neutral buyers.10 In

other words, a risk-averse buyer behaves like a risk-neutral buyer in an auction
with more buyers, and therefore increases his bid.

12.28 Prove Theorem 12.42 on page 494: every sealed-bid auction with risk-neutral
buyers can be presented as a selling mechanism.

12.29 Can there be more than one equilibrium for an incentive-compatible direct selling
mechanism? If your answer is yes, present an example. If not, justify your answer.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 Under the assumption that n−1
c

is an integer.
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If your answer is yes, do all these equilibria yield the same expected revenue for
the seller? Justify your answer.

12.30 Prove the revelation principle (Theorem 12.47 on page 496): let (�i, q̂i, μ̂i)i∈N

be a selling mechanism, and β̂ be an equilibrium of this mechanism. Then the
outcome of this mechanism under β̂ is identical to the outcome under β∗ (the
equilibrium when all buyers reveal their true values) in mechanism (q, μ), defined
by Equations (12.132)–(12.133).

12.31 Let (p, C) and (p̃, C̃) be two symmetric sealed-bid auctions with independent
private values defined over the same set N of risk-neutral buyers. Suppose that in
both auctions the winner of the auction is the buyer who submits the highest bid.
and a buyer who submits a bid of 0 pays nothing. Let β and β̃ be symmetric and
monotonically increasing equilibrium strategies in (p, C) and in (p̃, C̃), respec-
tively (for the same distributions of private values). Using Corollary 12.50 (page
500) prove that the seller’s expected revenue is the same under both equilibria, and
the buyer’s expected profit given his private value is also identical in both auctions.

12.32 Consider the following cumulative distribution function, where k ∈ N:

Fi(vi) = (vi)
k, 0 ≤ v ≤ 1. (12.210)

Compute the function ci (see Equation (12.159) on page 501). For which values k

is the function ci monotonically increasing?

12.33 Suppose that Vi is distributed according to the exponential distribution with param-
eter λ (i.e, Vi = [0,∞) and fi(vi) = λe−λvi for each vi ≥ 0). Compute the function
ci . Is ci monotonically increasing?

12.34 For each of the following auctions and their respective equilibria β, construct an
incentive-compatible direct selling mechanism whose truth-telling equilibrium β∗

is equivalent to the equilibrium β.

(a) Auction method: sealed-bid second-price auction; equilibrium β = (βi)i∈N ,
where βi(vi) = vi for each buyer i and each vi ∈ Vi .

(b) Auction method: a sealed-bid second-price auction in which Vi = [0, 1] for
every buyer i, equilibrium β = (βi)i∈N where β1(v1) = 1 for all v1 ∈ [0, 1] and
βi(vi) = 0 for each buyer i �= 1 and all v1 ∈ [0, 1].

(c) Auction method: sealed-bid first-price auction with n = 2, and the private
values of the buyers are independent and uniformly distributed over [0, 1];
equilibrium β = (βi)i=1,2, given by βi(vi) = vi

2 .
(d) Auction method: sealed-bid first-price auction with a reserve price ρ and two

buyers whose private values are independent and uniformly distributed over
the interval [0, 1]; equilibrium given in Example 12.34 (page 486).

12.35 Suppose that there are n buyers whose private values are independent and uniformly
distributed over [0, 1]. Answer the following questions:

(a) What is the individually rational, incentive-compatible direct selling mecha-
nism that maximizes the seller’s expected revenue?
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(b) In this mechanism, what is each buyer’s probability of winning the object,
assuming that each buyer reports his true private value?

(c) What is the seller’s expected revenue in this case?

12.36 Repeat Exercise 12.35 for the case in which there are two buyers, and their private
values V1 and V2 are independent; V1 is uniformly distributed over [0, 2] and V2 is
uniformly distributed over [0, 3].

12.37 Repeat Exercise 12.35 for the case in which there are two buyers, and their private
values V1 and V2 are independent, V1 is uniformly distributed over [0, 1] and V2

is uniformly distributed over [0, 1] given by the cumulative distribution function
F2(v) = v2.

12.38 What is the seller’s expected revenue in a sealed-bid first-price auction in which
there are two buyers, and their private values V1 and V2 are independent; V1 is
uniformly distributed over [0, 2] and V2 is uniformly distributed over [0, 3]?
Hint: Use the Revenue Equivalence Theorem.

12.39 Repeat Exercise 12.38 for the case in which there are two buyers, and their private
values V1 and V2 are independent; V1 is uniformly distributed over [0, 1] and V2 is
uniformly distributed over [0, 3].

12.40 Partition the following list of auction methods into groups, each of which contains
methods whose symmetric equilibrium yields the same expected revenue for the
seller. In all these methods consider the symmetric case with independent private
values and a symmetric and monotonic increasing equilibrium.

(a) Sealed-bid first-price auction.
(b) Sealed-bid first-price auction with a reserve price ρ.
(c) Sealed-bid first-price auction with an entry fee λ.
(d) Sealed-bid second-price auction.
(e) Sealed-bid second-price auction with a reserve price ρ.
(f) Sealed-bid second-price auction with an entry fee λ.
(g) Sealed-bid third-price auction (in which the winning buyer is the one who

submits the highest bid, and the price he pays for the object is the third-highest
price bid. See Exercise 12.19).

(h) Sealed-bid all-pay auction.
(i) Sealed-bid all-pay auction with a reserve price ρ.

12.41 Among the auction methods listed in Exercise 12.40, do there exist methods in
which a buyer’s submitted bid in an equilibrium may be greater than his private
value? Justify your answer.

12.42 Suppose that there are n buyers participating in an auction, where the private values
V1, V2, . . . , Vn are independent and identically distributed, with the cumulative
distribution function Fi(vi) = (vi)2 for v ∈ [0, 1]. Which auction maximizes the
seller’s expected revenue? What is the seller’s expected revenue in that auction?
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12.43 Suppose there are n buyers participating in an auction, where the private values
V1, V2, . . . , Vn are independent and identically distributed, with the cumulative
distribution function

Fi(vi) = 1
2vi + 1

2 (vi)2, vi ∈ [0, 1]. (12.211)

Answer the following questions:

(a) Which auction maximizes the seller’s expected revenue?
(b) What is the seller’s expected revenue in this auction? (To answer this, it suffices

to write the formula for the seller’s expected revenue, and specify the values
of the variables. There is no need to compute the formula explicitly.)

(c) Is the seller’s expected revenue monotonically increasing as the number of
buyers in the auction increases? Justify your answer.

12.44 Suppose there are n buyers participating in an auction, where the private values
V1, V2, . . . , Vn are independent and for each i ∈ {1, 2, . . . , n}, vi is uniformly
distributed over [0, vi]. Suppose further that v1 < v2 < · · · < vn. Answer the fol-
lowing questions:

(a) Which selling mechanism maximizes the seller’s expected revenue?
(b) What is the seller’s expected revenue under this mechanism?
(c) What is the probability that buyer n wins the object under this mechanism?

In the last two items, it suffices to write down the appropriate formula, with no
need to solve it explicitly.

12.45 Suppose there are two buyers with independent private values uniformly distributed
over [0, 1]. Buyer 2 faces budget limitations, and the maximal sum that he can bid
is 1

4 . Buyer 1 is free of budget limitations. Answer the following questions:

(a) Find an equilibrium if the buyers are participating in a sealed-bid second-price
auction.

(b) Compute the seller’s expected revenue, given the equilibrium you found.

Consider what happens if the buyers participate instead in a sealed-bid first-price
auction. To avoid a situation in which buyer 1 bids a price 1

4 + ε, where ε > 0 is
very small, define the function p according to which if both buyers bid 1

4 buyer
1 is declared the winner (and if both buyers submit an identical bid that is lower
than 1

4 , each of them is chosen the winner with equal probability 1
2 ). Answer the

following questions, and justify your answers:

(c) Is the following strategy vector (β1, β2) an equilibrium?

β1(v1) = v1
2 , β2(v2) = min

{
v2
2 , 1

4

}
. (12.212)

(d) If your answer to item (c) is negative, find a nondecreasing equilibrium.
(e) Let (β∗

1 , β∗
2 ) be a nondecreasing equilibrium. What are β∗

1 (0) and β∗
2 (0)? Is

β∗
1 (1) = β∗

2 (1)?
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(f) Does Corollary 12.50 (page 500) enable you to deduce that the seller’s expected
revenue under the nondecreasing equilibrium in this case equals the expected
revenue that you found in item (b)?

(g) Does Theorem 12.59 (page 504) enable you to deduce that the individually
rational, incentive-compatible direct selling mechanism that maximizes the
seller’s expected revenue is a sealed-bid second-price auction with a reserve
price?

12.46 This exercise explores the case in which the number of buyers in an auction is
unknown.

Suppose that there are N potential buyers whose private values V1, V2, . . . , VN

are independent and have identical continuous distribution over [0, 1]. Denote by
F the common cumulative distribution function.

The number of buyers participating in this auction is unknown to any of the
participating buyers. Each buyer ascribes probability pn to the event that there are
n participating buyers, in addition to himself, where

∑N−1
n=0 pn = 1. Note that each

buyer has the same belief about the distribution of the number of buyers in the
auction.

(a) Find a symmetric equilibrium of this situation when the selling takes place by
way of a sealed-bid second-price auction. Explain why this is an equilibrium.

(b) Denote G(n)(z) = (F (z))n. Prove that the expected profit of a participating
buyer, whose private value is v, is

N−1∑
n=0

pnG
(n)(v)E

[
Y

(n)
1 | Y

(n)
1 < v

]
, (12.213)

where Y
(n)
1 is the maximum of n independent random variables sharing the

same cumulative distribution function F .
(c) Prove the Revenue Equivalence Theorem in this case: Consider a symmetric

sealed-bid auction with independent private values, and let β be a monotonically
increasing symmetric equilibrium satisfying the assumptions that (a) the winner
is the buyer submitting the highest bid, and (b) the expected payment of a buyer
whose private value is 0, is 0. Then the expected payment of a buyer whose
private value is v is given by Equation (12.213).

(d) Compute a symmetric equilibrium strategy when the selling takes place by way
of a sealed-bid first-price auction.

(e) Explain how Theorem 12.59 (page 504) can be used to show that the optimal
selling mechanism in this case is a sealed-bid second-price auction with a
reserve price.
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Chapter summary
In this chapter we present the model of repeated games. A repeated game consists of a
base game, which is a game in strategic form, that is repeated either finitely or infinitely
many times. We present three variants of this model:

� The finitely repeated game, in which each player attempts to maximize his average
payoff.

� The infinitely repeated game, in which each player attempts to maximize his long-run
average payoff.

� The infinitely repeated game, in which each player attempts to maximize his discounted
payoff.

For each of these models we prove a Folk Theorem, which states that under some
technical conditions the set of equilibrium payoffs is (or approximates) the set of
feasible and individually rational payoffs of the base game.

We then extend the Folk Theorems to uniform equilibria for discounted infinitely
repeated games and to uniform ε-equilibria for finitely repeated games. The former is a
strategy vector that is an equilibrium in the discounted game, for every discount factor
sufficiently close to 1, and the latter is a strategy vector that is an ε-equilibrium in all
sufficiently long finite games.

In the previous chapters, we dealt with one-stage games, which model situations where
the interaction between the players takes place only once, and once completed, it has
no effect on future interactions between the players. In many cases, interaction between
players does not end after only one encounter; players often meet each other many times,
either playing the same game over and over again, or playing different games. There are
many examples of situations that can be modeled as multistage interactions: a printing
office buys paper from a paper manufacturer every quarter; a tennis player buys a pair of
tennis shoes from a shop in his town every time his old ones wear out; baseball teams
play each other several times every season. When players repeatedly encounter each other
in strategic situations, behavioral phenomena emerge that are not present in one-stage
games.

� The very fact that the players encounter each other repeatedly gives them an opportunity
to cooperate, by conditioning their actions in every stage on what happened in previous
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stages. A player can threaten his opponent with the threat “if you do not cooperate now,
in the future I will take actions that harm you,” and he can carry out this threat, thus
“punishing” his opponent. For example, the manager of a printing office can inform a
paper manufacturer that if the price of the paper he purchases is not reduced by 10% in
the future, he will no longer buy paper from that manufacturer.

� Repeated games enable players to develop reputations. A sporting goods shop can
develop a reputation as a quality shop, or a discount store.

In this chapter, we present the model of repeated games. This is a simple model of games
in which players play the same base game time and again. In particular, the set of players,
the actions available to the players, and their payoff functions do not change over time,
and are independent of past actions. This assumption is, of course, highly restrictive, and
it is often unrealistic: in the example above, new paper manufacturers enter the market,
existing manufacturers leave the market, there are periodic changes in the price of paper,
and the quantity of paper that printers need changes over time. This simple model, however,
enables us to understand some of the phenomena observed in multistage interactions. The
more general model, where the actions of the players and their payoff functions may
change from one stage to another, is called the model of “stochastic games.” The reader
interested in learning more about stochastic games is directed to Filar and Vrieze [1997]
and Neyman and Sorin [2003].

13.1 The model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A repeated game is constructed out of the base game � that defines it, i.e., the game
that the players play at each stage. We will assume that the base game is given in
strategic form � = (N, (Si)i∈N, (ui)i∈N ), where N = {1, 2, . . . , n} is the set of play-
ers, Si is the set of actions1 available to player i, and ui : S → R is the payoff func-
tion of player i in the base game, where S = S1 × S2 × · · · × Sn is the set of action
vectors.

In repeated games, the players encounter each other again and again, playing the same
strategic-form game � each time. The complete description of a repeated game needs to
include the number of stages that the game is played. In addition, since the players receive
a payoff at each stage, we need to specify how the players value the sequence of payoffs
that they receive, i.e., how each player compares each payoff sequence to another payoff
sequence. We will consider three cases:

� The game lasts a finite number of stages T , and every player wants to maximize his
average payoff.

� The game lasts an infinite number of stages, and every player wants to maximize the
upper limit of his average payoffs.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 In this chapter we will call the elements of Si “actions,” and reserve the term “strategy” for strategies in the repeated
game.
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� The game lasts an infinite number of stages, and each player wants to maximize the
time-discounted sum of his payoffs.

Denote by

M := max
i∈N

max
s∈S

|ui(s)| (13.1)

the maximal absolute value of the payoffs received by the players in one stage. Recall
that the set of distributions over a set Si is �i = 
(Si), the product set of these sets is
� = �1 × �2 × · · · × �n, and Ui : � → R is the multilinear extension of the payoff
functions ui (defined over S; see page 147).

By definition, a strategy instructs a player how to play throughout the game. The
definition of a strategy in finite repeated games, and infinitely repeated games, will be
presented when these games are defined.

13.2 Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following example will be referenced often, for illustrating definitions, and explaining
claims in this chapter.

Example 13.1 Repeated Prisoner’s Dilemma Recall that the Prisoner’s Dilemma is a one-stage two-player

game, depicted in Figure 13.1.

Player I

Player II

C

D

CD

0, 4

1, 1

3, 3

4, 0

Figure 13.1 The one-stage Prisoner’s Dilemma

For both players, action D strictly dominates action C, so the only equilibrium of the base game
is (D, D).

Consider the case in which the players play the Prisoner’s Dilemma twice, and the second time
the game is played, they both know which actions were chosen the previous time they played
the game. When this situation is depicted as an extensive-form game (see Figure 13.2), the game
tree has information sets representing the fact that at each stage the players choose their actions
simultaneously. In Figure 13.2, the total payoff of each player in the two stages are indicated by
the leaves of the game tree, where the upper number is the total payoff of Player I, and the lower
number is the total payoff of Player II. In this figure, and several other figures in this chapter, the
depicted tree “grows” from top to bottom, rather than left to right, for the sake of saving space on
the page.

What are the equilibria of this game? A direct inspection reveals that the strategy vector in which
the players repeat the one-stage equilibrium (D, D) at both stages is an equilibrium of the two-stage
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II II II II II II II II

I I I I

II II

I

D C D C D C D C D C D C D C CD

D C D C D C CD

CDCD

CD

2 637430417485415
2 673478453401451

Figure 13.2 The two-stage Prisoner’s Dilemma, represented as an extensive-form game

game. This is a special case of a general claim that states that every strategy vector where in every
stage the players play an equilibrium of the base game is an equilibrium of the T -stage game
(Theorem 13.6).

We argue now that at every equilibrium of the two-stage repeated game, the players play (D, D)
in both stages. To see this, suppose instead that there exists an equilibrium at which, with positive
probability, the players do not play (D, D) at some stage. Let t ∈ {1, 2} be the last stage in which
there is positive probability that the players will not play (D, D), and suppose that in this event,
Player I does not play D in stage t . This means that if the game continues after stage t the players
will play (D, D). We will show that this strategy cannot be an equilibrium strategy.

Case 1: t = 1. Consider the strategy of Player I at which he plays D in both stages. We will show
that this strategy grants him a higher payoff. Since D strictly dominates C, Player I’s payoff rises if
he switches from C to D in the first stage. And since, by assumption, after stage t the players play
(D, D) (since stage t is the last stage in which they may not play (D, D)), Player I’s payoff in the
second stage was supposed to be 1. By playing D in the second stage, Player I’s payoff is either
1 or 4 (depending on whether Player II plays D or C);2 in either case, Player I cannot lose in the
second stage. The sum total of Player I’s payoffs therefore rises.

Case 2: t = 2. Consider the strategy of Player I at which he plays in the first stage what the original
strategy tells him to play, and in the second stage he plays D. Player I’s payoff in the first stage
does not change, but because D strictly dominates C, his payoff in the second stage does increase.
The sum total of Player I’s payoffs therefore increases.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Even if t = 1 is the last stage in which one of the players plays C with positive probability, it is still possible that
if both players play D in the first stage, then Player II will play C in the second stage with positive probability. To
see this, consider the following strategy vector. In the first stage, both players play C. In the second stage, Player
I plays D, and Player II plays D if Player I played C in the first stage, and he plays C if Player I played D in the
first stage. In this case, if neither player deviates, the players play (C, C) in the first stage, and (D, D) in the second
stage; but if Player I plays D in the first stage, then Player II plays C in the second stage.
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Note that despite the fact that at every equilibrium of the two-stage repeated game the players
play (D,D) in every stage, it is possible that at equilibrium, the strategy C is used off the equilibrium
path; that is, if a player does deviate from the equilibrium strategy, the other player may play C

with positive probability. For example, consider the following strategy σ1:

� Play D in the first stage.
� In the second stage, play as follows: if in the first stage the other player played D, play D in the

second stage; otherwise play [ 1
8 (C), 7

8 (D)] in the second stage.

Direct inspection shows that the strategy vector (σ1, σ1), in which both players play strategy σ1, is
an equilibrium of the two-stage repeated game.

By the same rationale used here to show that in the two-stage repeated Prisoner’s Dilemma at
equilibrium the players play (D, D) in both stages, it can be shown that in the T -stage repeated
Prisoner’s Dilemma, at equilibrium, the players play (D, D) in every stage (Exercise 13.6). �

As we saw, in the finitely repeated Prisoner’s Dilemma, at every equilibrium the players
play (D, D) in every stage. Does this extend to every repeated game? That is, does every
equilibrium strategy of a repeated game call on the players to play a one-stage equilibrium
in every stage? The following example shows that the answer is negative: in general, the
set of equilibria of repeated games is a much richer set.

Example 13.2 Repeated Prisoner’s Dilemma, with the possibility of punishment Consider the two-player

game given in Figure 13.3, where each player has three possible actions.

P

C

D

PCD

−2, −2

−1, 0

−1, 0

0, −1

3, 3

4, 0

0, −1

0, 4

1, 1

Figure 13.3 The repeated Prisoner’s Dilemma, with the possibility of punishment

This game is similar to the Prisoner’s Dilemma in Example 13.1, with the addition of a third
action P to each player, yielding low payoffs for both players. Note that action P (which stands for
Punishment) is strictly dominated by action D, and therefore by Theorem 4.35 (page 109) we can
eliminate it without changing the set of equilibria of the base game. After eliminating P for both
players, we are left with the one-stage Prisoner’s Dilemma, whose only equilibrium is (D, D). It
follows that the only equilibrium of the base game in Figure 13.3 is (D, D).

As previously stated, when the players play an equilibrium of the base game in every stage, the
resulting strategy vector is an equilibrium of the repeated game. It follows that in the two-stage
repeated game in this example, playing (D, D) in both stages is an equilibrium. In contrast with
the standard repeated Prisoner’s Dilemma, there are additional equilibria in this repeated game. The
strategy vector at which both players play the following strategy is an equilibrium:

� Play C in the first stage.
� If your opponent played C in the first stage, play D in the second stage. Otherwise, play P in the

second stage.
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If both players play this strategy, they will both play C in the first stage, and D in the second
stage, and each player’s total payoff will be 4 (in contrast to the total payoff 2 that they receive
under the equilibrium of playing (D, D) in both stages). Since action D weakly dominates both of
the other actions, no player can gain by deviating from D in the second stage alone. A player who
deviates in the first stage from C to D gets a payoff of 4 in the first stage, but he will then get at
most −1 in the second stage (because his opponent will play P in the second stage), and so in sum
total he loses: his total payoff when he deviates is 3, which is less than his total payoff of 4 at the
equilibrium. By deviating to P in the first stage, the deviator also loses.

This example illustrates that in a repeated game, the players can threaten each other, by adopting
strategies that call on them to punish a player in later stages, if at some stage that player deviates from
a particular action. The greater the number of stages in the repeated game, the greater opportunity
players have to punish each other. In general, this increases the number of equilibria.

The last equilibrium in this example is not a subgame perfect equilibrium (see Section 7.1 on
page 252), since the use of the action P is not part of an equilibrium in the subgame starting in the
second stage. We will see later in this chapter that repeated games may have additional equilibria
that are subgame perfect.

Note that there is a proliferation of pure strategies in repeated games, compared to one-stage
games. For example, in the one-stage game in Figure 13.3, every player has three pure strategies,
D, C, and P . In the two-stage game, every player has 3 × 39 = 310 = 59,049 pure strategies: there
are three actions available to the player in the first stage, and in the second stage his strategy is given
by a function from the pair of actions played in the first stage, i.e., from {D,C,P }2 to {D,C,P }.
In the three-stage repeated game, every player has 3 × 39 × (334

) = 391 pure strategies: the number
of possible strategies in the first two stages is as calculated above, and in the third stage the player’s
strategy is given by a function from {D,C,P }4 to {D,C,P }: for every pair of actions that were
played in the first two stages, the player needs to decide what to play in the third stage. �

In general, the size of each player’s space of strategies grows super-exponentially
with the number of stages in the repeated game (Exercise 13.1). This growth has two
consequences. A positive consequence is that it leads to complex and interesting equilibria.
In Example 13.2, we found an equilibrium that grants a higher average payoff to the two
players than their payoff when they repeat the only equilibrium of the one-stage game.
A negative consequence is that, due to the complications inherent in the proliferation of
strategies, it becomes practically impossible to find all the equilibria of repeated games
with many stages. For this reason, we will not attempt to compute all equilibria of repeated
games. We will instead look for asymptotic results, as the number of repetitions grows;
we will seek approximations to the set of equilibrium payoffs, without trying to find all
possible equilibrium payoffs; and we will be interested in special equilibria that can easily
be described.

13.3 The T-stage repeated game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we will study the equilibria of a T -stage repeated game �T that is based on
a strategic-form game �. Our goal is to characterize the limit set of equilibrium payoffs as
T goes to infinity. We will also construct, for each vector x in the limit set of equilibrium
payoffs, and for each sufficiently large natural number T , an equilibrium in the T -stage
repeated game that yields a payoff close to x.
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13.3.1 Histories and strategies
Since players encounter each other repeatedly in repeated games, they gather information
as the game progresses. The information available to every player at stage t + 1 is the
actions played by all the players in the first t stages of the game. We will therefore define,
for every t ≥ 0, the set of t-stage histories as

H (t) := St = S × S × · · · × S︸ ︷︷ ︸
t times

. (13.2)

For t = 0, we identify H (0) := {∅}, where ∅ is the history at the start of the game, which
contains no actions. A history in H (t) will sometimes be denoted by ht , and sometimes
by (s1, s2, . . . , st ), where sj = (sj

i )i∈N is the vector of actions played in stage j .
A behavior strategy for player i is an action plan that instructs the player which mixed

action to play after every possible history.

Definition 13.3 A behavior strategy for player i in a T -stage game is a function associ-
ating a mixed action with each history of length less than T

τi :
T−1⋃
t=0

H (t) → �i. (13.3)

The set of behavior strategies of player i in a T -stage game is denoted by BT
i .

Equivalently, we can define a behavior strategy of player i as a sequence τi = (τ t
i )T−1

t=0
of functions, where τ t+1

i : H (t) → �i instructs the player what to play in stage t , for each
t ∈ {0, 1, . . . , T − 1}.
Remark 13.4 When a T -stage repeated game is depicted as an extensive-form game,
a pure strategy is a function τi :

⋃T−1
t=0 H (t) → Si . A mixed strategy is a distribution

over pure strategies (Definition 5.3 on page 147). We have assumed that every player
knows which actions were played at all previous stages; i.e., every player has perfect
recall (see Definition 6.13 on page 109). By Kuhn’s Theorem (Theorem 6.16 on page
235) it follows that every mixed strategy is equivalent to a behavior strategy, and we
can therefore consider only behavior strategies, which are more convenient to use in this
chapter. �

Example 13.1 (Continued ) Consider the two-stage Prisoner’s Dilemma. Two (behavior) strategies are writ-

ten in Figure 13.4, one for each player. The notation τI(DC) = [
2
3 (D), 1

3 (C)
]

means that after
history DC (which occurs if in the first stage Player I plays D, and Player II plays C), Player I
plays the mixed action

[
2
3 (D), 1

3 (C)
]

in the second stage.

τI (φ) = 1
2 (D), 1

2 (C) τ, II (φ) = C,
τI (DD) = D, τII (DD) = 3

4 (D), 1
4 (C) ,

τI (DC) = 2
3 (D), 1

3 (C) τ, II (DC) = 1
2 (D), 1

2 (C) ,
τI (CD) = 1

4 (D), 3
4 (C) τ, II (CD) = C,

τI (CC ) = τC II (CC ) = D.

Figure 13.4 Strategies for both players in the two-stage Prisoner’s Dilemma �
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Given the strategies (τi)i∈N of the players, denote by τ = (τ1, τ2, . . . , τn) the vector of
the players’ strategies. Denote by τi(si) the probability that player i plays action si in the
first stage, and by τi(si | s1, . . . , st−1) the conditional probability that player i plays action
si in stage t , given that the players have played (s1, . . . , st−1) in the first t − 1 stages.

Example 13.1 (Continued) If the players play according to the strategies τI and τII that we defined in

Figure 13.4 in the two-stage Prisoner’s Dilemma, we can associate with every branch in the game
tree the probability that it will be chosen in a play of the game. These probabilities are shown in
Figure 13.5. The figure also shows, by each leaf of the game tree, the probability that the leaf will
be arrived at if the players play strategies τI and τII.

II II II II II II II II

I I I I

II II

I

CD CD CD CD CD CD CD CD

3
4

1
4

3
4

1
4

1
2

1
2

1
2

1
2 10 10 01 01

CD CD CD CD

01 2
3

1
3

1
4

3
4 10

CD CD

10 10

CD
1
2

1
2

0 000 1
6

1
6

1
12

1
12 0 00000 1

2 0

2 637430417485415

2 673478453401451

Payoff to Player I:

Payoff to Player II:

Probability to
reach each leaf:

Figure 13.5 The probabilities attached to each play of the game, under the strategies (τI, τII) �

The collection of all the possible plays of the T -stage game is ST = H (T ). As can be
seen in Figure 13.5, every strategy vector τ naturally induces a probability measure Pτ

over H (T ). The probability of every play of the game (s1, s2, . . . , sT ) is the probability
that if the players play according to strategy τ , the resulting play of the game will be this
history. Formally, for every action vector s1 = (s1

1 , . . . , s
1
n) ∈ S, define

Pτ (s1) = τ1
(
s1

1

)× τ2
(
s1

2

)× · · · × τn

(
s1
n

)
. (13.4)
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This is the probability that the action vector played in the first stage is s1, and it equals the
product of the probability that every player i plays action s1

i . More generally, for every t ,
2 ≤ t ≤ T , and every finite history(s1, s2, . . . , st ) ∈ St , define by induction

Pτ (s1, s2, . . . , st ) = Pτ (s1, s2, . . . , st−1) × τ1
(
st

1 | s1, s2, . . . , st−1)
× τ2

(
st

2 | s1, s2, . . . , st−1
)× · · · × τn

(
st
n | s1, s2, . . . , st−1

)
.

This means that the probability that under τ the players play the action vector s1, s2, . . . , st

in the first t stages is the probability that the players play s1, s2, . . . , st−1 in the first t − 1
stages, times the conditional probability that they play the action vector st in stage t , given
that they played s1, s2, . . . , st−1 in the first t − 1 stages. This formula for Pτ expresses
the fact that the mixed action that a player implements in any given stage can depend on
the actions that he or other players played in previous stages, but the random choices of
the players made simultaneously in each stage are independent of each other. The case in
which there may be correlation between the actions chosen by the players was addressed
in Chapter 8, where we studied the concept of correlated equilibrium.

13.3.2 Payoffs and equilibria
In repeated games, the players receive a payoff in every stage of the game. Denote the
payoff received by player i in stage t by ut

i , and denote the vector of payoffs to the players
in stage t by ut = (ut

1, . . . , u
t
n). Then, during the course of a play of the game, player i

receives the sequence of payoffs (u1
i , u

2
i , . . . , u

T
i ). We assume that every player seeks to

maximize the sum total of these payoffs or, equivalently, seeks to maximize the average
of these payoffs.

As previously noted, every strategy vector τ induces a probability measure Pτ over
H (T ). Denote the corresponding expectation operator by Eτ ; i.e., for every function
f : H (T ) → R, the expectation of f under Pτ is denoted by Eτ [f ]:

Eτ [f ] =
∑

(s1,...,sT )∈H (T )

Pτ (s1, . . . , sT )f (s1, . . . , sT ). (13.5)

Player i’s expected payoff in stage t , under the strategy vector τ , is Eτ [ut
i]. Denote

player i’s average expected payoff in the first T stages under strategy vector τ by

γ T
i (τ ) := Eτ

[
1

T

T∑
t=1

ut
i

]
= 1

T

T∑
t=1

Eτ

(
ut

i

)
. (13.6)

Example 13.1 (Continued) Figure 13.5 provides the probability to every play of the game under the strategy

pair (τI, τII). The table in Figure 13.6 presents the plays of the game that are obtained with positive
probability in the left column, the probability that each play is obtained in the middle column, and
the payoff to the players, under that play of the game, in the right column. Each play of the game is
written from left to right, with the actions implemented by the players in the first stage appearing
first, followed by the actions implemented by the players in the second stage. Player I’s action
appears to the left of Player II’s action.
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Play of the Game Probability Payoff
(D, C ), (D, D ) 1

6 (5, 1)
(D, C ), (D, C ) 1

6 (8, 0)
(D, C ), (C, D ) 1

12 (4, 4)
(D, C ), (C, C ) 1

12 (7, 3)
(C, C ), (C, D ) 1

2 (3, 7)

Figure 13.6 The probability of every play of the game, and the corresponding payoff, under the
strategy pair (τI, τII)

It follows that the expected payoff of the two players is

1
6 × (5, 1) + 1

6 × (8, 0) + 1
12 × (4, 4) + 1

12 × (7, 3) + 1
2 × (3, 7) = (

4 7
12 , 4 1

4

)
. (13.7)

�

Definition 13.5 Let � = (N, (Si)i∈N, (ui)i∈N ) be a base game. The T -stage game �T

corresponding to � is the game �T = (N, (BT
i )i∈N, (γ T

i )i∈N ).

The strategy vector τ ∗ = (τ ∗
1 , . . . , τ ∗

n ) is a (Nash) equilibrium of �T if for each player
i ∈ N, and each strategy τi ∈ BT

i ,

γ T
i (τ ∗) ≥ γ T

i (τi, τ
∗
−i). (13.8)

The vector γ T (τ ∗) is called an equilibrium payoff of the repeated game �T .
The following theorem states that a strategy vector at which in each stage the players

play a one-stage equilibrium is an equilibrium of the T -stage game.

Theorem 13.6 Let � = (N, (Si)i∈N, (ui)i∈N ) be a base game, and let �T be its corre-
sponding repeated T -stage game. Let σ 1, σ 2, . . . , σ T be equilibria of � (not necessarily
different equilibria). Then the strategy vector τ ∗ in �T , at which in each stage t , 1 ≤ t ≤ T ,
every player i ∈ N plays the mixed action σ t

i , is an equilibrium.

Proof: The strategy vector τ ∗ is an equilibrium, because neither player can profit by
deviating. No player can profit in a stage in which he deviates from equilibrium, because
by definition in such a stage the players implement an equilibrium of the base game. In
addition, his deviation in any stage cannot influence the future actions of the other players,
because they are playing according to a strategy that depends only on the stage t , not on
the history ht .

Formally, let i ∈ N be a player, and let τi be any strategy of player i in �T . We will
show that γ T

i (τi, τ
∗
−i) ≤ γ T

i (τ ∗); i.e., player i does not profit by deviating from τ ∗
i to τi .

For each t , 1 ≤ t ≤ T , the mixed action vector σ t is an equilibrium of �. Therefore,
for each history ht−1 ∈ H (t − 1),

ui(σ
t ) ≥ ui

(
τi(h

t−1), σ t
−i

)
. (13.9)
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This implies that

Eτi ,τ
∗
−i

[
ut

i

] = ∑
ht−1∈H (t−1)

Pτi ,τ
∗
−i

(ht−1)ui(τi(h
t−1), τ ∗

−i(h
t−1)) (13.10)

=
∑

ht−1∈H (t−1)

Pτi ,τ
∗
−i

(ht−1)ui

(
τi(h

t−1), σ t
−i

)
(13.11)

≤
∑

ht−1∈H (t−1)

Pτi ,τ
∗
−i

(ht−1)ui(σ
t ) (13.12)

= ui(σ t )
∑

ht−1∈H (t−1)

Pτi ,τ
∗
−i

(ht−1) = ui(σ t ). (13.13)

The last equality follows from the fact that the sum total of the probabilities of all (t − 1)-
stage histories is 1, and therefore Eτi ,τ

∗
−i

[ut
i] ≤ ui(σ t ). Averaging over the T stages of

the game shows that γ T
i (τi, τ

∗
−i) ≤ γ T

i (τ ∗), which is what we wanted to show. Since
γ T

i (τi, τ
∗
−i) ≤ γ T

i (τ ∗) for every strategy τi of player i, and for every player i, we deduce
that τ ∗ is an equilibrium. �

By repeating the same equilibrium in every stage, we get the following corollary.

Corollary 13.7 Let � be a base game, and let �T be the corresponding repeated T -stage
game. Every equilibrium payoff of � is also an equilibrium payoff of �T .

13.3.3 The minmax value
Recall that Ui is the multilinear extension of ui (Equation (5.9), page 147). The minmax
value of player i in the base game � is (Equation (4.51), page 113):

vi = min
σ−i∈×j �=i�j

max
σi∈�i

Ui(σi, σ−i). (13.14)

This is the value that the players N \ {i} cannot prevent player i from attaining: for any vec-
tor of mixed actions σ−i they implement, player i can receive at least maxσi∈�i

Ui(σi, σ−i),
which is at least vi . Every mixed strategy vector σ−i satisfying

vi = max
σi∈�i

Ui(σi, σ−i) (13.15)

is called a punishment strategy vector against player i, because if the players N \ {i} play
σ−i , they guarantee that player i’s average payoff will not exceed vi . Similarly to what we
saw in Equation (5.25) (page 151), for every mixed action vector σ−i ∈ �−i there exists
a pure action s ′i ∈ Si of player i satisfying Ui(s ′i , σ−i) ≥ vi (why?).

The next theorem states that at every equilibrium of the repeated game, the payoff to
each player i is at least vi . The discussion above and the proof of the theorem imply that
the minmax value of each player i in the T -stage game is vi (Exercise 13.8).

Theorem 13.8 Let τ ∗ be an equilibrium of �T . Then γ T
i (τ ∗) ≥ vi for each player i ∈ N.

Proof: We will show that for every strategy vector τ (not necessarily an equilibrium vector)
there exists a strategy τ ∗

i of player i (which depends on τ−i) satisfying γ T
i (τ ∗

i , τ−i) ≥ vi .
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It follows, in particular, that if τ is an equilibrium, then

γ T
i (τ ) ≥ γ T

i (τ ∗
i , τ−i) ≥ vi, (13.16)

which is what the theorem claims. We now construct such a strategy τ ∗
i explicitly, for any

given τ−i . Recall that when τ is a strategy vector, τj (h) is the mixed action that player j

plays after history h, and τ−i(h) = (τj (h))j �=i is the mixed action vector that the players
N \ {i} play after history h. As previously noted, for every history h ∈ ⋃T−1

t=0 H (t) there is
an action s ′i(h) ∈ Si such that Ui(s ′i(h), τ−i(h)) ≥ vi . Let τ ∗

i be a strategy of player i under
which, after every history h, he plays the action s ′i(h). Then for every t ∈ {1, 2, . . . , T },

Eτ ∗
i ,τ−i

[
ut

i

] = ∑
ht−1∈H (t−1)

Pτ ∗
i ,τ−i

(ht−1)ui(τ
∗
i (ht−1), τ−i(h

t−1)) (13.17)

=
∑

ht−1∈H (t−1)

Pτ ∗
i ,τ−i

(ht−1)ui(s
′
i(h

t−1), τ−i(h
t−1)) (13.18)

≥
∑

ht−1∈H (t−1)

Pτ ∗
i ,τ−i

(ht−1)vi = vi. (13.19)

The last equality follows from the fact that the sum total of the probabilities of all the
possible histories at time period t is 1. In words, the expected payoff in stage t is at least
vi . By averaging over the T stages of the game, we conclude that the expected average of
the payoffs is at least vi :

γ T
i (τ ∗

i , τ−i) = 1

T

T∑
t=1

Eτ ∗
i ,τ−i

[ut
i] ≥

1

T

T∑
t=1

vi = vi, (13.20)

which is what we wanted to show. �
Define a set of payoff vectors V by

V := {
x ∈ RN : xi ≥ vi for each player i ∈ N

}
. (13.21)

This is the set of payoff vectors at which every player receives at least his minmax value.
The set is called the set of individually rational payoffs. Theorem 13.8 implies that the set
of equilibrium payoffs is contained in V .

13.4 Characterization of the set of equilibrium payoffs of the
T-stage repeated game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

For every set of vectors {x1, . . . , xK} in RN , denote by conv{x1, . . . , xK} the smallest
convex set that contains {x1, . . . , xK}.

The players play some action vector s in S in each stage; hence the payoff vector in each
stage is one of the vectors {u(s), s ∈ S}. In particular, the average payoff of the players,
which is equal to 1

T

∑T
t=1 u(st ), is necessarily located in the convex hull of these vectors

(because it is a weighted average of the vectors in this set), which we denote by F :

F := conv{u(s), s ∈ S}. (13.22)
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This set is called the set of feasible payoffs. We thus have γ T (τ ) ∈ F for every strategy
vector τ .

Using the last remark, and Theorem 13.8, we deduce that the set of equilibrium payoffs
is contained in the set F ∩ V of feasible and individually rational payoff vectors. As we
now show, if the base game satisfies a certain technical condition, then for every feasible
and individually rational payoff vector x there exists an equilibrium payoff vector of the
T -stage game that is close to it, for sufficiently large T . The technical condition that is
needed here is that, for every player i, it is possible to find an equilibrium of the base
game at which the payoff to player i is strictly greater than his minmax value.

Theorem 13.9 (The Folk Theorem3) Suppose that for every player i ∈ N there exists
an equilibrium β(i) in the base game � = (N, (Si)i∈N, (ui)i∈N ) satisfying ui(β(i)) > vi .
Then for every ε > 0 there exists T0 ∈ N such that for every T ≥ T0, and every feasible
and individually rational payoff vector x ∈ F ∩ V , there exists an equilibrium τ ∗ of the
T -stage game �T whose corresponding payoff is ε-close to x (in the maximum norm4):

‖γ T (τ ∗) − x‖∞ < ε. (13.23)

Under every equilibrium β of the base game, ui(β) ≥ vi for every player i (as implied
by Theorem 13.8 for T = 1). The condition of the theorem requires furthermore that, for
every player i, there exist an equilibrium at which that inequality is a strict inequality.

Remark 13.10 One can choose the minimal length T0 in Theorem 13.9 to be independent
of x. To see this, note that since F ∩ V is a compact set, given ε there exists a finite set
x1, x2, . . . , xJ of vectors in F ∩ V such that the distance between each vector x ∈ F and
at least one of the vectors x1, x2, . . . , xJ is below ε

2 :

max
x∈F∩V

min
1≤j≤J

‖x − xj‖∞ ≤ ε

2
. (13.24)

Denote by T0(xj , ε
2 ) the size of T0 in Theorem 13.9 corresponding to xj and ε

2 . Let
x ∈ F ∩ V , and let j0 ∈ {1, 2, . . . , J } be an index satisfying ‖x − xj0‖∞ ≤ ε

2 . By the
triangle inequality, every equilibrium τ of the T -stage repeated game satisfying ‖γ T (τ ) −
xj0‖∞ ≤ ε

2 also satisfies ‖γ T (τ ) − x‖∞ ≤ ε. It follows that the statement of Theorem 13.9
holds for x and ε with T0 := max1≤j≤J T0(xj , ε

2 ), and this T0 is independent of x. �

13.4.1 Proof of the Folk Theorem: example
Before we prove the theorem, we present an example that illustrates the proof. Consider
the two-player game in Figure 13.7 (this is the game of Chicken; see Example 8.3 on
page 303).

The minmax value of both players is 2. The punishment strategy against Player I is R,
and the punishment strategy against Player II is B. The game has two equilibria in pure

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 The name of the Folk Theorem is borrowed from the analogous theorem (see Theorem 13.17) for infinitely repeated
games, which was well known in the scientific community for many years, despite the fact that it was not formally
published in any journal article, and hence it was called a “folk theorem.” The theorem is now usually ascribed to
Aumann and Shapley [1994]. The Folk Theorem for finite games, Theorem 13.9, was proved by Benoit and Krishna
[1985].

4 The maximum norm over Rn is defined as follows: ‖x‖∞ = maxi=1,2,...,n |xi | for each vector x ∈ Rn.
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Player II

Player I
B

T

RL

0, 0

2, 7

7, 2

6, 6

Figure 13.7 The payoff matrix of the game of Chicken

strategies, (T , R) and (B, L), with payoffs (2, 7) and (7, 2) respectively (we will not use
the equilibrium in mixed strategies). If we denote

β(I) = (B, L), β(II) = (T , R), (13.25)

we deduce that the condition of Theorem 13.9 holds (because ui(β(i)) = 7 > 2 = vi for
i ∈ {I, II}).

The payoff vector (3, 3) is in F , since (3, 3) = 1
2 (0, 0) + 1

2 (6, 6). It is also in V , because
both of its coordinates are greater than or equal to 2, which is the minmax value of both
players. It is therefore in F ∩ V . We will now construct an equilibrium of the 100-stage
game, whose average payoff is close to (3, 3).

If the players play (T , L) in odd-numbered stages (yielding the payoff (6, 6) in every
odd-numbered stage) and play (B, R) in even-numbered stages (yielding the payoff (0, 0)
in every even-numbered stage), the average payoff is (3, 3). This does not yet constitute
an equilibrium, because every player can profit by deviating at every stage. Because this
sequence of actions is deterministic, any deviation from it is immediately detected, and
the other player can then implement the punishment strategy. The punishment strategy
guarantees that the deviating player receives at most 2 in every stage after the deviation,
which is less than the average of 3 that he can receive if he avoids deviating.

Because the repeated game in this case is finite, a threat to implement a punishment
strategy is effective only if there are sufficiently many stages left to guarantee that the loss
imposed on a deviating player is greater than the reward he stands to gain by deviating. If,
for example, a player deviates in the last stage, he cannot be punished because there are
no more stages, and he therefore stands to gain by such a deviation. This detail has to be
taken into consideration in constructing an equilibrium.

We now describe a strategy vector defined by a basic plan of action and a punishment
strategy. The basic plan of action is depicted in Figure 13.8, and consists of 49 cycles,
each comprised of two stages, along with a tail-end that is also comprised of two stages.

In the first 98 stages, the players alternately play the action vectors (T , L) and (B, R),
thereby guaranteeing that the average payoffs in these stages is (3, 3), with the average
payoff in all 100 stages close to (3, 3). In these stages, they play according to a deterministic
plan of action; hence if one of them deviates from this plan, the other immediately takes
note of this deviation. Once one player deviates at a certain stage, the other player
implements the punishment strategy against the deviator, from the next stage on: if Player
II deviates, Player I plays B from the next stage to the end of the play of the game. If
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Player I’s actions BT BT ••• BT TB
Player II’s actions RLRL ••• RL RL
Stage 21 43 ••• 97 98 99 100
Player I’s payoff 06 06 ••• 06 27
Player II’s payoff 06 06 ••• 06 72

Figure 13.8 An equilibrium in the 100-stage game of Chicken

Player I deviates, Player II plays R from the next stage to the end of the play of the
game. In the last two stages of the basic plan of action, the players play the pure strategy
equilibria β(I) and β(II) (in that order).

We now show that this strategy vector is an equilibrium yielding an average payoff that
is close to (3, 3). Indeed, if the players follow this strategy vector, the average payoff is

49
100 (6, 6) + 49

100 (0, 0) + 1
100 (7, 2) + 1

100 (2, 7) = (3.03, 3.03), (13.26)

which is close to (3, 3).
We next turn to ascertaining that Player I cannot gain by deviating (ascertaining that

Player II cannot gain by deviating is conducted in a similar way). In each of the last two
stages (the tail-end of the action plan), the two players play an equilibrium of the base
game, and therefore Player I cannot gain by deviating in those stages. Suppose, therefore,
that Player I deviated during one of the first 98 stages. In the cycle at which he deviates
for the first time, he can gain at most 3, relative to the payoff he would receive at that
cycle by following the basic action plan. To see this, note that if he deviates in the second
stage of the cycle (playing T instead of B), he gains 2 at that stage. If he deviates in the
first stage of the cycle (playing B instead of T ), he gains 1 at that stage, and if he then
plays T instead of B in the second stage of the cycle he gains 2 at that stage, and in total
he gains 3 at that cycle (7 + 2 instead of 6 + 0 according to the basic plan). In each of
the following cycles he loses (because he receives at most 2 in every stage of the cycle,
instead of receiving 6 in the first stage and 0 in the second stage of the cycle, as he would
receive under the basic plan of action). Finally, at stage 100 he loses 5: he will receive
at most 2 rather than the 7 that he receives in the basic plan of action. In sum total, the
deviation leads to a loss of at least 5 − 3 = 2, relative to the payoff he would receive by
following the basic action plan, and therefore Player I cannot gain by deviating.

In the construction depicted here, we have split the stages into cycles of length 2, because
the payoff (3, 3) is the average of two payoff vectors of the matrix. If we had wanted to
construct an equilibrium with a payoff that is, say, close to (3 1

2 , 4 3
4 ) (which is also in

F ∩ V ), then, since (3 1
2 , 4 3

4 ) = 1
4 (0, 0) + 1

2 (6, 6) + 1
4 (2, 7), we would have constructed

an equilibrium using cycles of length 4: except for the last stages, the players would
repeatedly play the action vectors

(B, R), (T , L), (T , L), (T , R). (13.27)

We can mimic the construction above whenever the target payoff can be obtained
as the weighted average of the payoff vectors in the matrix, with rational weights.
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Since the target payoff is in F , it can always be obtained as a weighted average
of payoffs. If the weights are irrational, we need to approximate them using rational
weights.

The role of the tail-end (the last two stages in the above example) is to guarantee that
a deviating player loses. During the course of the tail-end, the players cyclically play
the equilibria β(1), . . . , β(n). The expected payoff of each player i under each of these
equilibria is greater than or equal to vi (because they are equilibria) and under β(i) it is
strictly greater than vi . That is why, if the other players punish player i by reducing his
payoff to vi , he loses in the tail-end. The tail-end needs to be sufficiently long for the total
loss to be greater than the maximal gain that a player can obtain by deviating. On the
other hand, the tail-end needs to be sufficiently short, relative to the length of the game,
for the overall payoff to be close to the target payoff (which is the average payoff in a
single cycle).

In the formulation of the Folk Theorem, the equilibrium payoff does not equal the target
payoff x; the best we can do is obtain a payoff that is close to it. This stems from two
reasons:

1. The existence of the tail-end, in which the payoff is not the target payoff.
2. It may be the case that x cannot be expressed as the weighted average of payoff vectors

of the matrix using rational weights, which then requires approximating these weights
using rational weights.

13.4.2 Detailed proof of the Folk Theorem
We will now generalize the construction in the example of the previous section to all
repeated games. For every real number c, denote by �c� the least integer that is greater
than or equal to c, and by �c� the greatest integer that is less than or equal to c. Recall
that M = maxi∈N maxs∈S |ui(s)| is the maximal payoff of the game (in absolute value).

Step 1: Determining the cycle length.
We first show that every vector in F can be approximated by a weighted average of the
vectors (u(s))s∈S , with rational weights sharing the same denominator. The proof of the
following theorem is left to the reader (Exercise 13.13).

Theorem 13.11 For every K ∈ N and every vector x ∈ F there are nonnegative integers
(ks)s∈S summing to K satisfying∥∥∥∥∥∑

s∈S

ks

K
u(s) − x

∥∥∥∥∥
∞

≤ M × |S|
K

. (13.28)

For ε > 0 and x ∈ F ∩ V , let K be a natural number satisfying K ≥ 2M×|S|
ε

and let
(ks)s∈S be nonnegative integers summing to K satisfying Equation (13.28). If the players
implement cycles of length K , and in each cycle they play each action vector s ∈ S

exactly ks times, then the average payoff over the course of the cycle is
∑

s∈S
ks

K
u(s), and

the distance between this average payoff and x is at most M×|S|
K

.
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Step 2: Defining the strategy vector τ ∗.
We next define a strategy vector τ ∗ of the T -stage game, which depends on two variables,
R and L, to be defined later. The T stages of the game are divided into R cycles of length
K and a tail of length L:

T = RK + L. (13.29)

These variables will be set in such a way that the following two properties are satisfied:
R will be sufficiently large for the average payoff according to τ ∗ to be close to x, and
L will be sufficiently large for τ ∗ to be an equilibrium. In each cycle, the players play
every action vector s ∈ S exactly ks times. In the tail-end, the players cycle through the
equilibria β(1), . . . , β(n). In other words, each player j plays the mixed action βj (1)
in the first stage, and in stages n + 1, 2n + 1, etc., of the tail-end; he plays the mixed
action βj (2) in the second stage, and in stages n + 2, 2n + 2, etc., of the tail-end, and
so on.

The basic plan that we have defined for the first RK stages is deterministic: the players
do not choose their actions randomly in these stages. It follows that if a player deviates
from the basic plan in one of the first RK stages, this deviation is detected by the other
players. In this case, from the next stage on, the other players punish the deviator: at every
subsequent stage they implement a punishment strategy vector against the deviator. If a
player deviates for the first time in one of the L final stages, the other players do not
punish him, and instead continue cycling through the equilibria {β(i)}i∈N .

Step 3: The constraints on R and L needed to ensure that the distance between the average
payoff under τ ∗ and x is at most ε.
Suppose that the players implement the strategy vector τ ∗. Given the choice of (ks)s∈S ,
the distance between the average payoff in every cycle of length K and x is at most M×|S|

K
.

This also holds true for any integer number of repetitions of the cycle. By the choice of
K , one has M×|S|

K
≤ ε

2 , and hence the distance between the average payoff in the first RK

stages and x is at most ε
2 . If the length of the tail-end L is small relative to RK , the average

payoff in the entire game will be close to x. We will ascertain that if

L ≤ KRε

4M
, (13.30)

then the distance between the average payoff in the entire game and x is at most ε. Indeed,
the distance between the average payoff in the first RK stages and x is at most ε

2 , and the
distance between the average payoff in the last L stages and x is at most 2M . Therefore
the average payoff in the entire game is within ε of x, as long as

RK ε
2 + 2ML

T
≤ ε. (13.31)

Since T = RK + L > RK , it suffices to require that

RK ε
2 + 2ML

RK
≤ ε, (13.32)

and this inequality is equivalent to Equation (13.30).
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Step 4: τ ∗ is an equilibrium.
Suppose that player i first deviates from the basic plan at stage t0. We will ascertain here
that his average payoff cannot increase by such a deviation.

Suppose first that t0 is in the tail-end: t0 > RK . Since throughout the tail the players
play an equilibrium of the base game at every stage, player i cannot increase his average
payoff by such a deviation.

Suppose next that t0 ≤ RK . Then player i’s deviation triggers a punishment strategy
against him from stage t0 + 1. It follows that from stage t0 + 1 player i’s payoff at each
stage is at most his minmax value vi . If L ≥ n, by the condition that ui(β(i)) > vi we
deduce that at each n consecutive stages in the tail-end, player i loses by the deviation
at least ui(β(i)) − vi , relative to his payoff at the equilibrium strategy. Denote δi =
ui(β(i)) − vi > 0, and δ = mini∈N δi > 0.

The maximal profit that player i can gain by deviating up to stage RK is 2KM: because
the payoffs are between −M and M , player i can gain at most 2M by deviating in any
single stage; hence in a cycle in which he deviates, a player can gain5 at most 2KM . The
player cannot gain in any of the subsequent cycles, because the average payoff in a cycle
under the equilibrium strategy is x, while if a player deviates, he receives at most vi , while
vi ≤ xi .

For a punishment to be effective, we need to require that the tail-end be sufficiently
long to ensure that the losses at the tail-end exceed the possible gains in the cycle in which
the deviation occurred:

δ

⌊
L

n

⌋
> 2KM. (13.33)

In this calculation, we have rounded down L/n. In every n stages of the tail-end, every
player is punished only once. If L is not divisible by n, some of the players are punished
�L

n
� times, and some are punished �L

n
� times.

Equation (13.33) gives us the required minimal length of the tail-end

L > n

(
1 + 2KM

δ

)
. (13.34)

The length of the tail-end, L, cannot be constant for all T , because T − L needs to be
divisible by K . It suffices to use tail-ends whose length is at least n

(
1 + 2KM

δ

)
, and at

most n
(
1 + 2KM

δ

)+ K .

Step 5: Establishing T0.
The length of the game, T , satisfies T = RK + L. From Equation (13.30), we need
to require that R ≥ 4ML

Kε
, i.e., T = RK + L ≥ L

(
1 + 4M

ε

)
. This, along with Equation

(13.34), implies that the length of the game must satisfy

T > n

(
1 + 2KM

δ

)(
1 + 4M

ε

)
. (13.35)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 If a player deviates at any stage, from the next stage on his one-stage expected payoff is at most his minmax value,
but it is possible that in the basic plan during the cycle there may be stages in which his payoff is less than his
minmax value. For example, in the equilibrium constructed in the example in Section 13.4.1 (page 531), in the even
stages the payoff to each player is 0, while the minmax value of each player is 2. It is therefore possible for a player
to gain at more than one stage by deviating.
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We can therefore set T0 to be the value of the right-hand side of Equation (13.35). This
concludes the proof of Theorem 13.9.

Remark 13.12 As mentioned above, the only equilibrium payoff in the finitely repeated
Prisoner’s Dilemma is (1, 1). This does not contradict Theorem 13.9, because the con-
ditions of the theorem do not hold in this case: the only equilibrium of the one-stage
Prisoner’s Dilemma is (D, D), and the payoff to both players at this equilibrium is 1,
which is the minmax value of both players. The proof of the uniqueness of the equilibrium
payoff in the T -stage Prisoner’s Dilemma is based on the existence of a last stage in the
game. In the next section we will study repeated games of infinite length, and show that in
that case, the repeated Prisoner’s Dilemma has more than one equilibrium payoff. �

13.5 Infinitely repeated games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As noted above, the strategy vector constructed in the previous section is highly dependent
on the length of the game: it cannot be implemented unless the players know the length
of the game. However, it is often the case that the length of a repeated game is not known
ahead of time. For example, the owner of a tennis-goods shop does not know if or when
he will sell his shop, tennis players do not know when they will stop playing tennis, nor
if or when they will move to another town. Infinitely repeated games can serve to model
finite but extremely long repeated games, in which (a) the number of stages is unknown,
(b) the players ascribe no importance to the last stage of the game, or (c) at every stage
the players believe that the game will continue for several more stages.

In this section, we will present a model of infinitely repeated games, and characterize
the set of equilibria of such games. The definitions in this section are analogous to the
definitions in the section on T -stage games. As the next example shows, extending games
to an infinite number of repetitions leads to new equilibrium payoffs: payoff vectors that
cannot be obtained as limits of sequences of equilibrium payoffs in finite games whose
lengths increase to infinity.

Example 13.1 (Continued) Recall the repeated Prisoner’s Dilemma, given by the payoff matrix in

Figure 13.9.

Player II

Player I
C

D

CD

0, 4

1, 1

3, 3

4, 0

Figure 13.9 The Prisoner’s Dilemma

Consider the repeated Prisoner’s Dilemma in the case where the players repeat playing the basic
game ad infinitum. In this case, every player receives an infinite sequence of payoffs: one payoff
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per stage of the game. We will assume that every player strives to maximize the limit of the average
payoff he receives. Certain technical issues, such as what happens when the limit of the average
payoffs does not exist, will be temporarily ignored (we will consider this issue later in this chapter).
Whereas the only equilibrium payoff of the T -stage repeated game is (1, 1), in the infinitely repeated
game there are additional equilibrium payoffs.

Let us look, for example, at following strategy: in the first stage play C. In every subsequent
stage, if the other player chose C in every stage since the game started, choose C in the current
stage; otherwise choose D. This is an unforgiving strategy that is called the Grim-Trigger Strategy:
as long as the opponent cooperates, you also cooperate, but if he fails to cooperate once, defect
forever from that point on in the game. When both players implement this strategy, no player has
an incentive to deviate. To see why, note that at this strategy vector, every player receives 3 in each
stage; hence every player’s average payoff is 3. If a player deviates at some stage and plays D, he
receives 4 in that stage, instead of 3, but from that stage on, the other player plays D, and then the
most that the deviating player receives in every stage is 1. In particular, the limit of the average
payoff of the deviating player is at most 1. Thus, the payoff vector (3, 3) is an equilibrium payoff
of the infinitely repeated game, despite not being an equilibrium payoff of the T -stage game. �

Definition 13.13 A behavior strategy for player i (in the infinitely repeated game) is a
function mapping every finite history to a mixed action:

τi :
∞⋃
t=0

H (t) → �i. (13.36)

The collection of all of player i’s strategies in the infinitely repeated game is denoted by
B∞

i .

Remark 13.14 If τi(h) ∈ Si for every finite history h ∈ ⋃∞
t=1 H (t), then the strategy τi is

a pure strategy. Note that even when the sets of actions of the players are finite, the set of
pure strategies available to them has the cardinality of the continuum. �

Denote by H (∞) the collection of all possible plays of the infinitely repeated game:

H (∞) = SN. (13.37)

An element of this set is an infinite sequence (s1, s2, . . .) of action vectors, where st =
(st

i )i∈N is the action vector of the players in stage t . The results in Section 6.4 (page
238) show that every vector of behavior strategies τ = (τi)i∈N induces a probability
distribution Pτ over the set H (∞) (which, together with the σ -algebra of cylinder sets
forms a measurable space; see Section 6.4 for the definitions of these notions). We denote
by Eτ the expectation operator that corresponds to the probability distribution Pτ .

To define an infinitely repeated game, we need to define, in addition to the sets of
strategies of the players, their payoff functions. One way to try doing this is by taking the
limit of Equation (13.6) as T goes to infinity, but this limit may not necessarily exist. In
this section, we will define infinitely repeated games, and equilibria in infinitely repeated
games, without explicitly defining payoff functions in such games. In the next section
we will define discounted payoff functions for infinitely repeated games, and study the
corresponding equilibrium notion, which turns out to be different from the equilibrium
concept presented in this section.
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Definition 13.15 Let � = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form. The infinitely
repeated game �∞ corresponding to � is the game whose set of players is N , and each
player i’s set of strategies is B∞

i .

For every stage t ∈ N, and every player i ∈ N , denote by ut
i player i’s payoff in stage

t . We next define the concept of the equilibrium of �∞.

Definition 13.16 A strategy vector τ ∗ is an equilibrium (of the infinitely repeated game
�∞), with a corresponding equilibrium payoff x ∈ RN , if with probability 1 according to
Pτ ∗ , for each player i ∈ N , the limit

lim
T→∞

1

T

T∑
t=1

ut
i (13.38)

exists, and for each strategy τi of player i,

Eτ ∗

(
lim

T→∞
1

T

T∑
t=1

ut
i

)
= xi ≥ Eτi ,τ

∗
−i

(
lim sup
T→∞

1

T

T∑
t=1

ut
i

)
. (13.39)

In words, a strategy vector τ ∗ is an equilibrium, with payoff x if (a) the average payoff
under τ ∗ converges, (b) the expectation of its limit is x, and (c) no player can profit by
deviating. Since there is no guarantee that every deviation leads to a well-defined limit of
the average payoffs, we require that the expectation of the limit superior of the average
payoffs after a deviation be not greater than the equilibrium payoff.

The following theorem characterizes the set of equilibrium payoffs of the infinitely
repeated game.

Theorem 13.17 (The Folk Theorem for the infinitely repeated game �∞) The set of
equilibrium payoffs of �∞ is the set F ∩ V .

That is, every payoff vector that is in the convex hull of the payoffs {u(s), s ∈ S} and
is individually rational (i.e., that is not less than the minmax value vi for each player i,
which a player cannot be prevented from attaining) is an equilibrium payoff.

Note that the Folk Theorem for �∞ and the Folk Theorem for �T differ in two respects.
First, in �∞ we need not approximate a payoff to within ε; exact payoffs can be obtained.
Second, in the finite repeated game, we required that for every player i there exist an
equilibrium of the base game that gives player i a payoff that is strictly greater than his
minmax value; this requirement is not needed for the Folk Theorem for �∞. The differences
between these two theorems are illustrated in the repeated Prisoner’s Dilemma. In that
example, for every T ∈ N the only equilibrium payoff of �T is (1, 1) (see Example 13.1
on page 521), while according to Theorem 13.17, the set of equilibrium payoffs of �∞ is
the set W , shown in Figure 13.10.
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W

0 1 43
0

1

3

4

Figure 13.10 The set of equilibrium payoffs of the infinitely repeated Prisoner’s
Dilemma

Example 13.1 (Continued ) Consider again the repeated Prisoner’s Dilemma of Figure 13.9. We will show

that (1, 2), for example, is an equilibrium payoff of the infinitely repeated game. We do so by
constructing an equilibrium leading to this payoff. Note first that

(1, 2) = 5
8 (1, 1) + 1

8 (3, 3) + 2
8 (0, 4). (13.40)

Define the pair of strategies τ ∗ = (τ ∗
I , τ ∗

II) that repeatedly cycle through the action vectors

(D,D), (D,D), (D,D), (D,D), (D,D), (C,C), (C,D), (C,D), (13.41)

unless a player deviates, in which case the other player switches to the punishment action D.
Formally:

� Player I repeatedly cycles through the actions D,D,D,D,D,C,C,C.
� Player II repeatedly cycles through the actions D,D,D,D,D,C,C,D.
� If one of the players deviates, and fails to play the action he is supposed to play under this plan,

the other player chooses D in every subsequent stage of the game, forever.

Direct inspection shows that τ ∗ is an equilibrium of the infinitely repeated game. By Equation
(13.40) the average payoff at this equilibrium converges to (1, 2).

We can similarly obtain every payoff vector in F ∩ V that is representable as a weighted average
of the vectors (u(s))s∈S , with rational weights, as an equilibrium payoff of the infinitely repeated
game.

When a payoff vector x ∈ F ∩ V cannot be represented as a weighted average with rational
weights, we can use Theorem 13.11 to approximate x by way of a weighted average with ratio-
nal weights. In other words, for every k ∈ N we can find rational coefficients (λs(k))s∈S with
denominator k such that ∣∣∣∣∣x −

∑
s∈S

λs(k)u(s)

∣∣∣∣∣ <
1

k
. (13.42)

In this case, in the basic action plan, the players play in blocks, where the k-th block has k stages:
in the first block the players play to obtain the average

∑
s∈S λs(1)u(s), in the second block they

play to obtain the average
∑

s∈S λs(2)u(s), and so on. Recall that for every sequence (zk)k∈N of real
numbers converging in the limit to z, the sequence of averages ( 1

n

∑n
k=1 zk)n∈N also converges to z.
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Since the average payoff of the k-th block approaches x as k increases, the average payoff of the
infinitely repeated game approaches x.

If one of the players deviates, the other player plays D in every stage from that stage on, forever,
and hence no player can profit by deviating. �

The construction of the equilibrium strategy in the above example can be generalized
to any repeated game, thus proving Theorem 13.17. The proof is left to the reader
(Exercise 13.23).

As stated at the beginning of this section, one reason to study infinitely repeated games is
to obtain insights into very long finitely repeated games. To present the connection between
infinitely repeated games and finite games, we define the concept of ε-equilibrium of finite
games.

Definition 13.18 Let ε > 0, and let T ∈ N. A strategy vector τ ∗ is an ε-equilibrium of
�T if for each player i ∈ N and any strategy τi ∈ BT

i ,

γ T
i (τ ∗) ≥ γ T

i (τi, τ
∗
−i) − ε. (13.43)

If τ ∗ is an ε-equilibrium of �T , it is perhaps possible for a player to profit by deviating,
but his profit will be no greater than ε. The smaller ε is, the less motivation a player has
to deviate. When ε = 0, we recapitulate the definition of equilibrium, in which case no
player has any motivation to deviate. If there is a cost for deviating, and the cost exceeds ε,
then even at an ε-equilibrium, deviating is unprofitable. In this sense, ε-equilibria satisfy
the property of being “almost stable,” where “almost” is measured by ε.

For every strategy vector τ in �∞, and every T ∈ N, we can define the restriction of τ

to the first T stages of the game. To avoid a plethora of symbols, we will denote such a
restricted strategy vector by the same symbol, τ .

A stronger formulation of the Folk Theorem for �∞ relates the equilibria of the infinitely
repeated game to ε-equilibria in long finitely repeated games. The proof of the theorem is
left to the reader (Exercise 13.25).

Theorem 13.19 For every ε > 0 and every vector x ∈ F ∩ V there exist a strategy vector
τ in �∞ and T0 ∈ N that satisfy the following:

1. τ is an equilibrium of �∞.
2. τ is an ε-equilibrium of �T , for all T ≥ T0.

Example 13.1 (Continued ) On page 522, we saw that the only equilibrium payoff of the T -stage repeated

Prisoner’s Dilemma is (1, 1). It follows that for every payoff vector x ∈ F ∩ V that is not (1, 1), the
corresponding strategy vector τ constructed on page 540, which is an equilibrium of the infinitely
repeated game, is not an equilibrium of the T -stage repeated game, for any T ∈ N. However,
for every ε > 0, for T sufficiently large, the strategy vector τ is an ε-equilibrium of the T -stage
repeated game with an average payoff close to x. In other words, every payoff vector x ∈ F ∩ V

can be supported by an ε-equilibrium in the T -stage repeated game, provided T is large enough
(Exercise 13.24). �
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As the following example shows, it is not the case that every equilibrium of �∞ is an
ε-equilibrium of every sufficiently long finitely repeated game.

Example 13.20 Consider the two-player zero-sum game in Figure 13.11.

Player II

Player I
B

T

RL

1

0

0

−1

Figure 13.11 The base game in Example 13.20

The pure action B strictly dominates T , and R strictly dominates L. Elimination of strictly
dominated actions reveals that the value of the (finitely or infinitely) repeated game is 0.

Consider the following pair of strategies τ ∗ = (τ ∗
I , τ ∗

II) in the infinitely repeated game:

� τ ∗
I instructs Player I to play T up to stage (tII)2 and to play B thereafter, where tII is the first stage

in which Player II plays R (tII = ∞ if Player II plays L in every stage).
� τ ∗

II instructs Player II to play L up to stage (tI)2 and to play R thereafter, where tI is the first stage
in which Player I plays B (tI = ∞ if Player II plays T at every stage).

Thus, Player I plays T and checks whether Player II plays L (in which case the payoff is 0). As long
as Player II plays L, Player I plays T . If at a certain stage (which we denote by tII) Player II first
plays R, Player I continues to play T for several stages (up to stage (tII)2) and from that stage on he
punishes Player II by playing B in every subsequent stage. Player II’s strategy is defined similarly,
all things being equal.

At strategy vector τ ∗, the players play (T ,L) in every stage, and the payoff, in the infinitely
repeated game, is 0. If one of the players (say Player I) deviates he may receive the higher payoff
of 1 for several stages (the stages between tI and (tI)2), but afterwards he can receive at most 0 in
every stage. The upper limit of the average payoff of Player I in �∞ is therefore less than or equal
to 0 even when he deviates: he cannot profit by deviating. In particular, (τ ∗

I , τ ∗
II) is an equilibrium

of the infinitely repeated game.
However, in finite games, (τ ∗

I , τ ∗
II) is not an ε-equilibrium for ε close to 0: for example, in the

99-stage repeated game, if Player I deviates from τ ∗
I , and plays B from stage 10 onwards, his

average payoff is 90
99 . It follows that a deviation yields Player I a profit of 90

99 . In general, in the

T -stage game, playing against strategy τ∗
II, Player I has a deviation yielding him a payoff of T−�√T �

T

(Exercise 13.26). Similarly, playing against strategy τ ∗
I , Player II has a deviation yielding him a

payoff of − T−�√T �
T

. It follows that when ε is sufficiently small, (τ ∗
I , τ ∗

II) is not an ε-equilibrium in
any finite repeated game �T , for large T . �

13.6 The discounted game
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the definition of the T -stage game, we assumed that every player seeks to maximize
his average expected payoff at every stage of the game, or, equivalently, that every player
seeks to maximize the expected sum of his payoffs. This means that if, say, John receives
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$10,000 today, and Paul receives $10,000 in a year from now, their situations are considered
identical. Such an assumption is not appealing: in reality, if John invests his $10,000 in a
bank account yielding, say, 5% annual interest, he will have $10,500 in one year, and thus
will be better off than Paul. This is the reason that economic models usually assume that
players maximize not the sum of their payoffs over time, but the discounted sum of their
payoffs, where the discount rate takes into account the interest that players can receive
over time for their money.

Discounted repeated games are presented in this section. For mathematical convenience,
we will consider only infinitely repeated games. The assumption that all games are infinite
is applicable in realistic models, because when payoffs are time-discounted, payoffs in
far-off stages have a negligible effect on the discounted sum of the payoffs. We will
study the equilibria of such games, and compare them to the equilibria of the finitely and
infinitely repeated games presented in the previous sections.

Definition 13.21 Let λ ∈ [0, 1) be a real number, and let τ = (τi)i∈N be a strategy vector
in an infinitely repeated game. The λ-discounted payoff to player i under strategy vector
τ is

γ λ
i (τ ) := Eτ

[
(1 − λ)

∞∑
t=1

λt−1ut
i

]
. (13.44)

The constant λ is called the discount factor.

The coefficient λt−1 that multiplies the stage payoff ut
i in Equation (13.44) expresses the

fact that a payoff of $1 tomorrow is equivalent to a payoff of $λ today, a payoff of $1 in two
days is equivalent to a payoff of $λ2 today, and so on. Since (1 − λ)

∑∞
t=1 λt−1 = 1, the

discounted payoff is the weighted average of the daily payoffs, where the weights decrease
exponentially. When λ = 0, players’ payoffs in �λ equal their payoffs in the first stage of
the game, and the discounted repeated game is essentially equivalent to the (one-stage)
base game. When λ is close to zero, 1 − λ (the weight associated with the first stage) is
large relative to λ (the total weight associated with the payoffs in the subsequent stages),
and the first-stage payoff is the most important one: players attach more importance to
today’s payoff, and are willing to forgo high payoffs in the future. When λ is close to
1, the weight associated with stage t is very close to that of stage t + 1, and hence the
players exhibit “patience”: each player evaluates tomorrow’s payoff almost as much as he
evaluates today’s payoff.

Since the sum total of the weights is 1, the λ-discounted payoff γ λ
i may be viewed as

an “expected payoff per stage.” This can be seen in two different ways:

1. If the payoffs are 1 in each stage, we want the “average payoff” per stage to be 1, and
indeed the discounted sum in this case is (1 − λ)

∑∞
t=1 λt−1 = 1.

2. We can also interpret the discount factor λ as the probability that the game will
continue to the next stage. In other words, at every stage there is probability 1 − λ that
the game will end, and probability λ that the game will continue. It follows that 1

1−λ
is

the expected number of stages to the end of the game, and the probability that the
game will get to stage t is λt−1. With this interpretation, the sum on the right-hand side
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of Equation (13.44) is the total expected payoff in the game divided by the expected
number of stages.

Finally, since the definition in Equation (13.44) captures the per-stage payoff to player i,
it allows us to compare equilibrium payoffs in discounted games, for different discount
factors, and to compare these payoffs with equilibrium payoffs in finitely and infinitely
repeated games.

Definition 13.22 Let � = (N, (Si)i∈N, (ui)i∈N ) be a base game, and let λ ∈ [0, 1). The
discounted game �λ (with discount factor λ) corresponding to � is the game �λ =
(N, (B∞

i )i∈N, (γ λ
i )i∈N ).

It follows that a strategy vector τ ∗ is an equilibrium of �λ if for each player i ∈ N and
each strategy τi ,

γ λ
i (τ ∗) ≥ γ λ

i (τi, τ
∗
−i). (13.45)

In this case, the vector γ λ
i (τ ∗) is an equilibrium payoff of �λ. The minmax value of each

player i in �λ is his minmax value in the base game � (Exercise 13.31), and an equilibrium
payoff of a player is at least his minmax value (Theorem 5.42 on page 180). Therefore,
γ λ

i (τ ∗) ≥ vi for each player i ∈ N .
So far we have seen two ways to model long repeated games, using the infinitely

repeated game �∞ and using finite repeated games with duration T that increases to
infinity. As we have seen in point 2 above, in a λ-discounted model we can interpret the
quantity 1

1−λ
as the expected duration of the game. Since this quantity goes to infinity

as λ goes to 1, a third way to model a long repeated game is by λ-discounted games
with a discount factor λ that goes to 1. A natural question that arises concerns the
limit set of the set of λ-discounted equilibrium payoffs as λ goes to 1. In view of the
Folk Theorem for infinitely repeated games, can we prove an analog result for discounted
games, that is, is it true that every vector x ∈ F ∩ V is the limit of λ-discounted equilibrium
payoffs, as the discount factor goes to 1? The following example shows that this is not the
case.

Example 13.23 Consider the three-player base game given in Figure 13.12, in which Player I has three

actions {T ,M,B}, Player II has two actions {L,R}, and Player III is a dummy player who has only
one action, which has no effect on the payoffs (and is not mentioned throughout the example).

Player I

Player II

B

M

T

RL

1, 1, 0

0, 1, 0

0, 2, 5

1, 1, 0

2, 0, 5

0, 0, 0

Figure 13.12 The base game in Example 13.23
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The minmax values of the players are 1, 1, and 0 respectively, and the set F ∩ V of the feasible
and individually rational payoffs is the line segment [(1, 1, 0) − (1, 1, 5)] (verify!). We will now
show that (1, 1, 0) is the only equilibrium payoff in the discounted game �λ, for any discount factor
λ ∈ [0, 1).

Let τ ∗ be an equilibrium of the discounted game �λ. We first show that γ λ
I (τ ∗) = γ λ

II (τ ∗) = 1.
Indeed, γ λ

i (τ ∗) ≥ vi = 1 for i ∈ {I, II}. On the other hand, the sum of the payoffs to Players I and II
is at most 2 in all entries of the payoff matrix, and therefore γ λ

I (τ ∗) + γ λ
II (τ ∗) ≤ 2. Consequently,

γ λ
I (τ ∗) = γ λ

II (τ ∗) = 1, as claimed.
Since the sum of payoffs for Players I and II at (M,L) and (T ,R) is strictly less than 2, these

two pairs of actions are chosen with probability 0 at the equilibrium τ ∗; otherwise, we would have
γ λ

I (τ ∗) + γ λ
II (τ ∗) < 2, which contradicts γ λ

I (τ ∗) = γ λ
II (τ ∗) = 1.

For any t ≥ 0 and any history ht ∈ H (t) denote by γ λ
i (τ ∗ | ht ) the conditional discounted future

payoff of player i (from stage t + 1 on) given the history ht , under the equilibrium τ ∗:

γ λ
i (τ ∗ | ht ) := Eτ∗

⎡⎣(1 − λ)
∞∑

j=1

λj−1u
t+j
i | ht

⎤⎦ . (13.46)

The arguments provided above show that γ λ
i (τ ∗ | ht ) = 1 for i ∈ {I, II}, for any history ht that has

positive probability under τ∗. To prove that γ λ
III(τ

∗) = 0 we will show that the pairs of actions (T ,L)
and (M,R) are chosen under τ ∗ with probability 0. Assume by contradiction that the action pair
(T ,L) is chosen with positive probability α > 0 at some stage t ≥ 0 after the history ht ∈ H (t).
Since (M,L) and (T ,R) are played with probability 0, it follows that at the history ht , the action
pair (B,L) is played with probability 1 − α. Therefore,

1 = γ λ
II (τ ∗ | ht ) (13.47)

= α
(
(1 − λ) × 2 + λ × γ λ

II (τ ∗ | (ht , (T ,L)))
)

+ (1 − α)
(
(1 − λ) × 1 + λ × γ λ

II (τ ∗ | (ht , (B,L)))
)

(13.48)

= α ((1 − λ) × 2 + λ × 1) + (1 − α) ((1 − λ) × 1 + λ × 1) , (13.49)

which implies that α = 0, in contradiction to our assumption that α > 0. This proves that the action
pair (T ,L) is played with probability 0 under τ ∗, and similarly the action pair (M,L) is played
with probability 0 under τ ∗. This concludes the proof that γ λ(τ ∗) = (1, 1, 0).

The fact that at the only equilibrium payoff every player’s payoff is his minmax value is a
coincidence. Indeed, replacing the payoffs 5 in Figure 13.12 by (−5) does not affect our proof that
(1, 1, 0) is the only equilibrium payoff, while the minmax value of Player III changes to (−5). �

The Folk Theorem for finitely repeated games required a technical condition on the
base game: for every player i there exists an equilibrium β(i) of the base game that yields
player i a payoff higher than his minmax value. In our construction of equilibria in the
repeated game, the mixed actions (β(i))ni=1 were played in the last stages of the game, to
ensure that a player who deviates along the play will lose when punished. To obtain a Folk
Theorem for discounted games one also needs a technical condition on the base game for
the same purpose. The condition that we will require is weaker than the one that appears
in the Folk Theorem for finite games (Exercise 13.41).

Theorem 13.24 (The Folk Theorem for discounted games) Let � be a base game
in which there exists a vector x̂ ∈ F ∩ V that satisfies x̂i > vi for every player i ∈ N .
For every ε > 0 there exists λ0 ∈ [0, 1) such that for every λ ∈ [λ0, 1) and every vector
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x ∈ F ∩ V , there exists an equilibrium τ ∗ of �λ satisfying6

‖γ λ(τ ∗) − x‖∞ < ε. (13.50)

The condition that appears in the statement of the theorem ensures that there is a convex
combination of the entries of the payoff matrix, using rational weights, that is close to x,
and yields each player a payoff that is strictly higher than his minmax value. If, as we did
in the proof of Theorem 13.17, we construct a strategy vector with a basic plan in which
the players play according to this convex combination, then, for λ sufficiently close to
1, for every t , the λ-discounted payoff of every player, from stage t on, is strictly higher
than his minmax value, allowing the players to punish a deviator. The reader is asked to
complete the details of the proof (Exercise 13.42).

13.7 Uniform equilibrium
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we said before, players may not always know the number of stages a repeated game
will have:

� A young professional baseball player knows that at a certain age he will retire from the
sport, but does not know exactly when that day will come.

� We are all players in “the game of life,” whose length is unknown and differs among the
players.

Similarly, players do not always know the discount factor of the game:

� Although the prime interest rate is common knowledge, we do not know what the interest
rate will be next year, in two years, or a decade from today.

� Suppose the government is interested in selling a state-owned company. What discount
rate should be used? Computing a reasonable discount rate in such cases can be very
complicated.

In the examples above, the discount rate and the exact length of the game are unknown.
How should a player play in this case? In this section we will present concepts enabling
us to study this question, and to arrive at results that are independent of the exact value of
the discount factor, or the exact length of the game. To do so, we introduce the concept of
uniform equilibrium, first for discounted games, then for finite games, and later we will
see the relation between the two.

Definition 13.25 A strategy vector τ ∗ is called a uniform equilibrium for discounted
games if limλ→1 γ λ(τ ∗) exists, and there exists λ0 ∈ [0, 1) such that τ ∗ is an equilibrium
of �λ for every discount factor λ ∈ [λ0, 1). The limit limλ→1 γ λ(τ ∗) is called a uniform
equilibrium payoff for discounted games.

τ ∗ is therefore a uniform equilibrium for discounted games if it is an equilibrium of
every game in which the discount factor is sufficiently close to 1; that is, the players are
sufficiently patient.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Recall that the maximum norm over Rn is defined as ‖x‖∞ = maxi=1,2,...,n |xi | for every vector x ∈ Rn.
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Do uniform equilibria for discounted games exist? As we will see (Theorem 13.27),
there are many uniform equilibria for discounted games.

Example 13.26 Consider the two-player game in Figure 13.13.

Player II

Player I
B

T

RL

1, 2

3, 1

4, 3

0, 0

Figure 13.13 The payoff matrix of the game in Example 13.26

The minmax value of Player I is vI = 2, and the punishment strategy against him is [ 2
3 (L), 1

3 (R)].
Player II’s minmax value is vII = 1, and the punishment strategy against him is T . We will show
that in the example above, (

3 1
2 , 2 5

8

) = 7
8 × (4, 3) + 1

8 × (0, 0) (13.51)

is a uniform equilibrium payoff for discounted games. To do so, we will show that the following
pair of strategies is a discounted equilibrium for every discount factor sufficiently close to 1:

� Player I plays B at the first stage, and as long as Player II plays R, Player I repeatedly cycles
through the following sequence of actions: B, B, B, B, B, B, B, T (the action B played at the
first stage is the beginning of the first cycle).

� Player II plays R at the first stage, and as long as Player I cycles through the sequence of actions
B, B, B, B, B, B, B, T , Player II plays R.

If neither player deviates from this strategy, the discounted sum of the payoffs of the first eight
stages of the game is

(1 + λ + λ2 + · · · + λ6)(4, 3) + λ7(0, 0) = 1 − λ7

1 − λ
· (4, 3). (13.52)

Therefore, the discounted payoff is

(1 − λ)((4, 3) + λ(4, 3) + λ2(4, 3) + · · · + λ6(4, 3) + λ7(0, 0) + λ8(4, 3)

+ λ9(4, 3) + · · · + λ14(4, 3) + λ15(0, 0) + · · · )

= (1 − λ) × 1 − λ7

1 − λ
(1 + λ8 + λ16 + · · · ) · (4, 3) (13.53)

= 1 − λ7

1 − λ8
· (4, 3). (13.54)

Applying L’Hôpital’s Rule, the limit of this value, as λ approaches 1, is

lim
λ→1

(
1 − λ7

1 − λ8
· (4, 3)

)
=

(
lim
λ→1

−7λ6

−8λ7

)
× (4, 3) = 7

8 × (4, 3) = (
3 1

2 , 2 5
8

)
. (13.55)

Neither player can profit by deviating in the stages in which the players play (B,R), because
in these stages each receives his maximal possible payoffs. To guarantee that neither player
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can profit by deviating in the stages in which the players play (T ,R), we add the following
punishments:

� If Player II deviates for the first time in stage t , from stage t + 1 onwards Player I always plays
T (which is Player I’s punishment strategy against Player II).

� If Player I deviates for the first time in stage t , from stage t + 1 onwards Player II
always plays the mixed action [ 2

3 (L), 1
2 (R)] (which is Player II’s punishment strategy against

Player I).

We next seek discount factors λ for which this strategy vector is a λ-discounted equilibrium. If
Player I deviates in stage t , where the players are supposed to play (T ,R), he receives in that stage
a payoff of 4 instead of 0, for a net profit of 4. In contrast, from the next stage onwards, his expected
payoff is 2. Player I’s λ-discounted payoff from stage t onwards is therefore7

(1 − λ)(4 + λ × 2 + λ2 × 2 + λ3 × 2 + · · · ) = 4(1 − λ) + 2λ = 4 − 2λ. (13.56)

If Player I had not deviated in stage t , his discounted payoff from stage t onwards would be

(1 − λ) × 0 + λ × 1 − λ7

1 − λ8
× 4, (13.57)

because if in stage t the players are supposed to play (T ,R), then a new cycle of length 8 begins
in stage t + 1, and therefore the λ-discounted payoff from stage t + 1 onwards equals (up to
multiplication by λt ) the λ-discounted payoff from the first stage. The deviation is unprofitable only
if the payoff, when no deviation occurs, is greater than or equal to the payoff when a deviation
occurs:

λ × 1 − λ7

1 − λ8
× 4 ≥ 4 − 2λ. (13.58)

Multiplying both sides of the expression by 1 − λ8, we deduce that the following must hold:

4λ − 4λ8 ≥ 4 − 4λ8 − 2λ + 2λ9. (13.59)

For λ = 1, both sides of the expression equal zero. Differentiating the left-hand side and setting
λ = 1 yields 4 − 32 = −28, while differentiating the right-hand side and setting λ = 1 yields
−32 − 2 + 18 = −16. Therefore, an interval (λ0, 1) exists such that for every discount factor λ in
the interval, the left-hand side of Equation (13.59) is greater than the right-hand side of Equation
(13.59). One can check that the inequality in Equation (13.59) holds as a strict inequality for every
λ ∈ (0.615, 1).

If Player II deviates in stage t , where the players are supposed to play (T ,R), he receives a
payoff of 1 instead of 0 in that stage, for a net profit of 1. In contrast, from that stage onwards
his payoff is bounded by 1. It follows that the λ-discounted payoff of Player II from stage t

onwards is at most 1. In contrast, if Player II does not deviate, his payoff from stage t onwards is
(1 − λ) × 0 + λ × 1−λ7

1−λ8 × 3. Deviating is not profitable if

(1 − λ) × 0 + λ × 1 − λ7

1 − λ8
× 3 ≥ 1. (13.60)

It can be shown that this holds for all λ ≥ 0.334. We deduce from this that the pair of strategies
defined above form a λ-discounted equilibrium for all λ > max {0.334, 0.615} = 0.615; hence it is
a uniform equilibrium for discounted games. �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 For all a, b ∈ R, (1 − λ)
(
λt−1a + λtb + λt+1b + · · · ) = λt−1 ((1 − λ)a + λb).
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Theorem 13.27 (The Folk Theorem for uniform equilibrium in discounted
games) Let � be a base game in which there exists a vector x̂ ∈ F ∩ V that satisfies
x̂i > vi for every player i ∈ N . For every ε > 0, and every x ∈ F ∩ V , there exists a
strategy vector τ ∗ in the discounted repeated game such that:

1. τ ∗ is a uniform equilibrium for discounted games.
2. ‖ limλ→1 γ λ(τ ∗) − x‖∞ < ε.

In words, for each x ∈ F ∩ V there exists a uniform equilibrium for discounted games τ ∗

satisfying the property that the limit of discounted payoffs limλ→1 γ λ(τ ∗) is approximately
x. The strategy vector τ ∗ satisfying the conditions of the theorem, similarly to the case in
the proof of Theorem 13.17 (page 539), is of the grim-trigger type, with a basic plan that
ensures that the payoff vector is close to x. The complete proof of this theorem is left to
the reader (Exercise 13.44).

The concept of uniform equilibrium can also be defined for long finite games. We will
see in Theorem 13.32 that the two concepts of uniform equilibrium are related.

Definition 13.28 Let ε ≥ 0. A strategy vector τ ∗ in an infinitely repeated game is a
uniform ε-equilibrium for finite games if the limit limT→∞ γ T (τ ∗) exists, and there exists
T0 ∈ N such that τ ∗ is an ε-equilibrium of �T , for every T ≥ T0. The limit limT→∞ γ T (τ ∗)
is called a uniform ε-equilibrium payoff.

At every uniform 0-equilibrium for finite games (i.e., the case in which ε = 0), from
some stage onwards, in every stage, the players play an equilibrium of the base game
(Exercise 13.48). Consequently, the set of uniform 0-equilibrium payoffs is the convex
hull of the set of Nash equilibrium payoffs of the base game. For ε > 0, however, the set
of uniform ε-equilibrium payoffs is much larger; that is, the Folk Theorem holds.

Theorem 13.29 (The Folk Theorem for uniform equilibrium in finite games) For
every ε > 0, and every x ∈ F ∩ V , there exists a strategy vector τ ∗ such that:

1. τ ∗ is a uniform ε-equilibrium for finite games:
2. ‖ limT→∞ γ T (τ ∗) − x‖∞ < ε.

The proof of the theorem, which is similar to the proof of Theorem 13.17 (page 539),
is left to the reader (Exercise 13.49).

We now turn our attention to comparing the concepts of uniform equilibrium for
discounted games and uniform ε-equilibrium for finite games. For this purpose, we will
first find a connection between finite averages and discounted sums.

Theorem 13.30 Let (xt )∞t=1 be a bounded sequence of numbers. Denote the average of
the first T elements of this sequence by

ST = 1

T

T∑
t=1

xt , ∀T ∈ N, (13.61)
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and the discounted sum by

A(λ) = (1 − λ)
∞∑
t=1

λt−1xt , ∀λ ∈ [0, 1). (13.62)

Also denote

αT (λ) = (1 − λ)2λT−1T , ∀T ∈ N, ∀λ ∈ [0, 1). (13.63)

Then, for all λ ∈ [0, 1),

A(λ) =
∞∑

T=1

αT (λ)ST . (13.64)

Note that
∑∞

T=1 αT (λ) = 1:

∞∑
T=1

αT (λ) = (1 − λ)2
∞∑

T=1

T λT−1 (13.65)

= (1 − λ)2 d

dλ

( ∞∑
T=1

λT

)
(13.66)

= (1 − λ)2 d

dλ

(
1

1 − λ

)
= 1, (13.67)

where Equation (13.66) follows from the Bounded Convergence Theorem (see
Theorem 16.4 in Billingsley [1999]). Thus, Equation (13.64) states that A(λ) is a weighted
average of (ST )T ∈N.

Proof: The proof of the theorem is accomplished by the following sequence of equalities:

A(λ) = (1 − λ)
∞∑
t=1

λt−1xt (13.68)

= (1 − λ)
∞∑
t=1

( ∞∑
k=t

(λk−1 − λk)

)
xt (13.69)

= (1 − λ)
∞∑

k=1

(
(λk−1 − λk)

k∑
t=1

xt

)
(13.70)

=
∞∑

k=1

(
(1 − λ)(λk−1 − λk)kSk

)
(13.71)

=
∞∑

k=1

(1 − λ)2λk−1kSk (13.72)

=
∞∑

k=1

αk(λ)Sk. (13.73)
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Equation (13.70) follows by changing the order of summation (why can the
order of summation be changed in this case?), and Equation (13.70) follows from
Equation (13.61). �

The next theorem is a consequence of Theorem 13.30.

Theorem 13.31 (Hardy and Littlewood) Every bounded sequence of real numbers
(xt )∞t=1 satisfies

lim inf
T→∞

1

T

T∑
t=1

xt ≤ lim inf
λ→1

∞∑
t=1

(1 − λ)λt−1xt (13.74)

≤ lim sup
λ→1

∞∑
t=1

(1 − λ)λt−1xt (13.75)

≤ lim sup
T→∞

1

T

T∑
t=1

xt . (13.76)

In particular, if the limit limT→∞ 1
T

∑T
t=1 xt exists, then the limit limλ→1

∑∞
t=1(1 −

λ)λt−1xt also exists, and both limits are equal.

Using the notation of Theorem 13.30, Theorem 13.31 states that

lim inf
T→∞

ST ≤ lim inf
λ→1

A(λ) ≤ lim sup
λ→1

A(λ) ≤ lim sup
T→∞

ST . (13.77)

Proof: We will prove Equation (13.76):

lim sup
λ→1

∞∑
t=1

(1 − λ)λt−1xt ≤ lim sup
T→∞

1

T

T∑
t=1

xt . (13.78)

The proof of Equation (13.74) can be accomplished in a similar manner, or by considering
the sequence (yt )t∈N defined by yt := −xt for every t ∈ N. Equation (13.75) requires no
proof. Theorem 13.30 implies that for all T0 ∈ N,

A(λ) =
∞∑

T=1

αT (λ)ST =
T0−1∑
T=1

αT (λ)ST +
∞∑

T=T0

αT (λ)ST . (13.79)

Denote C := lim supT→∞ ST , and let ε > 0 be any positive real number. Let T0 be suffi-
ciently large such that ST ≤ C + ε for all T ≥ T0. Note that

T0∑
T=1

αT (λ) = (1 − λ)2
T0∑

T=1

λT−1T < (1 − λ)2(T0)2, (13.80)

where the last inequality follows from the fact that λ ∈ [0, 1). In particular, when
λ approaches 1 the sum

∑T0−1
T=1 αT (λ) approaches 0, and therefore the first sum in
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Equation (13.79) also converges to 0. The second sum is bounded by C + ε. We therefore
have

lim sup
λ→1

A(λ) ≤ C + ε = lim sup
T→∞

ST + ε. (13.81)

Since this inequality holds for all ε > 0, we deduce that lim supλ→1 A(λ) ≤
lim supT→∞ ST , which is what we wanted to prove. �

Analogously to the definition for finite games (Definition 13.18), a strategy vector τ ∗

is an ε-equilibrium in the discounted game �λ if no player can profit more than ε by
deviating:

γ λ
i (τ ∗) ≥ γ λ

i (τi, τ
∗
−i) − ε, ∀i ∈ N, ∀τi ∈ B∞

i . (13.82)

Theorem 13.31 enables us to establish the following connection between uniform ε-
equilibria for finite games and uniform ε-equilibria for discounted games.

Theorem 13.32 Let τ ∗ be a uniform ε-equilibrium for finite games. Then, for every δ > 0,
there exists λ0 ∈ [0, 1) such that for every λ ∈ [λ0, 1), the strategy vector τ is an (ε + 2δ)-
equilibrium of the discounted game with discount factor λ: for every player i ∈ N, and
every strategy τi ,

γ λ
i (τ ∗) ≥ γ λ

i (τi, τ
∗
−i) − ε − 2δ. (13.83)

Proof: Let τ ∗ be a uniform ε-equilibrium for finite games, and let δ > 0. Recall that M

is a bound on the payoffs of the base game, and denote by C := limT→∞ γ T
i (τ ∗) the limit

of the payoffs in the finite games. By Theorem 13.31,

C = lim
λ→1

γ λ
i (τ ∗). (13.84)

Let T0 be sufficiently large such that for each T ≥ T0, one has (a) the strategy vector τ ∗ is
an ε-equilibrium of the T -stage game, and (b) |Ci − γ T

i (τ ∗)| < δ.
Let λ0 be sufficiently close to 1 such that

∑T0
T=1 αT (λ0) ≤ δ

M
(see Equation (13.80)).

Let i be a player, and let τi be a strategy of player i. We will show that for λ sufficiently
close to 1, player i cannot profit more than ε + δ by deviating to any strategy τi . Denote
the expected payoff in stage t , when player i deviates to τi , by

xt = Eτi ,τ
∗
−i

[ui(at )]. (13.85)

The average of x1, x2, . . . , xT equals the payoff under (τi, τ
∗
−i) in the T -stage game:

γ T
i (τi, τ

∗
−i) =

∑T
t=1 xt

T
. (13.86)



553 13.7 Uniform equilibrium

For each λ ∈ [λ0, 1),

γ λ
i (τi, τ

∗
−i) =

∞∑
T=1

αT (λ)γ T
i (τi, τ

∗
−i) (13.87)

=
T0−1∑
T=1

αT (λ)γ T
i (τi, τ

∗
−i) +

∞∑
T=T0

αT (λ)γ T
i (τi, τ

∗
−i) (13.88)

≤ δ +
∞∑

T=T0

αT (λ)γ T
i (τi, τ

∗
−i) (13.89)

≤ δ +
∞∑

T=T0

αT (λ)γ T
i (τ ∗) + ε (13.90)

≤ δ + C + δ + ε (13.91)

= lim
λ→1

γ λ
i (τ ∗) + ε + 2δ. (13.92)

Equation (13.87) holds by Theorem 13.30, Equation (13.89) holds because λ ∈ [λ0, 1)
and by the choice of λ0, and Equation (13.90) holds because τ ∗ is an ε-equilibrium
for every T ≥ T0. Equation (13.91) holds because |Ci − γ T

i (τ ∗)| < δ for every T ≥ T0,
and Equation (13.92) follows from Equation (13.84). It follows that τ ∗ is an (ε + 2δ)-
equilibrium of the λ-discounted game, and this holds for all λ ∈ [λ0, 1). �

We have already seen in Example 13.20 that an equilibrium of �∞ is not necessarily an
ε-equilibrium of long finite games, and therefore not necessarily a uniform ε-equilibrium
for finite games. The following example shows that a uniform equilibrium for discounted
games is not necessarily a uniform ε-equilibrium for finite games, or an equilibrium
of �∞.

Example 13.33 Let (xt )∞t=1 be a sequence of zeros and ones satisfying

lim sup
T→∞

∑T
t=1 xt

T
> lim sup

λ→1
(1 − λ)

∞∑
t=1

λt−1xt . (13.93)

For details on how to construct such a sequence, see Exercise 13.50. Let c be a real number satisfying

lim sup
T→∞

∑T
t=1 xt

T
> c > lim sup

λ→1
(1 − λ)

∞∑
t=1

λt−1xt . (13.94)

Consider the two-player game in Figure 13.14. In this game, the payoff to Player II is 2, under
every action vector. As we will now show, (c, 2) is a uniform equilibrium payoff of discounted
repeated games, but is not a uniform ε-equilibrium payoff of finite games, for ε > 0 sufficiently
small. Since under every circumstance Player II receives 2 in every stage of the repeated game, to
prove that a pair of strategies is an equilibrium it is sufficient to show that Player I cannot profit by
deviating.



554 Repeated games

Player II

Player I
B

A

ED F

0, 2

0, 2

1, 2

0, 2

c, 2

c, 2

Figure 13.14 The payoff matrix of the game in Example 13.33

Define the following strategy σII of Player II:

� In the first stage, play F .
� If in the first stage Player I played A, play F in all of the remaining stages of the game.
� If in the first stage Player I played B, play D or E in all of the remaining stages of the game,

according to the above-mentioned sequence (xt )∞t=1: if xt = 0, play D in stage t , and if xt = 1,
play E in stage t .

The strategy σII does not depend on Player I’s actions after the first stage. For Player I, therefore,
every strategy σI is weakly dominated by the strategy in which Player I’s action in the first stage is
the same as that of σI, and from the second stage onwards his action is always B. It follows that
Player I’s best reply to σII is either σA

I , where Player I plays A in the first stage, and B in every
other stage, or σB

I , where he plays B in every stage, including the first stage.
The strategy vector (σA

I , σII) is a uniform equilibrium for discounted games with payoff (c, 2).
To see this, note that since γ λ

I (σA
I , σII) = c, while γ λ

I (σB
I , σII) = (1 − λ)

∑∞
t=1 λt−1xt , Equation

(13.94) implies that for a discount factor sufficiently close to 1, one has γ λ
I (σA

I , σII) > γ λ
I (σB

I , σII),
and therefore Player I has no profitable deviation.

We next show that (σA
I , σII) is not a uniform ε-equilibrium for finite games, for ε > 0 sufficiently

small. Set ε0 := 1
2

(
lim supT→∞

∑T
t=1 xt

T
− c

)
. We will show that there exists an increasing sequence

(Tk)k∈N such that (σA
I , σII) is not an ε-equilibrium of the Tk-stage game, for every k ∈ N and

every ε ∈ (0, ε0). By Equation (13.94), there exists an increasing sequence (Tk)k∈N such that for
every k ∈ N,

γ
Tk

I

(
σB

I , σII
) = ∑Tk

t=1 xt

Tk

> c + ε0 > c = γ
Tk

I

(
σA

I , σII
)
. (13.95)

Therefore, for every k ∈ N, by deviating in the Tk-stage game to σB
I , Player I’s profit is more than

ε0. It follows that (σA
I , σII) is not an ε-equilibrium in �Tk

for every k ∈ N and every ε ∈ (0, ε0].
We further note that it follows from this discussion that (σA

I , σII) is also not an equilibrium in the
infinitely repeated game (Exercise 13.52). �

13.8 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

There is a wealth of literature on repeated games, and many variations of this model
have been studied. One line of inquiry has focused on the subject of punishment. The
equilibrium strategies we have defined in this section are unforgiving: once a player
deviates, he is punished by the other player for the rest of the game. Because a punishment
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strategy is liable to lower the payoff of not only the player who is being punished but
also other players in the game, it is reasonable to ask whether players whose interests
are harmed by a punishment strategy will join in implementing it. Considerations such
as these have led to the study of subgame perfect equilibria in repeated games (for a
discussion on the notion of subgame perfect equilibrium in an extensive-form game, see
Section 7.1 on page 252). In repeated games, a strategy vector τ ∗ is a subgame perfect
equilibrium if after every finite history (whether or not the players arrive at that history
if they implement τ ∗), the play of the game that ensues from that stage onwards is an
equilibrium of the subgame starting at that point. A proof of the Folk Theorem under
this definition of equilibrium appears in Aumann and Shapley [1994], Rubinstein [1979],
Fudenberg and Maskin [1986], and Gossner [1995].

There are several other variations on the theme of repeated games that have been studied
in the literature. These include what happens when: (1) players do not observe the actions
implemented by other players, and instead receive only a signal that depends on the actions
of all the players (see, e.g., Lehrer [1989], [1990], and [1992], and Gossner and Tomala
[2007]); (2) players do not know their payoff functions (see, e.g., Megiddo [1980]); and
(3) at the start of the game, a payoff function is chosen from a set of possible payoff
functions, and the players receive partial information regarding which payoff function is
chosen (see Aumann and Maschler [1995] and Section 14.7 on page 590).

13.9 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Exercise 13.7 is based on a result appearing in Benoit and Krishna [1985]. Exercise 13.34
is based on Rubinstein [1982]. Exercise 13.38 is based on Neyman [1985]. Exercise 13.50
is based on Liggett and Lippman [1969]. Exercise 13.51 is based on Example H.1 in Filar
and Vrieze [1997]. The game appearing in Exercise 13.53 is known as the Big Match.
It was first described in Gillette [1957], and was extensively studied in Blackwell and
Ferguson [1968].

A review on repeated games with complete information can be found in Sorin [1992].
For a presentation of repeated games with incomplete information see Aumann and
Maschler [1995] and Sorin [2002]. For a presentation of repeated games with private
monitoring see Mailath and Samuelson [2006]. More information on Tauberian Theo-
rems, of which Theorem 13.31 (page 551) is an example, can be found in Korevaar
[2004].

The authors thank Abraham Neyman for clarifications provided during the composition
of this chapter.

13.10 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

13.1 Compute the number of pure strategies a player has in a T -stage game with
n players, where the number of actions of each player i in the base game is
|Si| = ki .
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13.2 Artemis and Diana are avid hunters. They devote Tuesdays to their shared hobby.
On Monday evening, each of them separately writes, on a slip of paper, whether or
not he or she will go hunting, and whether he or she wants to be the lead hunter, or
the second hunter. They then meet and each reads what the other wrote. If at least
one of the two is not interested in going hunting, or both of them want the same
role (lead hunter or second hunter), they do not go hunting on Tuesday. If they are
both interested in a hunt, one of them wants to be the lead hunter, and the other
wants to be second hunter, they do go hunting on Tuesday.

The utility of being lead hunter is 2. The utility of being second hunter is 1,
and the utility of not going hunting is 0. Answer the following questions for this
situation of repeated interaction:

(a) Write down the base game for this situation.
(b) Find all the equilibria of the one-stage game (the base game).
(c) Find all the equilibria of the two-stage game.

13.3 Repeat Exercise 13.2 for the following situation. Mark and Jim are neighbors, and
are employed in the same place of work. They start work at the same hour every
day, but their working day ends at different hours. Each has the option of going
to work by train, or by bus. Every morning, each of them decides the mode of
transportion by which he will get to work that day. Each of them “gains” 5 when
they travel to work together, and each “gains” 0 if they travel by different modes
of transportation. Taking the bus costs 1, and taking the train costs 2. Mark enjoys
a 50% reduction on train tickets. The utility each of them receives is the difference
between what he gains during the ride to work, and the cost of the ticket. For
example, Jim’s utility from taking the bus with Mark is 4.

13.4 Repeat Exercise 13.2 for the following situation. There are two pubs in a neigh-
borhood. Three friends, Andrew, Mike, and Ron, like to cap off their working days
with a beer at the pub. Each of them gains a utility of 2 when drinking with only
one other friend, a utility of 1 when the three drink together, and a utility of 0 when
drinking alone. Every day each of them independently decides which of the two
pubs in the neighborhood he will go to, for a drink.

13.5 Prove or disprove the following claim: let τ be a strategy vector in �T where, for
each history h, the mixed action vector τ (h) is an equilibrium of the base game �.
Then τ is an equilibrium of the game �T . Compare this result with Theorem 13.6
(page 528), where the equilibrium of the base game that is played at any stage is
independent of the history.

13.6 Prove that at every equilibrium of the T -stage Prisoner’s Dilemma, both players
play D in every stage.

13.7 Let � = (N, (Si)i∈N, (ui)i∈N ) be a game in strategic form that has a unique equi-
librium, and let �T be the T -stage repeated game corresponding to �. Prove that
�T has a unique subgame perfect equilibrium. Is it possible for �T to have an
additional Nash equilibrium? Justify your answer.
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13.8 Prove that the minmax value of each player i in the T -stage repeated game is equal
to his minmax value vi in the base game.

13.9 In the following two-player zero-sum game (see Figure 13.15), find the value
of the T -stage repeated game, and the optimal strategies of the two players for
every T ∈ N. What is the limit of the values of the T -stage games, as T goes to
infinity? Player I’s set of actions is AI = {T , B}, and Player II’s set of actions is
AII = {L, R}.

� If the players choose the pair of actions (T , L), Player II pays Player I the sum
of $1, and the players play the repeated game in Figure 13.15(A).

� If the players choose the pair of actions (T , R), Player II pays Player I the sum
of $4, and the players play the repeated game in Figure 13.15(B).

� If the players choose the pair of actions (B, L), Player II pays Player I the
sum of $2, and the players play the repeated game in Figure 13.15(B).

� If the players choose the pair of actions (B, R), Player II pays Player I the sum
of $0, and the players play the repeated game in Figure 13.15(A).

Player II

Player I
B

T

RL

1

4

5

0

A

Player II

Player I
B

T

RL

0

1

1

0

B

Figure 13.15 The payoff matrix of the game in Exercise 13.9

13.10 In this exercise, we will prove that the payoff received by a player in a T -stage
repeated game is a linear function of the probabilities under which he chooses his
pure strategies.

(a) Let τ 1
i , . . . , τL

i be all the pure strategies of player i in the T -stage repeated
game. Prove that for every behavior strategy τi of player i (see Definition
13.3 on page 525) in the repeated game, there exist nonnegative numbers
α1, . . . , αL, whose sum is 1, such that for each strategy vector τ−i of the other
players,

γ T
i (τi, τ−i) =

L∑
l=1

αlγ
T
i (τ l

i , τ−i). (13.96)

(b) What are the coefficients (αl)Ll=1?
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13.11 Consider the following base game.

Player II

Player I
B

T

RL

1, −1

− 1, 3

0, 2

4, 0

What is the limit of the average payoffs in the infinitely repeated game correspond-
ing to this game, when the players implement the following strategies?

(a) In even stages, Player I plays T , and in odd stages he plays B. In stages divisible
by 3 Player II plays L, and in all other stages he plays R.

(b) In even stages, Player I plays T , and in odd stages he plays B. Player II plays
as follows. In the first stage he plays L. At any other stage he plays R if
Player I played T in the previous stage; otherwise he plays the mixed action
[1

4 (L), 3
4 (R)] in the current stage.

(c) Player I plays [ 2
3 (T ), 1

3 (B)] in every stage. Player II plays as follows. In the
first stage he plays L. At any other stage he plays R if Player I played T in the
previous stage; otherwise he plays the mixed action [ 1

4 (L), 3
4 (R)] in the current

stage.

13.12 For each of the infinitely repeated games corresponding to the following
base games, plot on the same graph in R2 the sets F and F ∩ V , where
the x-axis represents Player I’s payoff, and the y-axis represents Player II’s
payoff.

Player II

Player I

Player I

B

T

RL

1, −1

−1, 1

−1, 1

1, −1

Game A

Player II

Player I
B

T

RL

0, 0

2, 7

7, 2

6, 6

Game B

Player II

B

M

T

CL R

2, 4

4, 2

0, 0

4, 2

0, 0

2, 4

0, 0

2, 4

4, 2

Game C

Player II

Player I
B

T

RL

0, 1

2, 3

1, 0

4, 2

Game D
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13.13 Prove Theorem 13.11 on page 534: for every K ∈ N and every vector x ∈ F there
are nonnegative integers (ks)s∈S summing to K satisfying∥∥∥∥∥∑

s∈S

ks

K
u(s) − x

∥∥∥∥∥
∞

≤ M × |S|
K

. (13.97)

13.14 Suppose that each player i in a two-player zero-sum base game � has a unique
optimal mixed strategy xi . Prove that in the T -stage repeated game �T , at each
equilibrium in behavior strategies, at each stage each player implements the mixed
strategy xi .

13.15 In the 1,000,000-stage repeated game of the following base game, describe an
equilibrium whose payoff is within 0.01 of (5, 6), and an equilibrium whose payoff
is within 0.01 of (4, 3).

Player II

Player I
B

T

RL

0, 0

2, 7

7, 2

6, 6

13.16 Consider the infinitely repeated game of the following base game.

Player II

Player I
B

T

RL

1, 0

2, 8

7, 3

4, 6

Suppose that, in this game, Player I implements the following strategy σI. In the
first stage, he plays the mixed action [ 2

3 (T ), 1
3 (B)]. In every stage t > 1, he plays a

mixed action that is determined by the action that Player II played in the previous
stage: if in stage t Player II played L, then in stage t + 1, Player I plays the mixed
action [ 1

2 (T ), 1
2 (B)], while if in stage t Player II played R, then in stage t + 1

Player I plays the mixed action [ 3
4 (T ), 1

4 (B)].
Player II is considering which of the following four strategies to implement: (a)

play L in every stage, (b) play R in every stage, (c) play L in odd stages, and R in
even stages, (d) play R in odd stages, and L in even stages.

What is the limit of the average payoffs of each of the players when Player I
implements strategy σI and Player II implements each of the above four strategies?

13.17 For the base game in Exercise 13.15 describe an equilibrium of the infinitely
repeated game that yields a payoff of (4 1

3 , 2 1
3 ).

13.18 For each of the following base games determine whether or not (2, 1) is an equilib-
rium payoff of the corresponding infinitely repeated game. If it is an equilibrium
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payoff, describe an equilibrium leading to that payoff. If not, justify your answer.
In these games, Player I is the row player and Player II is the column player.

B

T

RL

1, 1

0, 0

0, 0

2, 2

Game A

B

T

RL

2, 0

1, 3

0, 1

4, 0

Game B

B

T

RL

3, 0

1, 3

1, 1

4, 0

Game C

B

T

ML R

3, 1

0, 1

0, 2

1, 0

0, 3

3, 1

Game D

13.19 In the infinitely repeated game of the following base game, describe an equilibrium
leading to the payoff (2, 3 2

3 ).

Player II

Player I
B

T

RL

0, 1

1, 4

3, 2

2, 5

13.20 In the following three-player base game � Player I chooses the row (T or B),
Player II chooses the column (L or R), and Player III chooses the matrix (W or
E). Describe an equilibrium in the infinitely repeated game, based on �, for which
the resulting payoff is (2, 1, 2 1

2 ).

B

T

RL

3, 0, 3

1, 0, 2

3, 2, 1

1, 1, 0

B

T

RL

1, 2, 1

2, 0, 0

1, 2, 3

2, 1, 2

EW

13.21 One of the payoffs in the following base game is a parameter labeled x. For every
x ∈ [0, 1] find the set of equilibrium payoffs in the infinitely repeated game based
on this game.

B

T

RL

0, 1

1, 1

x, 3
2

0, 2

13.22 Find an example of an infinitely repeated game, and a strategy vector τ in this game
satisfying (a) τ is an equilibrium for every finite game �T with a corresponding
payoff of γ T (τ ) and (b) the limit limT→∞ γ T (τ ) does not exist.

13.23 Prove the Folk Theorem for infinitely repeated games (Theorem 13.17 on
page 539).
Guidance: For each K ∈ N, approximate x by a weighted average of vectors in the
payoff matrix, with weights that are nonnegative and rational, with denominator
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K . Construct a strategy vector in which the players play in blocks, such that the
length of the K-th block is K stages, and in the K-th block the players play in such
a way that the average of the payoffs is approximately x. If at a certain stage, a
player deviates from the action he is supposed to play at that stage, he is punished
from the next stage onwards by a punishment strategy.

13.24 Prove directly that the statement of Theorem 13.19 (page 541) holds with respect
to the strategy vector τ ∗ defined in Example 13.1 (page 540): τ ∗ is an ε-equilibrium
of the T -stage game, for every T sufficiently large.

13.25 Prove the strong formulation of the Folk Theorem for infinitely repeated games
(Theorem 13.19 on page 541).

13.26 In the game in Example 13.20, prove that for every T ∈ N, Player I has a strategy

in �T yielding the payoff T−�√T �
T

when Player II uses the strategy τ ∗
II defined in

the example.

13.27 Let N be a set of players, and let (Si)i∈N be finite sets of actions of the players.
Let u : S → RN and u′ : S → RN be two payoff functions. Consider a variation
of the repeated game, in which in odd stages the payoff function is u, and in even
stages the payoff function is u′.

(a) Write the analogous theorem to Theorem 13.9 in this model.
(b) Write the analogous theorem to Theorem 13.17 in this model.

13.28 Repeat Exercise 13.27, under the following variation of the game: in each stage,
one of the payoff functions is chosen randomly (each payoff function is chosen
with probability 1

2 , independently of the payoff functions and the actions of the
players in previous stages), and the players are informed of the chosen payoff
functions before they choose their actions in each stage.

13.29 Repeat Exercise 13.28 for the case where the players are not informed of the payoff
function chosen in each stage.

13.30 Repeat Exercise 13.28 for the case where only Player 1 is informed of the payoff
function chosen in each stage (with the other players not informed of the chosen
payoff function).

13.31 Prove that for every discount factor λ ∈ [0, 1), the minmax value of each player i

in the λ-discounted game �λ is equal to his minmax value in the base game �.

13.32 Compute the λ-discounted payoff in each of the three cases (a), (b), (c) of
Exercise 13.11.

13.33 Cartel game A cartel is an association of players who coordinate their actions in
order to attain better results than the players could attain if they acted individually.
In this exercise we will show that players can indeed profit by forming a cartel,
and check whether a cartel can be stable.

Consider the following Cournot competition (see Example 4.23 on page 99):
there are n luxury car manufacturers. The manufacturing cost of each car is
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$100,000 (for each manufacturer) and the consumer price of each such car is
$200,000 −∑n

i=1 xi , where xi is the number of cars manufactured annually
by manufacturer i. For computational ease, we assume below that xi can be
any nonnegative real number (not necessarily an integer). Answer the following
questions:

(a) Describe the situation as a strategic-form game, where a pure strategy of each
manufacturer is the number of cars he manufactures annually.

(b) Prove that this game has a unique symmetric equilibrium (that is, an equilibrium
x in which xi = xj for all i and j ), at which xi = 100,000

n+1 .
(c) Suppose that the manufacturers decide to form a cartel, and to determine jointly

the number of cars that each of them will manufacture, in order to maximize
the profit of each of them. Prove that to maximize this profit, the manufacturers
need to manufacture collectively 50,000 cars; hence if they divide this number
equally between them they will each manufacture 50,000

n
cars. In other words,

the cartel limits the number of cars manufactured by each member to a number
that is lower than the number of cars manufactured at equilibrium (assuming
that n > 1). Show that despite the lower manufacturing numbers, the profit
of each manufacturer under the cartel’s quotas is higher than his profit at the
equilibrium strategy.

(d) Consider next the discounted repeated game of the above-described base game.
Is the strategy vector at which each manufacturer manufactures 50,000

n
cars in

each stage an equilibrium of �λ, for every λ ∈ [0, 1)? Justify your answer.
(e) For each manufacturer i define a strategy τi as follows:

� In the first stage, manufacture 50,000
n

cars.
� For each t > 1, the number of cars to manufacture in stage t is determined

as follows:
• if in each of the previous stages every manufacturer manufactured 50,000

n

cars, manufacture 50,000
n

cars in stage t ;
• otherwise, manufacture 100,000

n+1 cars in stage t .
For which value of n, and which discount factor λ, is the strategy vector
τ = (τi)ni=1 an equilibrium of the game �λ? What can we conclude regarding
the stability of cartels, given these results?

(f) Are there similarities between the repeated Prisoner’s Dilemma (see Exam-
ple 13.1 on page 521) and the cartel game of this exercise? If so, what are
they? Which equilibria of the repeated Prisoner’s Dilemma correspond to the
equilibria described in items (b) and (e) of this exercise?

13.34 Alternating offers game Barack and Joe can together implement a project that
will jointly yield them a profit $100. How should they divide this sum of money
between them? They decide to implement the following mechanism: Barack will
offer Joe a split of (x, 100 − x), where x is a number in the interval [0, 100],
signifying the amount of money that Barack will receive under this offer. Joe may
accept or reject this offer. If he accepts, this will be the final split. If he rejects the
offer, the next day he proposes a counteroffer (y, 100 − y), where y is a number
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in the interval [0, 100], signifying the amount of money that Barack will receive,
under this offer. Barack may accept or reject this offer. If he accepts, this will be
the final split. If he rejects the offer, the next day he proposes a counteroffer, and so
on. Every delay in implementing the project reduces the profit they will receive: if
the two of them agree on a division of the money (x, 100 − x) on day n, Barack’s
payoff is βn−1 × x, and Joe’s payoff is βn−1 × (100 − x), where β ∈ (0, 1) is the
discount factor in the game (in other words, 100( 1

β
− 1) is the daily interest rate in

the game).
Depict this situation as an extensive-form game, and find all the subgame perfect

equilibria of the game.

13.35 In the two-player zero-sum game in Exercise 13.9, find the value of the discounted
game, and the optimal strategy of both players for any discount factor λ ∈ [0, 1).
What is the limit of the discounted values, as the discount factor converges to 1?
Is the limit equal to the limit you computed in Exercise 13.9 for the values of the
T -stage game?

13.36 Find an example of a repeated game, and a strategy vector τ , such that (a) τ

is an equilibrium of the discounted game for every λ ∈ [0, 1), and (b) the limit
limλ→1 γ λ(τ ) does not exist.

13.37 Suppose two players are playing the repeated Prisoner’s Dilemma. Prove that if the
discount factor λ is sufficiently close to 1, the strategy vector at which the players
implement the grim-trigger strategy, i.e., every player plays C as long as the other
player plays C, and otherwise plays D, is a λ-discounted equilibrium.

13.38 A strategy in an infinitely repeated game has recall k if the action a player chooses
in stage t depends only on the actions that were played in stages t − 1, t − 2, . . .,
t − k (and is independent of the actions played in earlier stages, and of the number
of the stages t). Formally, a strategy τi has recall k if for every t, t̂ ≥ k we have
τi(a1, a2, . . . , at−1) = τi (̂a1, â2, . . . , ât̂−1) whenever (at−k, at−k+1, · · · , at−1) =
(̂at̂−k, ât̂−k+1, · · · , ât̂−1).

(a) How many pure strategies of recall k has each player got?
(b) Can the grim-trigger strategy be implemented by a pure strategy with recall k?

Justify your answer.
(c) Prove that in the T -stage repeated Prisoner’s Dilemma, when the players are

limited to playing only strategies with recall k (where k + 1 < T ), (3, 3) is an
equilibrium payoff.

(d) For which triples k, l, and T is (3, 3) an equilibrium payoff in the T -stage
repeated Prisoner’s Dilemma, where Player I is limited to strategies with recall
k, and Player II is limited to strategies with recall l?

13.39 Suppose two players are playing the repeated Prisoner’s Dilemma with an unknown
number of stages; after each stage, a lottery is conducted, such that with probability
1 − β the game ends with no further stages conducted, and with probability β the
game continues to another stage, where β ∈ [0, 1) is a given real number. Each
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player’s goal is to maximize the sum total of payoffs received over all the stages
of the game.

Prove that if β is sufficiently close to 1, the strategy vector in which at the first
stage every player plays C, and in each subsequent stage each player plays C if
the other player played C in the previous stage, and he plays D otherwise, is an
equilibrium. This strategy is called the Tit-for-Tat strategy.

13.40 In this exercise, we will show that in a discounted two-player zero-sum game
in which the discount factors of the two players are different from each other,
the payoff to each player at every equilibrium is the value of the base game.
Consider the two-player zero-sum repeated game based on the following base
game.

B

T

RL

1, −1

− 1, 1

−1, 1

1, −1

Assume that the discount factor of Player I is λ throughout this exercise (except in
section (j)), and that the discount factor of Player II is λ2, where λ ∈ [0, 1). Answer
the following questions:

(a) What is the value in mixed strategies v of the base game?
(b) What is the discounted payoff to each player under the following pair of

strategies, as a function of the parameter t0 ∈ N:
� Player I plays T in each stage of the game.
� Player II plays L in the first t0 stages, and always R afterwards.

(c) Find t0 such that the sum of the payoffs of the two players is maximized. What
is the sum of the payoffs for this t0? In the solution here, assume that t0 may
be any nonnegative real number.

(d) Prove that the pair of strategies in which Player I plays the mixed action
[ 1

2 (T ), 1
2 (B)] at each stage, and Player II plays the mixed action [ 1

2 (L), 1
2 (R)]

at each stage, is an equilibrium in this discounted game.

Let τ ∗ = (τ ∗
I , τ ∗

II) be any equilibrium of this discounted game. For t0 ∈ N,
denote by A(λ, t0) the λ-discounted payoff under strategy vector τ ∗ starting from
stage t0:

A(λ, t0) = (1 − λ)
∞∑

t=t0

Eτ ∗[ut ]λt−t0−1. (13.98)

(e) Prove that for every t0 ∈ N, the following holds: A(λ, t0) ≥ v and A(λ2, t0) ≤ v.



565 13.10 Exercises

(f) Prove that for every t0 ∈ N and every λ ∈ [0, 1), the following holds:

A(λ, t0) = A(λ2, t0) +
∞∑

k=1

λk(1 − λ)A(λ2, t0 + k). (13.99)

(g) Deduce from the last two items that A(λ, t0) = v for every t0 ∈ N, and from
this further deduce that Eτ ∗ [ut ] = 0 for every t ∈ N.

(h) Prove that at each equilibrium of this discounted game, the discounted payoff
of each player is v.

(i) Does the result of item (c) contradict the result of item (h)? Explain.
(j) Generalize the result of item (h) to any discounted game and any pair of

discount factors: if τ ∗ = (τ ∗
I , τ ∗

II) is an equilibrium of a two-player zero-sum
game in which the discount factor of Player I is λI and the discount factor of
Player II is λII, then A(λi, t0) = v for i ∈ {I, II}, for every t0 ∈ N, where v is
the value in mixed strategies of the base game. In particular, at any equilibrium,
the discounted payoff of each player (at his discount factor) is the value of the
base game.

13.41 Prove that the condition in Theorem 13.9 (page 531) implies the condition in
Theorem 13.24 (page 545): if for every player i there exists an equilibrium β(i) in
the base game for which βi(i) > vi , then there exists a vector x̂ ∈ F ∩ V satisfying
xi > vi for every i ∈ N .

13.42 Prove the Folk Theorem for discounted games (Theorem 13.24 on page 545).

13.43 Show (by finding appropriate strategy vectors) that the payoff vectors mentioned in
Exercises 13.19 and 13.20 are payoffs of uniform equilibria for discounted games.

13.44 Prove the Folk Theorem for uniform equilibrium in discounted games (Theorem
13.27 on page 549).

13.45 In this exercise, we define the uniform value of two-player zero-sum games. Let �

be a two-player zero-sum base game. The real number v is called the uniform value
(for the finite games (�T )T ∈N) if for each ε > 0 there exist strategies τ ∗

I of Player
I and τ ∗

II of Player II in �∞, and an integer T0, such that the following condition is
satisfied: for each T ≥ T0, and each pair of strategies (τI, τII) in �T ,

γ T (τI, τ
∗
II) ≤ v + ε, and γ T (τ ∗

I , τII) ≥ v − ε. (13.100)

Prove that the uniform value for finite games equals the value of the base game.

13.46 Repeat Exercise 13.43 for uniform ε-equilibria for finite games, for every ε > 0.

13.47 Let ET be the set of equilibrium payoffs of a T -stage repeated game �T .

(a) Prove that ET ⊆ EkT for every T ∈ N and for every k ∈ N.
(b) Prove8 that T

T+1ET + 1
T+1E1 ⊆ ET+1 for every T ∈ N.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 For every pair of sets S1 and S2 in Rk , and every real number α, the sets αS1 and S1 + S2 are defined by
αS1 := {αx : x ∈ S1} and S1 + S2 := {x + y : x ∈ S1, y ∈ S2}.
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(c) For every set S ⊆ Rk , the set S denotes the closure of S: the smallest closed
set containing S. Let

E∞ := lim sup
T→∞

ET =
⋃
T ∈N

⋂
k≥T

Ek. (13.101)

The set E∞ is the upper limit of the sets (ET )T ∈N, and it includes all the partial
limits of the sequences (xt )t∈N, where xt ∈ Et for each t ∈ N.

Prove, using items (a) and (b), that ET ⊆ E∞ for every T ∈ N, and in
particular that E∞ is not empty. Furthermore, prove that for every x ∈ E∞ and
every ε > 0, there exists T0 ∈ N such that for every T ≥ T0 there exists y ∈ ET

satisfying ‖x − y‖∞ ≤ ε. In other words, the sets (ET )T ∈N “approach” E∞ as
T goes to infinity.

13.48 Prove that in every uniform 0-equilibrium for finite games, from some stage
onwards the players play an equilibrium of the base game at each stage.

13.49 Prove the Folk Theorem for uniform equilibrium in finite games (Theorem 13.29
on page 549).

13.50 In this exercise we prove the existence of a sequence (xt )∞t=1 of zeros and ones
satisfying

lim inf
T→∞

∑T
k=1 xk

T
< lim inf

λ→1
(1 − λ)

∞∑
t=1

λt−1xt . (13.102)

Let (qt )t∈N be a sequence of natural numbers. Define a sequence (pt )t∈N as follows:

p1 := 0, (13.103)

pt := q1 + q2 + · · · + qt−1. (13.104)

Define a sequence (xt )t∈N as follows:

xt =
{

1 when there exists k such that 2pk < t ≤ 2pk + qk,

0 otherwise.
(13.105)

In words, the first q1 elements of the sequence (xt )t∈N equal 1, the next q1 elements
of the sequence equal 0, the next q2 elements of the sequence equal 1, the next q2

elements of the sequence equal 0, and so on.

(a) Prove that lim infT→∞
∑T

k=1 xk

T
= 1

2 .
(b) Denote A(λ) = (1 − λ)

∑∞
t=1 λt−1xt . Prove that A(λ) = ∑∞

k=1 λ2pk (1 − λqk ).
(c) Denote αk = λpk − λpk+1 for every k ∈ N. Using item (b) above, prove that

A(λ) = 1
2

( ∞∑
k=1

(αk)2 + 1

)
. (13.106)

(d) Let ε ∈ (0, 1
4 ), and define c := ln(ε)

ln(1−√
ε) . Prove that c > 2.
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(e) Suppose that the sequence (qt )t∈N satisfies qk > 2pk

c−2 for every k ∈ N. Define

ak := | ln(1 −√
ε)|

qk

, bk := | ln(ε)|
2pk

. (13.107)

Prove that limk→∞ bk = 0, and that for every k ∈ N, (a) bk+1 < bk for every
k ∈ N, (b) cqk > 2pk + 2qk , and (c) ak < bk+1.

(f) Prove, with the aid of item (e) above, that
⋃

k∈N(ak, bk) = (0,∞). Deduce that
for every λ ∈ [0, 1) there exists k(λ) ∈ N satisfying ak(λ) ≤ | ln(λ)| < bk(λ).

(g) Using Equation (13.107), prove that ε < λ2pk(λ) , and 1 −√
ε ≥ λqk(λ) . Deduce

that

(αk)2 = λ2pk(λ) (1 − λqk(λ) )2 > ε2. (13.108)

(h) Deduce, with the aid of item (c) above, that lim infλ→1 A(λ) ≥ ε2+1
2 .

(i) Deduce that Equation (13.102) holds for the sequence (xt )t∈N defined in item
(d) above.

(j) Construct a sequence (yt )∞t=1 of zeros and ones satisfying

lim sup
T→∞

∑T
t=1 yt

T
> lim sup

λ→1
(1 − λ)

∞∑
t=1

λt−1yt . (13.109)

Such a sequence was used in Example 13.33.

13.51 Consider the following sequence (xt )t∈N: 1,−1, 2,−2, 3,−3, . . . , i.e., x2t = −t ,

and x2t−1 = t for every t ∈ N. Compute lim supT→∞
∑T

k=1 xk

T
, lim infT→∞

∑T
k=1 xk

T

and limλ→1(1 − λ)
∑∞

t=1 λt−1xt .

13.52 Prove that the strategy vector (σA
I , σII) defined in Example 13.33 (page 553) is not

an equilibrium of the infinitely repeated game.

13.53 David and Tom play the following game, over T stages. In each stage David
chooses a color, either red or yellow, and Tom guesses which color David chose. If
Tom guesses “red,” he pays David one dollar if he guessed incorrectly, and receives
one dollar from David if he guessed correctly. If, however, Tom guesses “yellow,”
he pays David a dollar in that stage and in every subsequent stage of the game if he
guessed incorrectly, and he receives a dollar from David in that stage and in every
subsequent stage of the game if he guessed correctly.

Note that this is not a repeated game, because if the first time that Tom guesses
“yellow” is in stage t , the payoffs in all the stages after t depend on Tom’s choice
in stage t .

(a) Prove that the only equilibrium payoff when T = 1 is (0, 0).
(b) Prove that the only equilibrium payoff when T = 2 is (0, 0).
(c) Prove that the only equilibrium payoff for every T is (0, 0).

13.54 Consider the game in Exercise 13.53 with T = ∞. Let x and y be two numbers in
the interval [0, 1]. Suppose that in each stage David chooses “red” with probability
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x and “yellow” with probability 1 − x, and in each stage Tom guesses “red” with
probability y and “yellow” with probability 1 − y.

(a) Compute the expected λ-discounted payoff in this infinite game as a function
of x and y, for each λ ∈ [0, 1).

(b) Conclude that, if the players are restricted to these i.i.d. strategies, (0, 0) is a λ-
discounted equilibrium payoff, for each λ ∈ [0, 1). What are the corresponding
equilibrium strategies?



14 Repeated games with vector payoffs

Chapter summary
This chapter is devoted to a theory of repeated games with vector payoffs, known as the
theory of approachability, developed by Blackwell in 1956. Blackwell considered
two-player repeated games in which the outcome is an m-dimensional vector of
attributes, and the goal of each player is to control the average vector of attributes. The
goal can be either to approach a given target set S ⊆ Rm, that is, to ensure that the
distance between the vector of average attributes and the target set S converges to 0, or
to exclude the target set S, that is, to ensure that the distance between the vector of
average attributes and S remains bounded away from 0. If a player can approach the
target set we say that the set is approachable by the player, whereas if the player can
exclude the target set we say that it is excludable by that player. Clearly, a set cannot be
both approachable by one player and excludable by the other player.

We provide a geometric condition that ensures that a set is approachable by a player,
and show that any convex set is either approachable by one player or excludable by the
other player.

Two applications of the theory of approachability are provided: it is used, respectively,
to construct an optimal strategy for the uninformed player in two-player zero-sum
repeated games with incomplete information on one side, and to construct a no-regret
strategy in sequential decision problems with experts.

In Chapter 13 we studied repeated games in which the payoff to each player in every
stage was a real number representing the player’s utility. In this chapter we will look at
two-player repeated games in which the outcome in every stage is not a pair of payoffs, but
a vector in the m-dimensional Euclidean space Rm. These games correspond to situations
in which the outcome of an interaction between the players is comprised of several
incommensurable factors. For example, an employment contract between an employee
and an employer may specify the number of hours the employee is to commit to the job;
the salary the employee will receive; and the number of days of annual leave granted
to the employee. As we saw in Chapter 2 on utility theory, under certain assumptions it
is possible to associate each outcome with a real number representing the utility of the
outcome, thereby translating the situation into a game with payoffs in real numbers. But
we may not know the players’ utility functions. In addition, we may at times be interested
in controlling each variable separately, as is done for example in physics problems, where
pressure and temperature may be controlled separately. The model of repeated games with

569



570 Repeated games with vector payoffs

vector payoffs was first presented by Blackwell [1956]. The first part of this chapter is
based on that paper.

When the outcome of an interaction to each player is a payoff, each player tries to
maximize the average of the payoffs he receives. When the outcome is a vector in Rm,
maximizing one coordinate may come at the expense of another coordinate. We therefore
speak of target sets in the space of vector payoffs: each player tries either to cause the
average of his payoffs to approach a target set (i.e., a certain subset of Rm) or to exclude
a target set.

In Chapters 9 and 10 we studied Bayesian games; these are games with incomplete
information whose payoffs depend on the state of nature, which can have a finite number
of values. In Section 14.7 (page 590) we will study two-player zero-sum repeated games
with incomplete information regarding the state of nature using the model of repeated
games with vector payoffs: every pair of actions in such a game is associated with a vector
of payoffs composed of the payoff for each possible state of nature. In this way, we can
monitor the average payoff for every possible state of nature, even if the state of nature is
not known by all the players. An example of such an application appears in Section 14.7
(page 590). In Section 14.8 (page 600), we will present an additional application of the
model of repeated games with vector payoffs to the study of dynamic decision problems
with experts.

14.1 Notation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this chapter we will work in Rm, the m-dimensional Euclidean space. We will sometimes
term x ∈ Rm a “vector,” and sometimes a “point.” The zero vector in Rm is denoted by �0.

Recall that for a finite set A, we denote by 
(A) the set of probability distributions over
A. The inner product in Rm is denoted as follows. For every pair of vectors x, y ∈ Rm,

〈x, y〉 :=
m∑

l=1

xlyl. (14.1)

The inner product is symmetric, 〈x, y〉 = 〈y, x〉, and bilinear; i.e., it is a linear function
in each of its variables. That is, for every α, β ∈ R and every x, x1, x2, y, y1, y2 ∈ Rm,

〈αx1 + βx2, y〉 = α〈x1, y〉 + β〈x2, y〉, (14.2)

and

〈x, αy1 + βy2〉 = α〈x, y1〉 + β〈x, y2〉. (14.3)

The norm of a vector x ∈ Rm, denoted by ‖x‖, is the Euclidean norm, given by

‖x‖ := 〈x, x〉1/2 =
√√√√ m∑

l=1

(xl)2, (14.4)
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and the distance function between vectors is

d(x, y) := ‖x − y‖ = 〈x − y, x − y〉1/2 =
√√√√ m∑

l=1

(xl − yl)2. (14.5)

If C ⊆ Rm is a set, and x ∈ Rm is a vector, the distance between x and C is given by

d(x, C) := inf
y∈C

d(x, y). (14.6)

It follows that the distance between a point x and a set C equals the distance between
x and the closure of C, and d(x, C) = 0 for every x in the closure of C. The triangle
inequality states that

d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈ Rm. (14.7)

Equivalently,

‖x‖ + ‖y‖ ≥ ‖x + y‖. (14.8)

The Cauchy–Schwartz inequality states that

‖x‖2‖y‖2 ≥ 〈x, y〉2. (14.9)

The following inequalities also hold (Equation (14.11) follows from the Cauchy–Schwartz
inequality):1

d(x + y, x + z) = d(y, z), ∀x, y, z ∈ Rm, (14.10)

d(x + y, z + w) ≤ d(x, z) + d(y, w), ∀x, y, z, w ∈ Rm, (14.11)

d(αx, αy) = αd(x, y), ∀x, y ∈ Rm, ∀α > 0, (14.12)

d(x, y) ≤ 2M
√

m, ∀M > 0, ∀x, y ∈ [−M, M]m. (14.13)

If C ⊆ Rm is a set, and x, y ∈ Rm are vectors, then (Exercise 14.1)

d(x, C) ≤ d(x, y) + d(y, C). (14.14)

All the vectors are considered to be row vectors. If x is a row vector, then x� is the
corresponding column vector.

Since we are studying two-player games, for every player k ∈ {1, 2}, we will denote by
−k the player who is not player k. In particular, the notation σ−k denotes a strategy of the
player who is not k.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 For every set A ⊆ R, and natural number m, the set Am ⊆ Rm is defined as follows:

Am = A × A × · · · × A︸ ︷︷ ︸
m times

= {(x1, x2, . . . , xm) ∈ Rm : xi ∈ A, i = 1, 2, . . . , m}.
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14.2 The model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 14.1 A repeated (two-player) game with (m-dimensional) vector payoffs is
given by two action sets I = {1, 2, . . . , I } and J = {1, 2, . . . , J } of Players 1 and 2,
respectively,2 and a payoff function u : I × J → Rm.

As previously stated, the vectors in Rm are not necessarily payoffs; they are various
attributes of the outcome of the game. Despite this, we use the term “payoff function” for
u, both for convenience and because of the analogy to games with scalar payoffs (the case
m = 1). It will sometimes be convenient to present the payoff function u as a matrix of
order I × J , whose elements are vectors in Rm.

The game proceeds in stages as follows. In stage t , (t = 1, 2, . . .), each one of the
players chooses an action: Player 1 chooses action it ∈ I, and Player 2 chooses action
j t ∈ J . As in the model of repeated games, we will assume that every player knows what
the other player chose in previous stages. A behavior strategy of Player 1 is a function
associating a mixed action with each history of actions

σ1 :
∞⋃
t=1

(I × J )t−1 → 
(I). (14.15)

Similarly, a behavior strategy of Player 2 is a function

σ2 :
∞⋃
t=1

(I × J )t−1 → 
(J ). (14.16)

Kuhn’s Theorem for infinite games (Theorem 6.26 on page 242) states that every mixed
strategy has an equivalent behavior strategy and vice versa. It therefore suffices to consider
only behavior strategies here, because they are more natural than mixed strategies. The
word strategy in this chapter will be short-hand for “behavior strategy.”

By Theorem 6.23 (page 242), every pair of strategies (σ1, σ2) induces a probability
measure Pσ1,σ2 over the set of infinite plays, i.e., over (I × J )N. The expectation operator
corresponding to this probability distribution is denoted by Eσ1,σ2 .

Denote the payoff in stage t by gt = u(it , j t ) ∈ Rm, and the average payoff up to stage
T by3

gT = 1

T

T∑
t=1

gt = 1

T

T∑
t=1

u(it , j t ) ∈ Rm. (14.17)

We next define the concept of an approachable set, the central concept of this chapter.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 For convenience, we use in this chapter the notation I and J for the action sets of the players, instead of A1

and A2.
3 While in one-stage games the payoff is defined to be the expected payoff according to the mixed actions of the

players, in repeated games the payoff in each stage t is the actual payoff u(it , j t ) of that stage (and not the expected
payoff according to the mixed actions at that stage). In this chapter we will be interested in the average payoff gT ,
as opposed to its expectation.
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Definition 14.2 A nonempty set C ⊆ Rm is called approachable by player k if there exists
a strategy σk of player k such that for every ε > 0 there exists T ∈ N such that for every
strategy σ−k of the other player

Pσk,σ−k
(d(gt , C) < ε, ∀t ≥ T ) > 1 − ε. (14.18)

In this case we say that σk approaches C for player k.

A set is approachable by a player if that player can guarantee that for any strategy used
by the other player, the average payoff approaches the set with probability 1 uniformly. In
particular, this implies that

Pσk,σ−k
( lim
t→∞ d(gt , C) = 0) = 1. (14.19)

The convergence of the average payoff to C is uniform; i.e., the rate at which the average
payoff approaches this set (meaning the ratio between ε and t in Equation (14.18)) is
independent of the strategy used by the rival player.

The dual to Definition 14.2 relates to the situation in which player k can guarantee that
the distance between the average payoff and the target set is positive and bounded away
from 0.

Definition 14.3 A nonempty set C ⊆ Rm is called excludable by player k if there exists
δ > 0 such that the set {x ∈ Rm : d(x, C) ≥ δ} is approachable by player k. If the strategy
σk of player k approaches the set {x ∈ Rm : d(x, C) ≥ δ} for some δ > 0, we say that σk

excludes the set C for player k.

14.3 Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

When m = 1, the outcome at each stage is a real number. If we interpret this number
as the payoff to Player 1, and the negative of this number as the payoff to Player 2,
then this model is equivalent to the model of repeated two-player zero-sum games. If
v is the value of the one-stage game, then [v,∞) is an approachable set for Player 1,
and (−∞, v] is an approachable set for Player 2. The players’ approaching strategies are
stationary strategies, in which each player plays an optimal strategy of the one-stage game
at each stage (independently of the history of play). It follows that for every δ > 0, the set
(−∞, v − δ] is an excludable set for Player 1, and the set [v + δ,∞) is an excludable set
for Player 2. This example shows that one may regard the model of repeated games with
vector payoffs as a generalization of the model of two-player zero-sum games. Blackwell
[1956], in fact, presented his model in such a way.
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Example 14.4 Consider a game where m = 2, each player has two possible actions, and the payoff function

u is given by the matrix in Figure 14.1.

Player 1

Player 2

B

T

RL

(1, 0)

(0, 0)

(1, 1)

(0, 0)

Figure 14.1 The game in Example 14.4

The set C1 = {(0, 0)}, containing only the vector (0, 0) (see Figure 14.2), is approachable by
Player 1: if Player 1 plays T in every stage, he guarantees that the average payoff is (0, 0).

The set C2 = {(1, x) : 0 ≤ x ≤ 1} (see Figure 14.2) is also approachable by Player 1: if Player 1
plays B in every stage, he guarantees that the average payoff is in C2.

(0, 0)

(1, 1)

(1, 0)

C1

The set C1

(0, 0)

(1, 1)

(1, 0)

C2

The set C2

(0, 0)

(1, 1)

(1, 0)

C3

The set C3

Figure 14.2 Three sets approachable by Player 1 in Example 14.4

It is also interesting to note that the set C3 = {
(x, 1 − x) : 1

2 ≤ x ≤ 1
}

(see Figure 14.2) is also
approachable by Player 1. The following strategy of Player 1 guarantees that the average payoff
approaches this set:

� If gt−1, the average payoff up to stage t − 1, is located above the diagonal x1 + x2 = 1, i.e., if
gt−1

1 + gt−1
2 ≥ 1, then play T in stage t .

� If gt−1, the average payoff up to stage t − 1, is located below the diagonal x1 + x2 = 1, i.e., if
gt−1

1 + gt−1
2 < 1, then play B in stage t .

In Exercise 14.8 we present a guided proof of the fact that the set C3 is indeed approachable by
Player 1. �

14.4 Connections between approachable and excludable sets
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following claims, whose proofs are left to the reader, state several simple properties
that follow from the definitions (Exercise 14.4).

Theorem 14.5 The following two claims hold:

1. If strategy σk approaches a set C for player k, then it approaches the closure of C for
that player.
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2. If strategy σk excludes a set C for player k, then it excludes the closure of C for that
player.

Let M ≥ 1
2 be a bound on the norm of the payoffs in the game

‖u(i, j )‖ ≤ M, ∀i ∈ I, ∀j ∈ J . (14.20)

In particular, ‖u(it , j t )‖ ≤ M , in every stage t . The triangle inequality implies that

‖gT ‖ ≤ M, ∀T ∈ N. (14.21)

In words, the average payoff is located in the ball with radius M around the origin. There-
fore, if the average payoff approaches a particular set, it must approach the intersection
of that set and the ball of radius M around the origin. Similarly, if a player can guarantee
that the distance between the average payoff and a particular set is positive and bounded
away from 0, then he can guarantee that the distance between the average payoff and the
intersection of that set and the ball of radius M around the origin is positive and bounded
away from 0. This insight is expressed in the next theorem, whose proof is left to the
reader (Exercise 14.5).

Theorem 14.6 The following two claims hold:

1. A closed set C is approachable by a player if and only if the set {x ∈ C : ‖x‖ ≤ M} is
approachable by the player.

2. A closed set C is excludable by a player if and only if the set {x ∈ C : ‖x‖ ≤ M}
is excludable by the player.

The following theorem relates to sets containing approachable sets, and to subsets of
excludable sets (Exercise 14.6).

Theorem 14.7 The following two claims hold:

1. If strategy σk approaches a set C for player k, then it approaches every superset of C

for that player.
2. If strategy σk excludes a set C for player k, then it excludes every subset of C for that

player.

We close this section with the following theorem (Exercise 14.7).

Theorem 14.8 A set C cannot be both approachable by one player and excludable by the
other player.

Theorem 14.8 expresses the opposing interests of the players in this model, as in the
model of two-player zero-sum games. In the next section we will present a geometric
condition for the approachability of a set, which we then use to prove that every closed
and convex set is either approachable by one player, or excludable by the other player.
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14.5 A geometric condition for the approachability of a set
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

If in stage t Player 1 plays the mixed action p and Player 2 plays the mixed action q, the
expected payoff in that stage is4

U (p, q) :=
∑
i,j

piu(i, j )qj , (14.22)

which is a vector in Rm. For every mixed action p ∈ 
(I) of Player 1, define the set

R1(p) := {U (p, q) : q ∈ 
(J )} =
⎧⎨⎩∑

i,j

piu(i, j )qj : q ∈ 
(J )

⎫⎬⎭ ⊆ Rm. (14.23)

Thus, if Player 1 plays the mixed action p, the expected payoff in the current stage is
in the set R1(p). As we will show (Theorem 14.19, page 585), for every p ∈ 
(I), the
strategy of Player 1 in which he plays the mixed action p in every stage approaches the
set R1(p). The reason for this is that when Player 1 implements the mixed action p in
every stage, the expected payoff in each stage is located in R1(p), independently of the
action implemented by Player 2. Since the set R1(p) is convex, it follows that for every
T ∈ N the expectation of the average payoff up to stage T is also in R1(p). As we will
later show this further implies, by way of a variation of the strong law of large numbers,
that the average payoff ḡT approaches R1(p) as T increases to infinity.

Similarly, for every mixed action q ∈ 
(J ) of Player 2, defines

R2(q) := {U (p, q) : p ∈ 
(I)} =
⎧⎨⎩∑

i,j

piu(i, j )qj : p ∈ 
(I)

⎫⎬⎭ ⊆ Rm. (14.24)

Just as for R1(p), for every q ∈ 
(J ), the strategy of Player 2 in which he plays the mixed
action q in every stage approaches the set R2(q) (Theorem 14.19, page 585).

Example 14.9 Consider the game with two-dimensional payoffs in Figure 14.3.

Player 1

Player 2

B

T

RL

(0, 1)

(3, 0)

(4, 4)

(5, 2)

Figure 14.3 The game in Example 14.9

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 Here, and in the rest of this chapter, a sum
∑

i,j will be understood to mean the double sum
∑

i∈I
∑

j∈J .
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Figure 14.4 depicts the sets R1(p) and R2(q) for several values of p and q. For simplicity, when
Player 1 has two actions, T and B, we will identify every number p in the interval [0, 1] with the
mixed action [p(T ), (1 − p)(B)]. When Player 2 has two actions, L and R, we will identify every
number q in the interval [0, 1] with the mixed action [q(L), (1 − q)(R)].

R1 (0)

R1 (   ) 
R1

R1

R1 (1)

543210
0

1

2

3

4

The sets R1 (p) The sets R1 (p)

R2 (0)

R2

R2

R2 (3/4)

R2 (1)

543210
0

1

2

3

41
4
— (   ) 1

4
—

(   ) 1
2
—

(   ) 3
4
—

(   ) 1
2
—

Figure 14.4 The sets R1(p) and R2(p) in Example 14.9
�

Definition 14.10 A hyperplane H (α, β) in Rm is defined by

H (α, β) := {
x ∈ Rm : 〈α, x〉 = β

}
, (14.25)

where α ∈ Rm and β ∈ R.

Denote

H+(α, β) = {x ∈ Rm : 〈x, α〉 ≥ β} (14.26)

and

H−(α, β) = {x ∈ Rm : 〈x, α〉 ≤ β}. (14.27)

H+(α, β) and H−(α, β) are the half-spaces defined by the hyperplane H (α, β). Note that
H+(α, β) ∩ H−(α, β) = H (α, β). Figure 14.5 depicts the hyperplane H ((2, 1), 2) in R2,
and the two corresponding half-spaces.

By definition (see Corollary 14.23),

H+(α, β) = H−(−α,−β). (14.28)

For every x, y ∈ Rm, the hyperplane H (x − y, 〈x − y, y〉) is the hyperplane passing
through the point y, and perpendicular to the line passing through x and y (Exercise 23.35
on page 954). For example, in the case m = 2 described in Figure 14.6, the slope of the
line passing through x and y is y2−x2

y1−x1
. We now show that the slope of the hyperplane

H (x − y, 〈x − y, y〉), which in this case is a line, is − y1−x1

y2−x2
, and therefore this line is

perpendicular to the line passing through x and y. Choose a point z = (z1, z2) �= y on the
hyperplane H (x − y, 〈x − y, y〉). Then z satisfies

z1(x1 − y1) + z2(x2 − y2) = 〈x − y, y〉 = (x1 − y1)y1 + (x2 − y2)y2. (14.29)
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(0, 2)

(1, 0)

H((2, 1), 2)

H + ((2, 1, 2)

H – ((2, 1), 2)

Figure 14.5 The hyperplane H ((2, 1), 2) in R2, which is the line 2x1 + x2 = 2

H (x − y, 〈x − y, y〉)

y

x
z

Figure 14.6 The hyperplane H (y − x, 〈y − x, y〉)

This further implies that the slope of the line connecting z and y, which is the hyperplane
H , is

z2 − y2

z1 − y1
= −x1 − y1

x2 − y2
, (14.30)

which is what we needed to show.

Definition 14.11 Let C ⊆ Rm be a set, and let x �∈ C be a point in Rm. A hyperplane
H (α, β) is said to separate x from C if:

1. x ∈ H+(α, β) \ H (α, β) and C ⊆ H−(α, β), or
2. x ∈ H−(α, β) \ H (α, β) and C ⊆ H+(α, β).

In words, a hyperplane H (α, β) separates x from C if (i) 〈x, α〉 > β and 〈y, α〉 ≤ β for
all y ∈ C, or (ii) 〈x, α〉 < β and 〈y, α〉 ≥ β for all y ∈ C.

As in Chapter 13, denote by F the convex hull of all possible one-stage payoffs:

F = conv{u(i, j ), (i, j ) ∈ I × J }. (14.31)

Note that the average payoff gt , as a weighted average of vectors in the convex set
{u(i, j ), (i, j ) ∈ I × J }, is necessarily in the set F .
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As previously noted, it will follow that the set R1(p) will be proved to be approachable
by Player 1, for every p ∈ 
(I). By Theorem 14.7, any half-space containing at least
one of the sets (R1(p))p∈
(I) is also approachable by Player 1. This observation leads to
the concept of a “B-set.” A set C is a B-set for Player 1 if each half-space in a certain
collection of half-spaces contains a set R1(p) for some p ∈ 
(I).

Definition 14.12 A closed set C ⊆ Rm is a B-set for Player 1 if for every point x ∈ F \ C

there exist a point y = y(x, C) ∈ C and a mixed action p = p(x, C) ∈ 
(I) of Player 1
satisfying:

1. y is a point in C that is closest to x:

d(x, y) = d(x, C). (14.32)

2. The hyperplane H (y − x, 〈y − x, y〉) separates x from R1(p):

R1(p) ⊆ H+(y − x, 〈y − x, y〉), (14.33)

x ∈ H−(y − x, 〈y − x, y〉) \ H (y − x, 〈y − x, y〉). (14.34)

Remark 14.13 The hyperplane H (y − x, 〈y − x, y〉) satisfies the following three prop-
erties (Exercise 23.35 on page 954):

1. y ∈ H (y − x, 〈y − x, y〉).
2. This hyperplane is perpendicular to y − x, that is, 〈y − x, z − y〉 = 0 for all z ∈

H (y − x, 〈y − x, y〉).
3. y is the point in H (y − x, 〈y − x, y〉) that is closest to x, that is, 〈z − x, z − x〉 >

〈y − x, y − x〉 for all z ∈ H (y − x, 〈y − x, y〉), z �= y.

Similarly, for a given hyperplane H and a point x �∈ H , if y ∈ H is the point in H that is
closest to x, then H = H (y − x, 〈y − x, y〉) (Exercise 23.36 on page 954). �

Note that the condition in Definition 14.12 requires that for every x there exist a point
y and a mixed action p of Player 1 satisfying (a) and (b); for a given mixed action p, it is
not the case that every point y satisfying (a) also satisfies (b). In Figure 4.7, there are two
points y, y ′ in C that are the closest points to x. The hyperplane H (y − x, 〈y − x, y〉),
containing y, separates x from R1(p). In contrast, the hyperplane H (y′ − x, 〈y′ − x, y ′〉)
does not separate x from R1(p).

The definition of a B-set for Player 2 is analogous to Definition 14.12: a set C is a B-set
for Player 2 if for each point x ∈ F \ C there exists a mixed action q ∈ 
(J ) of Player 2
such that the hyperplane H (y − x, 〈y − x, y〉) separates x from R2(q), where y ∈ C is a
point in C that is closest to x. The following theorem presents a geometric condition that
guarantees the approachability of a set by a particular player.

Theorem 14.14 (Blackwell [1956]) If a set C is a B-set for player k, then it is approach-
able by player k.

The converse may not hold: there are sets approachable by a player k that are not B-sets
for player k (Exercise 14.15).
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C

R1(p)

y

x

H (y′ − x, 〈y′ − x, y′〉) H (y − x, 〈y − x, y〉)

y′

Figure 14.7 The hyperplane H (y − x, 〈y − x, y〉) separates x from R1(p)

C

y

gt

R1 (p)

f t+1

E [gt +1]

Figure 14.8 The idea behind the proof of Theorem 14.14

The intuition behind the proof (for Player 1) is depicted in Figure 14.8. Consider the
strategy of Player 1 under which he plays the mixed action p(gt , C) in every stage t . The
hyperplane identified by the definition of a B-set is the hyperplane tangent to C at the
point y = y(gt , C) in C that is closest to x. Suppose that gt , the average payoff up to
stage t is outside C, and let p = p(gt , C) be the mixed action of Player 1, respectively,
satisfying conditions (1) and (2) in Definition 14.12, for x = gt . If Player 1 plays the
mixed action p, the expected payoff in stage t + 1, denoted in the figure by f t+1, is in
R1(p), and therefore the expected value of gt+1 is located on the line connecting gt with
f t+1. We will show that the expected distance d(gt+1, C) is smaller than d(gt , C); i.e.,
the expected distance between gt+1 and C is smaller than the distance between gt and C.
Finally, we will show that if the expected distance to C goes to 0, the distance itself also
goes to 0, with probability 1.

We now turn to the formal proof of the theorem.

Proof: We will prove the theorem for Player 1. The proof for Player 2 is similar. From
Theorem 14.6 (page 575) we may assume without loss of generality that for every y ∈ C,

‖y‖ ≤ M, (14.35)
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and, in particular, the absolute value of every coordinate of y is less than or equal to M .
We will first define a strategy σ ∗

1 for Player 1, and then prove that it guarantees that the
average payoff approaches the set C. In the first stage, the strategy σ ∗

1 chooses any action.
For each t ≥ 1 the strategy σ ∗

1 instructs Player 1 to play as follows in stage t + 1:

� If gt ∈ C, the definition of σ ∗
1 is immaterial (play any action).

� If gt �∈ C, the strategy σ ∗
1 instructs the player to choose the mixed action p(gt , C) (as

defined in Definition 14.12).

Denote by dt = d(gt , C) the distance between the average payoff up to stage t and the
set C. We wish to show that for every strategy σ2 of Player 2, the distance dt converges to
zero, with probability 1, and that the rate of convergence can be bounded, independently
of the strategy of Player 2.

Lemma 14.15 For every strategy σ2 of Player 2, and for every t ∈ N,

Eσ ∗
1 ,σ2 [(dt )2] ≤ 4M2

t
. (14.36)

Proof: We will prove the claim by induction on t . Since the payoffs are bounded by M ,
one has dt = d(gt, C) ≤ 2M for all t ∈ N: the distance between the average payoff and
the set C is not greater than twice the maximal payoff. Since M ≥ 1

2 , Equation (14.36)
holds, for t = 1.

Assume by induction that Equation (14.36) holds for t ; we will prove that it holds for
t + 1. The average payoff up to stage t + 1 is a weighted average (i) of the average payoff
up to stage t , and (ii) of the payoff in stage t + 1:

gt+1 = 1

t + 1

t+1∑
l=1

gl = t

t + 1
× 1

t

t∑
l=1

gl + 1

t + 1
gt+1 = t

t + 1
gt + 1

t + 1
gt+1. (14.37)

We wish to show that the expected value of dt+1, the distance between gt+1 and C, shrinks.
If gt ∈ C, then yt = gt . If gt �∈ C, denote by pt the mixed action that Player 1 plays in
stage t + 1. Since yt ∈ C, one has d(gt+1, C) ≤ d(gt+1, yt ), leading to

(dt+1)2 = (d(gt+1, C))2 ≤ (d(gt+1, yt ))2 = ‖yt − gt+1‖2. (14.38)

By Equation (14.37), the right-hand side of Equation (14.38) is∥∥∥∥ t

t + 1
(yt − gt ) + 1

t + 1
(yt − gt+1)

∥∥∥∥2

. (14.39)

Since dt = ‖yt − gt‖ and ‖yt − gt+1‖ ≤ 2M , using Equations (14.38) and (14.39), this
implies that

(dt+1)2 ≤
(

t

t + 1

)2

(dt )2 + 4M2

(t + 1)2
+ 2t

(t + 1)2
〈yt − gt+1, yt − gt〉. (14.40)



582 Repeated games with vector payoffs

Taking conditional expectation in both sides of Equation (14.40), conditioned on the
history ht up to stage t yields

Eσ ∗
1 ,σ2 [(dt+1)2 | ht ]

≤
(

t

t + 1

)2

Eσ ∗
1 ,σ2 [(dt )2 | ht ] + 4M2

(t + 1)2
+ 2t

(t + 1)2
Eσ ∗

1 ,σ2 [〈yt − gt+1, yt − gt 〉 | ht ].

(14.41)

We now show that the third element on the right-hand side of Equation (14.41) is
nonpositive. If gt ∈ C, then yt = gt , in which case the third element equals 0. If gt �∈
C, then, because C is a B-set for Player 1, it follows from the definition of pt that
R1(pt ) ⊂ H+(yt − gt , 〈yt − gt , yt 〉). Since in stage t + 1, Player 1 plays mixed action
pt , the expected payoff in stage t + 1, which is Eσ ∗

1 ,σ2 [gt+1|ht ], is located in R1(pt ), and
therefore in H+(yt − gt , 〈yt − gt , yt 〉). It follows that

〈yt − gt , Eσ ∗
1 ,σ2 [gt+1 | ht ]〉 ≥ 〈yt − gt , yt 〉. (14.42)

Since the inner product is symmetric and bilinear, and since the average payoff gt and the
point yt are determined given the history ht , we get

Eσ ∗
1 ,σ2 [〈 yt − gt+1, yt − gt 〉 | ht ]

= 〈yt − Eσ ∗
1 ,σ2 [gt+1 | ht ], yt − gt 〉

= 〈yt − Eσ ∗
1 ,σ2 [gt+1 | ht ], yt 〉 − 〈yt − Eσ ∗

1 ,σ2 [gt+1 | ht ], gt 〉 ≤ 0. (14.43)

Since the third element on the right-hand side of Equation (14.41) is nonpositive, we get

Eσ ∗
1 ,σ2 [(dt+1)2 | ht ] ≤

(
t

t + 1

)2

Eσ ∗
1 ,σ2 [(dt )2] + 4M2

(t + 1)2
. (14.44)

Taking the expectation over ht of the conditional expectation on the left-hand side yields

Eσ ∗
1 ,σ2 [(dt+1)2] = Eσ ∗

1 ,σ2

[
Eσ ∗

1 ,σ2 [(dt+1)2 | ht ]
] ≤ (

t

t + 1

)2

Eσ ∗
1 ,σ2 [(dt )2] + 4M2

(t + 1)2
.

(14.45)

By the inductive hypothesis, Eσ ∗
1 ,σ2 [(dt )2] ≤ 4M2

t
, and therefore

Eσ ∗
1 ,σ2 [(dt+1)2] ≤

(
t

t + 1

)2 4M2

t
+ 4M2

(t + 1)2
= 4M2

t + 1
, (14.46)

which is what we wanted to show. �
Recall that Markov’s inequality states that for every nonnegative random variable X,

and for every c > 0,

P(X ≥ c) ≤ E(X)

c
. (14.47)

By Lemma 14.15, and the Markov inequality (with c = 2M√
t
), we deduce that the probability

that dt is large is small (for large t):
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Corollary 14.16 For every strategy σ2 of Player 2,

Pσ ∗
1 ,σ2

(
(dt )2 ≥ 2M√

t

)
≤ 2M√

t
, (14.48)

and therefore

Pσ ∗
1 ,σ2

(
dt ≥

√
2M

t1/4

)
≤ 2M√

t
. (14.49)

This corollary relates to the distance betweengt and the set C in stage t . We are interested
in showing that this distance is small for large t , i.e., that there exists T sufficiently large
such that from stage T onwards, the distance dt remains small. In other words, while in
Lemma 14.15 we show that the expected value of the random variables (dt )t∈N converges
to 0, and therefore the sequence (dt )t∈N converges in probability to 0, we now wish to
show that convergence occurs almost surely. Although this can be proved using the strong
law of large numbers for uncorrelated random variables, we will present a direct proof of
convergence, without appealing to the law of large numbers.

Lemma 14.17 For every ε > 0, there exists a number T sufficiently large such that for
every strategy σ2 of Player 2,

Pσ ∗
1 ,σ2 (dt < ε, ∀t ≥ T ) > 1 − ε. (14.50)

In particular, this implies that the set C is approachable by Player 1. Therefore, proving
Lemma 14.17 will complete the proof of Theorem 14.14.

Proof: Let ε > 0. By5 Equation (14.49), for t = l3,

Pσ ∗
1 ,σ2

(
dl3 ≥

√
2M

l3/4

)
≤ 2M

l3/2
. (14.51)

Let L ∈ N. Summing Equation (14.51) over l ≥ L yields

Pσ ∗
1 ,σ2

(
dl3 ≥

√
2M

l3/4
for some l ≥ L

)
≤ 2M

∞∑
l=L

1

l3/2
. (14.52)

Consider the complement of the event on the left-hand side in Equation (14.52):

Pσ ∗
1 ,σ2

(
dl3

<

√
2M

l3/4
, ∀l ≥ L

)
≥ 1 − 2M

∞∑
l=L

1

l3/2
. (14.53)

Since the series
∑∞

l=1
1

l3/2 converges, there exists L0 sufficiently large for
1 − 2M

∑∞
l=L0

1
l3/2 ≥ 1 − ε. For the remainder of the proof, we will also require that

L0 ≥ 7.
We next prove the following lemma.

Lemma 14.18 If dl3
<

√
2M

l3/4 for every l ≥ L0, then dt <
19M

√
m

t1/4 for every t ≥ (L0)3.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 As will shortly be clear, the reason for setting t = l3 is to ensure that the bound on the right-hand side of
Equation (14.51) is a convergent series.
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We will first show that Lemma 14.17 follows from Lemma 14.18. From Lemma 14.18,
and Equation (14.53), one has

Pσ ∗
1 ,σ2

(
dt <

19M
√

m

t1/4
, ∀t ≥ (L0)3

)
≥ 1 − ε, (14.54)

from which Lemma 14.17 follows (what is the T that should be used in Lemma 14.17?).
We next turn to the proof of Lemma 14.18. Let t ≥ (L0)3, and let l ≥ L0 be the only

integer satisfying

l3 ≤ t < (l + 1)3. (14.55)

We start by proving two inequalities that will be needed later.

Fact 1: 1
l3/4 ≤ 2

t1/4 for all l ≥ L0.

Since l ≥ 7, one has
(

l+1
l

)3 ≤ (
8
7

)3
< 2, so it follows from Equation (14.55) that t

2 <
(l+1)3

2 < l3. Therefore,

1

l3/4
= 1

(l3)1/4
<

1

( t
2 )1/4

<
2

t1/4
. (14.56)

Fact 2: t−l3

t
≤ 8

t1/3 .
Based on the definition of l (Equation (14.55)),

t − l3

t
≤ (l + 1)3 − l3

l3
= 3l2 + 3l + 1

l3
≤ 7l2

l3
= 7

l
≤ 8

l + 1
<

8

t1/3
, (14.57)

where the inequality 7
l
≤ 8

l+1 holds because l ≥ 7.
Finally, the average payoff up to stage t satisfies

gt = 1

t

t∑
n=1

gn = 1

t

l3∑
n=1

gn + 1

t

t∑
n=l3+1

gn = l3

t
gl3 + 1

t

t∑
n=l3+1

gn. (14.58)

Since d(x + y, x + z) = d(y, z) (Equation (14.10) on page 571), one has

d(gt , gl3
) = d

⎛⎝ l3

t
gl3 + 1

t

t∑
n=l3+1

gn, gl3

⎞⎠ = d

⎛⎝1

t

t∑
n=l3+1

gn,
t − l3

t
gl3

⎞⎠
= d

⎛⎝1

t

t∑
n=l3+1

gn,
1

t

t∑
n=l3+1

gl3

⎞⎠ . (14.59)

Using properties of the distance relation (Equations (14.11)–(14.13) on page 571) one
has

d(gt , gl3
) ≤ 1

t

t∑
n=l3+1

d(gn, gl3
) ≤ 2M

√
m

t − l3

t
. (14.60)



585 14.6 Characterizations of convex approachable sets

Therefore,

dt = d(gt , C) (14.61)

≤ d(gt , gl3
) + d(gl3

, C) (14.62)

≤ 2M
√

m
t − l3

t
+ dl3

(14.63)

≤ 2M
√

m
t − l3

t
+

√
2M

l3/4
(14.64)

≤ 16M
√

m

t1/3
+ 2

√
2M

t1/4
≤ 19M

√
m

t1/4
. (14.65)

Equation (14.62) follows from triangle inequality (Equation (14.7)), Equation (14.63)
follows from (14.60), Equation (14.64) follows from the assumption that dl3 ≤

√
2M

l3/4 , and
Equation (14.65) follows from Facts 1 and 2. This completes the proof of Lemma 14.18,
and with it the proof of Lemma 14.17. �

Conclusion of the proof of Blackwell’s Theorem (Theorem 14.14): Lemma 14.17 implies
that the strategy σ ∗

1 guarantees with probability 1 that the distance between the average
payoff gt and the set C converges to 0 with probability 1, and therefore C is an approachable
set by Player 1, which is what we wanted to prove. �

14.6 Characterizations of convex approachable sets
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the various applications making use of approachable sets, the target set is convex (we
will consider two such applications later in this chapter). In this section, we will show that
convex approachable sets have several simple characterizations.

Since for every mixed action p of Player 1, the set R1(p) is convex, there is a unique point
y ∈ R1(p) that is closest to x. By the Separating Hyperplane Theorem (Theorem 23.39
on page 944), for every x ∈ F \ R1(p), the hyperplane H (x − y, 〈x − y, y〉) separates x

from R1(p), where y is the point in R1(p) closest to x. It follows that R1(p) is a B-set
for Player 1, and Blackwell’s Theorem (Theorem 14.14 on page 579) implies that it is
an approachable set by Player 1. Moreover, the strategy under which Player 1 plays the
mixed action p in every stage approaches R1(p). A similar result holds for sets R2(q) and
Player 2. This leads to the following theorem:

Theorem 14.19 For every p ∈ 
(I), the strategy of Player 1 in which he plays the mixed
action p in every stage approaches the set R1(p). For every q ∈ 
(J ), the strategy of
Player 2 in which he plays the mixed action q in every stage approaches the set R2(q).

Theorem 14.19 has the following corollary.

Corollary 14.20 Let C be a closed set. If there exists p ∈ 
(I) such that C ∩ R1(p) = ∅,
then the set C is excludable by Player 1. If there exists q ∈ 
(I) such that C ∩ R2(q) = ∅,
then the set C is excludable by Player 2.
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The following theorem is a result in the theory of convex sets.

Theorem 14.21 Let H+ be a half-space. If for every p ∈ 
(I) the set R1(p) is not
contained in H+, then there exists q ∈ 
(J ) such that R2(q) ∩ H+ = ∅.

The proof we present here applies von Neumann’s Minmax Theorem (Theorem 5.11
on page 151).

Proof: Let H+ = H+(α, β) = {x ∈ Rm : 〈α, x〉 ≥ β}. Define a two-player zero-sum
game in strategic form G with the set of players {1, 2}, such that the set of pure strategies
of Player 1 is I , the set of pure strategies of Player 2 is J , and the payoff function (for
Player 1) is given by w(i, j ) = 〈α, u(i, j )〉. Denote by W (p, q) the multilinear extension
of w:

W (p, q) =
I∑

i=1

J∑
j=1

piqjw(i, j ) = 〈α, U (p, q)〉, (14.66)

where U is the bilinear extension of u. By von Neumann’s Theorem (Theorem 5.11 on
page 151) this game has a value v. By assumption, for every mixed strategy p ∈ 
(I) of
Player 1 in the game G, there exists a mixed strategy q ∈ 
(J ) of Player 2 in G such that
U (p, q) �∈ H+, and therefore W (p, q), the payoff in G, satisfies

W (p, q) = 〈α, U (p, q)〉 < β. (14.67)

It follows that the value v of G is less than β. Let q∗ be an optimal strategy of Player 2
in G. Then W (p, q∗) ≤ v < β for every p ∈ 
(I). It follows that R2(q∗) ∩ H+ = ∅, as
required. �

The next theorem presents conditions guaranteeing the approachability of a half-space.

Theorem 14.22 Let H+ be a half-space, and let p∗ ∈ 
(I) be a mixed action of Player 1.
The following conditions are equivalent:

(a) R1(p∗) ⊆ H+.
(b) H+ is a B-set for Player 1, and for every x ∈ F \ H+, the mixed action p(x, H ) = p∗

satisfies condition (2) of Definition 14.12 (page 579).
(c) The strategy of Player 1 that plays the mixed action p∗ in every stage approaches H+

for Player 1.

Proof: Let H+ = H+(α, β) = {x ∈ Rm : 〈α, x〉 ≥ β}. We start by proving that (a) implies
(b).6 Let x ∈ F \ H+, and let y ∈ H+ be the point in H+ closest to x. We will show that
conditions (1) and (2) in Definition 14.12 (page 579) hold with p(x, H+) = p∗. Since x

is a point in F \ H+, it will follow that H+ is a B-set for Player 1. Since x �∈ H+(α, β),
the hyperplane H (α, β) separates x and H+(α, β), and it contains the point y. It follows
(see Remark 14.13) that H (α, β) = H (y − x, 〈y − x, y〉). Since condition (a) holds,

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Another way to prove this is as follows: as previously stated, the set R1(p∗) is convex, and a B-set for Player 1.
The half-space H+ is a convex set containing R1(p∗), and therefore it is also a B-set (Exercise 14.11). Note that
by Theorem 14.19, (a) implies (c).
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R1(p∗) ⊆ H+(α, β) = H (y − x, 〈y − x, y〉). Because this is true for all x ∈ F \ H+,
we deduce that H+ is a B-set for Player 1.

We next prove that (b) implies (c). Suppose, then, that condition (b) holds. By Black-
well’s Theorem (Theorem 14.14 on page 579), H+ is an approachable set. The strategy
that we constructed in the proof of Blackwell’s Theorem, under which Player 1 guar-
antees that the average payoff approaches H+, is the strategy in which in every stage t

he plays the mixed action p(gt−1, H
+), where gt−1 is the average payoff up to stage t .

Since p(x, H ) = p∗ for every x ∈ F \ H+, the strategy σ ∗ approaches H+, and therefore
condition (c) holds.

Finally, we prove that (c) implies (a). Let q ∈ 
(J ) be a mixed action of Player 2, and
let τ be the strategy that plays the mixed action q in every stage. By the strong law of
large numbers, the average payoffs under (σ ∗, τ ) converge to U (p∗, q) with probability 1.
Since σ ∗ approaches H+, it follows that U (p∗, q) ∈ H+. Since R1(p∗) = {U (p∗, q) : q ∈

(J )}, and since U (p∗, q) ∈ H+ for every q ∈ 
(J ), we deduce that R1(p∗) ⊆ H+, i.e.,
condition (a) holds. �

A stationary strategy of player k is a strategy that plays the same mixed action in every
stage, regardless of past choices of the two players.

Corollary 14.23 A half-space H+ is approachable by a player if and only if the player
has a stationary strategy that approaches the set.

Proof: We prove the result for Player 1. Clearly, if Player 1 has a stationary strategy that
approaches H+, then H+ is approachable by him. We need to prove, therefore, that if
H+ is approachable by Player 1, then Player 1 has a stationary strategy that approaches
H+. Suppose, by contradiction, that Player 1 has no stationary strategy approaching
H+. By Theorem 14.22, R1(p) �⊆ H+ for every p ∈ 
(I). By Theorem 14.21, there
exists a q ∈ 
(J ) such that R2(q) ∩ H = ∅. By Corollary 14.20, H is excludable by
Player 2. Since a set cannot be both approachable by Player 1 and excludable by Player 2
(Theorem 14.8 on page 575), we deduce that H+ is not approachable by Player 1,
contradicting the assumption. This contradiction implies that Player 1 has a stationary
strategy guaranteeing that the average payoff approaches H+, which is what we wanted
to show. �

The next theorem is, in a sense, a generalization of Theorem 14.22 to convex sets.

Theorem 14.24 For every closed and convex set C ⊆ Rm, the following conditions are
equivalent:

(a) For every half-space H+ containing C, there exists p ∈ 
(I) satisfying R1(p) ⊆ H+.
(b) The set C is a B-set for Player 1.
(c) The set C is approachable by Player 1.

Proof: We start by proving that (a) implies (b). Let x ∈ F \ C. Since C is closed and
convex, there exists a unique point y in C closest to x. The Separating Hyperplane Theorem
(Theorem 23.39 on page 944), implies that the hyperplane H+ := H+(y − x, 〈y − x, y〉)
separates x from C. In particular, the half-space H+ contains C, and by (a), there exists
p ∈ 
(I) such that R1(p) ⊆ H+. We deduce from this that for every x ∈ F \ C there
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exists p ∈ 
(I) such that the hyperplane H (y − x, 〈y − x, y〉) separates x from R1(p),
and therefore C is a B-set for Player 1.

By Blackwell’s Theorem (Theorem 14.14 on page 579), (b) implies (c).
Finally, we prove that (c) implies (a). Since C is approachable by Player 1, and since

every set containing an approachable set is also approachable (Theorem 14.7 on page 575),
it follows that every half-space H+ containing C is approachable by Player 1. Corollary
14.23, and Theorem 14.22, imply that for every half-space H+ containing C there exists
p ∈ 
(I) satisfying R1(p) ⊆ H+, and therefore condition (a) holds. �

By Theorem 14.8 (page 575), a set approachable by one player is not excludable by the
other player. For convex sets, the converse statement also obtains.

Theorem 14.25 A closed and convex set that is not approachable by one player is exclud-
able by the other player.

Proof: Let C be a convex and closed set that is not approachable by one of the players, say
Player 1. By Theorem 14.24 (the negation of condition (a)), there exists a half-space H+

containing C, such that for every p ∈ 
(I), one has R1(p) �⊆ H+. By Theorem 14.21,
there exists q ∈ 
(J ) such that R2(q) ∩ H+ = ∅. Since H+ contains C, it follows in
particular that R2(q) ∩ C = ∅. By Corollary 14.20, it follows that C is excludable by
Player 2. �

Theorem 14.25 holds only for convex sets. Example 14.4 below presents a set that is
not convex, and is neither approachable by Player 1, nor excludable by Player 2.

For every vector α ∈ Rm, let Gα be the two-player zero-sum game (with real values
payoffs) in which Player 1’s set of pure strategies is I, Player 2’s set of pure strategies is
J , and the payoff function is

U [α]i,j = 〈α, u(i, j )〉. (14.68)

In words, using the linear transformation given by the vector α, we convert the vector
payoff into a real-valued payoff. Denote the value of the game Gα by val(Gα).

The following corollary presents a relatively simple criterion for checking whether a
convex and compact set is approachable by Player 1.

Corollary 14.26 A compact and convex set C is approachable by Player 1 if and only if

val(Gα) ≥ min
x∈C

〈α, x〉, ∀α ∈ Rm. (14.69)

Proof: We first prove that there exists a mixed action p ∈ 
(I) such that R1(p) ⊆
H+(α, β) if and only if val(Gα) ≥ β. The property R1(p) ⊆ H+(α, β) holds if and only if
U (p, q) ∈ H+(α, β) for all q ∈ 
(J ), that is, if and only if Uα(p, q) = 〈α, U (p, q)〉 ≥ β.
In other words, the mixed action p guarantees that the payoff of the game Gα is at least
β. The existence of such a mixed action p is therefore equivalent to val(Gα) ≥ β.

For each α ∈ Rm define

βα := min
x∈C

〈α, x〉. (14.70)

The minimum is attained because C is a compact set. It follows by definition that
C ⊆ H+(α, βα) for all α ∈ Rm. In addition, C ⊆ H+(α, β) if and only if β ≤ βα .
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In conclusion, C is an approachable set for Player 1 if and only if for every
half-space H+(α, β) containing it there exists p ∈ 
(I) satisfying R1(p) ⊆ H+(α, β)
(Theorem 14.24). Since C ⊆ H+(α, β) if and only if β ≤ βα , this holds if and only if
for all α ∈ Rm there exists p ∈ 
(I) satisfying R1(p) ⊆ H+(α, β) for all β ≤ βα. Since
H+(α, β) ⊇ H+(α, βα) when β ≤ βα , this holds if and only if for all α ∈ Rm there exists
p ∈ 
(I) satisfying R1(p) ⊆ H+(α, βα), and this, as we have shown, is equivalent to
val(Gα) ≥ βα = minx∈C〈α, x〉. �

Remark 14.27 The proof of Corollary 14.26 relies on the compactness of the set C to
ensure that the minimum on the right-hand side of Equation (14.69) is attained. If the set
C is not compact, yet the minimum on the right-hand side of Equation (14.69) is attained
for every α ∈ Rm, Corollary 14.26 holds for the set C. If there exists α ∈ Rm for which
the minimum on the right-hand side of Equation (14.69) is not attained, Corollary 14.26
holds if we replace the minimum by an infimum (Exercise 14.21). �

As we previously mentioned, Theorem 14.25, which states that every compact and
convex set is either approachable by Player 1 or excludable by Player 2, does not hold for
a set that is not convex. Indeed, we will now present an example of a nonconvex set C that
is neither approachable by Player 1, nor excludable by Player 2.

Example 14.14 (Continued) The vector payoffs in this example are given by the matrix in

Figure 14.9.

Player 1

Player 2

B

T

RL

(1, 0)

(0, 0)

(1, 1)

(0, 0)

Figure 14.9 The game in Example 14.4

Define sets Ca , Cb, and C as follows (see Figure 14.10):

Ca := {(
1
2 , y

)
: 0 ≤ y ≤ 1

4

}
, Cb := {

(1, y) : 1
4 ≤ y ≤ 1

}
, (14.71)

and

C := Ca ∪ Cb. (14.72)

0 11
2

1
4

1

Ca

Cb

Figure 14.10 The sets Ca and Cb
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We first show that Player 2 can prevent the average payoff from remaining near C, implying that
C is not approachable by Player 1. Indeed, Player 2 can achieve this using the following strategy:

� If the average payoff is close to Cb, and in particular gt
1 is close to 1 (for example gt

1 ≥ 0.9),
Player 2 plays the action R a sufficiently large number of times to make the value of the second
coordinate fall (approaching 0 as t increases), and therefore the average payoff moves away
from Cb.

� If the average payoff is close to Ca , and in particular gt
1 is close to 1

2 (for example 0.4 ≤ gt
1 ≤ 0.6),

Player 2 plays L a sufficiently large number of times to make the average payoff move towards
the diagonal x1 = x2, and thus move away from Ca .

� If the average payoff is far from C (for example 0.6 < gt
1 < 0.9, or gt

1 < 0.4), Player 2 can play
any action.

We will now show that for every t , Player 1 can guarantee that in stage 2t the average payoff will
be in C, leading to the conclusion that the set C is not excludable by Player 2.

� In the first t stages, Player 1 plays B. In particular,

gt ∈ {(1, x) : 0 ≤ x ≤ 1}. (14.73)

� If gt
2 ≥ 1

2 , Player 1 plays B in the next t stages. In particular, g2t
1 = 1, and g2t

2 ≥ 1
2gt

2 ≥ 1
4 , and

therefore g2t ∈ Cb ⊂ C.
� If gt

2 < 1
2 , Player 1 plays T in the next t stages. In particular, g2t = 1

2gt , i.e., g2t
1 = 1

2 and
g2t

2 = 1
2gt

2 < 1
4 . It follows that g2t ∈ Ca ⊂ C.

In conclusion, we have proved that C is not approachable by Player 1, and not excludable by
Player 2. �

14.7 Application 1: Repeated games with incomplete information
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Repeated games with incomplete information were first investigated by Aumann and
Maschler in 1967. As the name implies, these games combine the model of repeated
games (Chapter 13) with the model of games with incomplete information (Chapter 9).
In such games, the payoff matrix is chosen randomly at the start of the game, and the
players have different information regarding which matrix was chosen. As in all games
with incomplete information, in choosing his action a player needs to take into account the
state of knowledge of the other players, because a player’s actions may reveal to the others
some of the information he has. Because the game is repeated, the process of information
revelation and information gathering becomes part of the strategic considerations of the
players. In such games, the use of information means choosing an action based on the
information that a player has regarding the payoff matrix. If the players know the actions
taken by other players in earlier stages, the use of information may reveal information to
the other players. A natural question that arises here is whether a player should use the
information he has (and thus reveal it to the others), not use it, or make only partial use
of it. All three cases are possible: in this section we will see an example in which it is
not to a player’s advantage to reveal the information he has. Exercise 14.28 presents an
example in which it is to a player’s advantage to reveal all of the information he has, and
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Player 1

Player 2

B

T

RL

0

1

0

0

The state game s = 1

Player 1

Player 2

B

T

RL

0

0

1

0

The state game s = 2

Figure 14.11 The two payoff matrices of the example

Exercise 14.30 presents an example in which it is to a player’s advantage to reveal only
part of the information he has.

In this section we will not present a full methodological development of the subject.
We will content ourselves instead with one example that exemplifies the use of repeated
games with vector payoffs in the analysis of repeated games with incomplete information.
The example is from Aumann and Maschler [1995]; the interested reader is encouraged
to read this book for an introduction to the subject. A guided proof of the characterization
of the value of two-player zero-sum repeated games with incomplete information for one
player appears in Exercise 14.31.

Two players 1 and 2 play a zero-sum repeated game G, where each player has two
actions: Player 1’s set of actions is I = {T , B}, and Player 2’s set of actions isJ = {L, R}.
As in the model of games with incomplete information, the payoff here depends on the
state of nature s, which can take one of two values, s = 1 or s = 2. Each state of nature is
a state game. The two state games appear in Figure 14.11. The state of nature is chosen by
a fair coin toss at the beginning of the game: the probability that the chosen state is s = 1
is 1

2 . Player 1 (the row player) is informed which state of nature is chosen, but Player 2
(the column player) does not have this information. After the state of nature is chosen,
and Player 1 is informed of the chosen state of nature, the two players play the infinitely
repeated game whose payoff function corresponds to the chosen state of nature. At each
stage t , the players know the actions chosen in all previous stages, but do not know what
payoffs they have received. Player 1, however, can determine what the payoffs have been,
because he knows both the actions chosen and the payoff matrix. This description of the
situation is common knowledge among the players. Since Player 1 knows the true state
of nature, but Player 2 does not, this game is called a repeated game with incomplete
information for Player 2.

Denote the payoff matrices in Figure 14.11 by As , s = 1, 2, and denote their elements
by (as

i,j )i∈I,j∈J .
The game presented here is a game with perfect information (Definition 6.13 on page

231) and therefore by Theorem 6.26 (page 242) it follows that every mixed strategy has an
equivalent behavior strategy and vice versa. In this section we will assume that the set of
strategies of every player is his set of behavior strategies. For convenience we will denote
a behavior strategy of player i by σi instead of bi , and the set of behavior strategies of
player i will be denoted by Bi . The information available to Player 1 in stage t is the state
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of nature and the sequence of actions of the players up to stage t . It follows that Player 1’s
behavior strategy is the function

σ1 :
⋃
t∈N

({1, 2} × I t−1 × J t−1) → 
(I). (14.74)

In stage t , Player 2 does not know the state of nature and therefore the information available
to him in stage t is the sequence of actions up to that stage. It follows that a behavior
strategy of Player 2 is the function

σ2 :
⋃
t∈N

(I t−1 × J t−1) → 
(J ). (14.75)

We next define the uniform value of the game. In Chapter 13 we saw that in infinite
games payoff functions are not always defined for every pair of strategies (σ1, σ2). As
done there, we define the concept of uniform value without defining the payoff function.
The definition is analogous to the definition of the uniform equilibrium we gave in
Chapter 13 (Definition 13.28 on page 549), and it holds for every repeated game with
incomplete information. Denote by it and j t the actions chosen by the players in stage t .

Definition 14.28 A strategy σ ∗
1 of Player 1 guarantees the real number v1 if there exists

an integer T0 such that for every T ≥ T0 and every strategy σ2 ∈ B2,

Eσ ∗
1 ,σ2

[
1

T

T∑
t=1

as
it ,j t

]
≥ v1. (14.76)

A strategy σ ∗
2 of Player 2 guarantees the real number v2 if there exists an integer T0 such

that for every T ≥ T0 and every strategy σ1 ∈ B1,

Eσ1,σ
∗
2

[
1

T

T∑
t=1

as
it ,j t

]
≤ v2. (14.77)

A real number v is called the uniform value of the game G if for every ε > 0 Player 1 has
a strategy guaranteeing him v − ε and Player 2 has a strategy guaranteeing him v + ε.
A strategy σ ∗

1 of Player 1 guaranteeing v − ε for all ε > 0 is called an optimal strategy
of Player 1. An optimal strategy of Player 2 is defined similarly.

Remark 14.29 In Definition 14.28 we defined the uniform value when the sets of strategies
of the two players are B1 and B2. This concept can be defined when the sets of strategies
of the players are not necessarily B1 and B2 but subsets of them. �

As we will later show, the proof that Player 2 can guarantee v + ε is closely related to
the fact that a particular set in a repeated game with vector payoffs corresponding to G is
approachable by Player 2.

Remark 14.30 We emphasize that the state of nature is chosen only once, at the start of
the game, and does not change during the course of the play of the game. �
Remark 14.31 The assumption that the players cannot see the payoffs they receive in
every stage is intended to enable us to concentrate on the information directly revealed by
the actions chosen by the players, and to neutralize information about the state of nature
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obtained indirectly by way of the payoffs. In a more general model, the information given
to each player after each stage may be any item of information, and may include the
payoff given to the players in each stage. The formal definition of a more general model
of repeated games with incomplete information, and results pertaining to such a model,
can be found in Zamir [1992]. �

Remark 14.32 The definition of a repeated game with incomplete information for
Player 2 can be generalized to any number of states of nature, as follows. A (two-player
zero-sum) repeated game with incomplete information on one side is given by a finite set S
of states of nature, where each state of nature is associated with a (two-player zero-sum)
state game in strategic form Gs , in each of which Player 1’s action set is I , and Player 2’s
action set is J . A state of nature is chosen according to a distribution p ∈ 
(S), which
is common knowledge among the players. The chosen state of nature is made known
to Player 1, but not to Player 2. After the state of nature has been chosen and told to
Player 1, the players play the (finite or infinite) repeated game whose payoff function
corresponds to the chosen state of nature. At every stage t , the players know the actions
that have been chosen in the previous stages, but they do not know what payoffs they have
received in those stages. �

As the following theorem states, if the uniform value exists, then it equals the limit of
the values of the finitely repeated games, as the repetition length grows to infinity.

Theorem 14.33 Denote by vT the value in behavior strategies of the T -stage game �T ,
i.e., the two-player zero-sum game whose payoff function is

γ T (σ1, σ2) = Eσ1,σ2

[
1

T

T∑
t=1

as
it ,j t

]
. (14.78)

If the uniform value v exists, then v = limT→∞ vT .

Note that vT , the value of the game �T , exists for every T . Indeed, since the number
of pure strategies of every player in this game is finite, by the Minmax Theorem
(Theorem 5.11 on page 151) this game has a value in mixed strategies.

Proof: Let v be the uniform value of the game, and let ε > 0. Let σ ∗
1 and σ ∗

2 be strategies
for each player, respectively, and let T0 be a natural number such that for every T ≥ T0,
and for every pair of strategies (σ1, σ2), Equations (14.77) and (14.76) hold. By Equation
(14.77), for7 every T ≥ T0,

vT = max
σ1∈BT

1

min
σ2∈BT

2

γ T (σ1, σ2) (14.79)

≥ min
σ2∈BT

2

γ T (σ ∗
1 , σ2) ≥ v − ε. (14.80)

We similarly deduce from Equation (14.76) that vT ≤ v + ε for every T ≥ T0. Since these
inequalities hold for every ε > 0, one has limT→∞ vT = v, as claimed. �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 The set of behavior strategies of player i in the game �T is denoted by BT
i .
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Player 1

Player 2

B

T

RL

0

1
2

1
2

0

Figure 14.12 The matrix of average payoffs

Remark 14.34 In Chapter 13 on repeated games, we defined the concept of uniform
ε-equilibrium for finite games. By restricting this concept to two-player zero-sum games,
we defined the concept of uniform value defined in this section (see Exercise 13.45
on page 565). Recall that the value of the T -stage repeated game �T equals the
value of the one-stage (base) game for every T ∈ N (Exercise 13.8 on page 557), and
that the uniform value equals the value of the one-stage (base) game (Exercise 13.45
on page 565). In particular, Theorem 14.33 holds for repeated games with complete infor-
mation. Furthermore, in repeated games with complete information the uniform value
coincides with the value of the one-stage (base) game. As we will see shortly this does not
necessarily hold in repeated games with incomplete information. �

In the game described above, Player 1 has information that Player 2 lacks – knowledge
of the chosen state of nature. What is the “best” way for him to use this information?
We will first show that if Player 1 ignores the information he has regarding the chosen
state of nature, he cannot guarantee more than 1

4 , while if Player 2 ignores the information
revealed by the actions of Player 1, he cannot guarantee less than 1

2 .
Denote by B∗

1 the set of behavior strategies of Player 1 in the repeated game that do
not use the information he has regarding the state of nature, i.e., the mixed actions played
in each stage that are independent of s (and depend only on the actions of the players in
previous stages).

Proposition 14.35 The uniform value of the game with the sets of strategies B∗
1 and

B2 is 1
4 .

Proof: If Player 1 ignores his information on the state of nature, the players actually play
the repeated game with the average payoff matrices appearing in Figure 14.12.

Indeed, if Player 1 does not use the information in his possession on the state of
nature, the game is equivalent to the game in which the player does not know the state of
nature. In that game, the expected payoff in each stage is given by the matrix appearing in
Figure 14.12. The value in mixed strategies of the one-stage game, as well as the uniform
value of the repeated game, is 1

4 (verify!). �
As the following claim shows, if Player 2 does not use the information revealed by the

actions of Player 1, he cannot guarantee less than 1
2 . Denote by B∗

2 the set of strategies of
Player 2 in the repeated game that are independent of the history of the actions of Player 1.

Proposition 14.36 The uniform value of the game with sets of strategies B∗
1 and B2 is 1

2 .
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Proof: To show that the uniform value of the game is 1
2 , we will construct strategies for the

two players that guarantee this value. Consider first the following strategy σ ∗
2 of Player 2:

in each stage, play the mixed action [ 1
2 (L), 1

2 (R)]. For every strategy σ1 of Player 1, the
expected payoff in each stage is at most 1

2 , and therefore the strategy σ ∗
2 guarantees 1

2 for
Player 2.

Consider next the following strategy σ ∗
1 of Player 1: if s = 1, play T in every stage; if

s = 2, play B in every stage. The mixed action that Player 2 plays in stage t is independent
of the action played by Player 1 in the previous stages. Denote this mixed action by yt

(which may depend on the actions played by Player 2 in previous stages); this is the
probability of playing L in stage t . For every strategy σ2 of Player 2,

Eσ ∗
1 ,σ2

[
1

T

T∑
t=1

as
it ,j t

]
= Eσ ∗

1 ,σ2

[
1

T

T∑
t=1

(
1{s=1}yt + 1{s=2}(1 − yt )

)]
(14.81)

= P(s = 1)Eσ ∗
1 ,σ2

[
1

T

T∑
t=1

yt

]
+ P(s = 2)Eσ ∗

1 ,σ2

[
1

T
(1 − yt )

]
(14.82)

= 1
2 Eσ ∗

1 ,σ2

[
1
T

∑T
t=1 yt

]
+ 1

2 Eσ ∗
1 ,σ2

[
1
T

(1 − yt )
]

(14.83)

= Eσ ∗
1 ,σ2

[
1

T

T∑
t=1

1
2

]
= 1

2 . (14.84)

Since the strategy σ ∗
1 of Player 1 guarantees 1

2 , it guarantees 1
2 − ε for all ε > 0. Since the

strategy σ ∗
2 of Player 2 guarantees 1

2 , it guarantees 1
2 + ε for all ε > 0. It follows that the

uniform value of the game is indeed 1
2 . �

Can Player 1 guarantee more than 1
4 by using the information he has? If the game is

a one-stage game, the answer is affirmative: the strategy under which Player 1 plays T

if s = 1 and B if s = 2 guarantees him 1
2 (Exercise 14.26). Intuitively, it might seem

that in the repeated game, if the state of nature is s = 1, Player 1 would want to play T

more often, while if the state of nature is s = 2, he would want to play B more often.
But in the repeated game, this strategy is not necessarily a good one, because it reveals
the state of nature to Player 2: if Player 2 notices that Player 1 plays T more often, he
will ascribe greater probability to the event that the payoff matrix corresponds to s = 1
and therefore he will increase the probability that he will play R, while if he notices that
Player 1 plays B more often, he will increase the probability that he will play L. As the
following proposition shows, in the long run, even when he uses the information he has,
Player 1 cannot guarantee that the average payoff will be significantly higher than 1

4 . To
prove this proposition, we use tools we developed for approachable sets.

Proposition 14.37 The uniform value of the game G (with sets of strategies B1 and B2)
is 1

4 .

Proof: In Proposition 14.35, we saw that Player 1 can guarantee 1
4 . It remains to show

that Player 2 can guarantee 1
4 + ε for every ε > 0. To do so, consider the repeated game

with two-dimensional vector payoffs GV , where the sets of actions are I = {T , B} and
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B

T

RL

(0, 0)

(1, 0)

(0, 1)

(0, 0)

Figure 14.13 The matrix of vector payoffs in the game GV

F

C

0

1
4

1
4

1
0

1

Figure 14.14 The sets F and C of the example

J = {L, R}, and the two coordinates of the payoff represent the payoff in each of the two
states of nature (see Figure 14.13).

In this game, the set of possible payoffs is F = conv{(0, 0), (0, 1), (1, 0)} (see
Figure 14.14). Define a set C as follows:

C = [
0, 1

4

]2 = [
0, 1

4

]× [
0, 1

4

] = {
(x, y) : 0 ≤ x ≤ 1

4 , 0 ≤ y ≤ 1
4

}
. (14.85)

The proposition will be proved by proving the following two claims:

Claim 14.38 The set C is approachable by Player 2 in the repeated game GV .

Claim 14.39 If the set C is approachable by Player 2 in the repeated game GV , then the
uniform value of the game G is 1

4 .

We begin by proving the second claim.

Proof of Claim 14.39: Suppose that the set C is approachable by Player 2 in the game
GV , and denote by σ ∗

2 his strategy that approaches this set. Then for every ε > 0 there
exists T ∈ N such that for every strategy σ1 of Player 1 in the game GV :

Pσ1,σ
∗
2

(
d(gt , C) < ε, ∀t ≥ T

)
> 1 − ε. (14.86)
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Since C is the square [0, 1
4 ]2, if x is close to C, the coordinates x1 and x2 cannot be much

greater than 1
4 :

Pσ1,σ
∗
2

(
gt

1 < 1
4 + ε, ∀t ≥ T

)
> 1 − ε, (14.87)

Pσ1,σ
∗
2

(
gt

2 < 1
4 + ε, ∀t ≥ T

)
> 1 − ε. (14.88)

Since Player 2 does not know the state of nature, the strategy σ ∗
2 in GV is also a strategy

in the game G. Player 1, in contrast, knows the state of nature, and so his strategy σ1 in
G is essentially composed of two “sub-strategies,” each of which is a strategy in GV : the
strategy σ 1

1 that he plays if the state of nature is s = 1, and the strategy σ 2
1 that he plays if

the state of nature is s = 2.
Equations (14.87)–(14.88) hold for every strategy σ1 of Player 1, and in particular for

the strategies σ 1
1 and σ 2

1 . Inserting the strategy σ 1
1 in Equation (14.87) and the strategy σ 2

1
in Equation (14.88) yields

Pσ 1
1 ,σ ∗

2

(
gt

1 < 1
4 + ε, ∀t ≥ T

)
> 1 − ε, (14.89)

Pσ 2
1 ,σ ∗

2

(
gt

2 < 1
4 + ε, ∀t ≥ T

)
> 1 − ε. (14.90)

Equation (14.89) states that when s = 1, with probability close to 1, the average payoff
when Player 1 plays according to strategy σ 1

1 cannot be much more than 1
4 . Equation

(14.90) says the same is true when s = 2 for the strategy σ 2
1 . Equations (14.89)–(14.90)

imply that for every t ≥ T

Eσ1,σ
∗
2
[gt ] ≤ (1 − ε)

(
1
4 + ε

)+ ε ≤ 1
4 + 2ε. (14.91)

It follows that the strategy σ2 of Player 2 guarantees 1
4 + ε for all ε > 0, and therefore the

uniform value of the game is 1
4 . �

Proof of Claim 14.38: Recall that R2(q) is the set in which the expected payoffs are
located when Player 2 plays the mixed action [q(L), (1 − q)(R)] in each stage (see
Equation (14.24)). In the game GV ,

R2(q) = conv{(q, 0), (0, 1 − q)}. (14.92)

Figure 14.15 shows the set C and the sets R2(q) for five values of q.
We now check that C is a B-set for Player 2 in the game GV . Let x be a vector payoff in

F \ C. If 1
4 ≤ x1 ≤ 1 − x2, and 0 ≤ x2 ≤ 1

4 (the area labeled A1 in Figure 14.16(a)), the
point in C closest to x is y = ( 1

4 , x2), the hyperplane separating x from C passes through
this point, and perpendicular to the line interval xy is the line x1 = 1

4 , which separates x

from R2(0). If 0 ≤ x1 ≤ 1
4 and 1

4 ≤ x2 ≤ 1 − x1 (the area labeled A2 in Figure 14.16(b)),
the point in C closest to x is y = (x1,

1
4 ), the hyperplane separating x from C passes

through this point, and perpendicular to the line interval xy is the line x2 = 1
4 , which

separates x from R2(1).
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Figure 14.15 The set C and five of the sets R2(q)
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Figure 14.16 The set C is approachable by Player 2

If x1 ≥ 1
4 , x2 ≥ 1

4 , and x1 + x2 ≤ 1 (the area labeled A3 in Figure 14.16(c)), the point
C closest to x is y = ( 1

4 ,
1
4 ). The hyperplane l separating x from C passing through

this point and perpendicular to the line interval xy can be calculated using similar
triangles. In Figure 14.17, which is a more detailed view of Figure 14.16(c), we see
that the triangles xyz, yab, and dyc are similar triangles. Since the lengths of the
sides xz and yz are known (these lengths are x2 − 1

4 and x1 − 1
4 respectively), and since

the lengths of the sides by and cy are also known (they are both 1
4 ), one can calculate

the lengths of the sides ab and cd, deducing that the hyperplane l is the line pass-

ing through the points (0, w2) and (w1, 0), where w2 = 1
4 + 1

4

x2− 1
4

(
x1 − 1

4

)
and w1 =

1
4 + 1

4

x1− 1
4

(
x2 − 1

4

)
. Since a2 + b2 ≥ 2ab for every a, b ∈ R,

w1 + w2 = 1
2 + 1

4

(
x1− 1

4

)2
+
(
x2− 1

4

)2(
x1− 1

4

)2(
x2− 1

4

)2 ≥ 1
2 + 1

2 = 1. (14.93)
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4

(x 2 − 1
4 )

1
4

x2 − (x1 − 1
4 )
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w2

10
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1

z

a

b

dc

1
4

Figure 14.17 The hyperplane l separating x and R2(q)

Defining

q = w1

w1 + w2
= x2 − 1

4

x1 + x2 − 1
2

, (14.94)

we get that R2(q) is parallel to the line l (see Figure 14.16(c)); therefore the line l separates
R2(q) from x. In summary, we showed that C is indeed a B-set for Player 2. �

The proof of Proposition 14.37 is complete. �

Using the proof of the last claim, we can now describe an optimal strategy for Player 2:

� If gt ∈ C, play any action.
� If gt ∈ A1 play R.
� If gt ∈ A2 play L.
� If gt ∈ A3 play the mixed action [q(L), (1 − q)(R)], where q is defined in

Equation (14.94).

In the first case, the average payoff up to that stage of the game is not greater than 1
4 ,

whether s = 1 or s = 2, and so Player 2 can play any action. In the second case, if s = 1,
the average payoff is greater than 1

4 , while if s = 2, the payoff is not greater than 1
4 . It

follows that Player 2 needs to guarantee that the average payoff is reduced if s = 1, and
therefore must play R. The third case is analogous to the second case. In the fourth case,
the average payoff is greater than 1

4 , whether s = 1 or s = 2. In this case, Player 2 plays a
mixed action that guarantees that (in expectation) both coordinates go down. The greater
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the ratio gt
1

gt
2

is, the more the average payoff when s = 1 is greater than the average payoff
when s = 2; therefore the probability that Player 2 plays R grows. Note that this strategy
depends on the history only by way of the average payoff over the course of the game up
to that stage.

14.8 Application 2: Challenge the expert
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present a second application of the theory developed in this chapter,
this time to the dynamic process of decision making. Most of us seek the advice of
experts: statesmen and government leaders employ experts in many different fields: media
advisers, policy advisers, and legal advisers; investors listen to the advice of financial
advisers; the person-in-the-street listens to the weather forecast to decide what to wear
tomorrow, and where to go on a trip. It is sometimes the case that a decision maker has
several different advisers, and needs to decide whose advice to take: government leaders
often have multiple staffs working for them; banks employ many financial advisers, and
on different television channels one may see weather forecasters using different models
for weather prediction. A decision maker’s problems are not resolved if he has many
experts at his disposal – the problem has just been transformed: the problem now is not
which decision to take, but which expert to heed.

In this section we will consider the problem of dynamic decision making. By this, we
mean that in each stage, the decision maker needs to adopt the advice of one expert, out of
a group of experts, and then choose the action recommended by that expert. In each stage
the decision maker receives a payoff (= utility) that is determined by the action chosen,
and the “state of nature,” i.e., the environment in which the action is taken. The payoff to
an investor depends both on the specific investment chosen, and on the behavior of the
market; the payoff to a head of state depends on his or her actions, and on the actions of
other heads of state.

We further assume that it is unknown how the state of nature changes, or, alterna-
tively, that the way the state of nature changes is so complex that the cost or the time
investment required for computing it is vast. In addition, we suppose that the actions
chosen by the decision maker do not change the way the state of nature changes.
This is a reasonable assumption to make with respect to a person deciding what he
or she will wear based on the weather forecast, or a person deciding where to invest
$10,000, in accordance with advice received from a financial expert, but is not reason-
able for a head of state, whose decision may influence the decisions of other heads of
state.

Suppose that the goal of a decision maker is to be at least as good as each one of
the advisers. In other words, the decision maker is interested in ensuring that his aver-
age payoff is no less than the average payoff of a person who from the start picks
one of the advisers, and always listens to his or her advice. If this is possible, it
means that the decision maker’s performance is at least as good as that of the best
expert.
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14.8.1 The model
With the general presentation of the problem behind us, we turn our attention to the formal
definitions.

Definition 14.40 A decision problem with experts is given by:

� A finite set S of states of nature.
� A finite set A of actions.
� A payoff function u : A × S → R.
� A finite set E of experts.

The interpretation we give to this model is as follows. In every stage t ∈ N, the state of
nature st is one of the states in S, and each expert e ∈ E recommends8 an action at

e ∈ A.
The decision maker, who does not know what is the true state of nature, must choose one
expert from E. If the decision maker chooses expert e, and the state of nature is s ∈ S, the
decision maker receives the payoff u(at

e, s
t ). We assume that the decision maker learns

what the state of nature is after choosing the expert whose recommendation he followed.9

We do not assume anything regarding the information that the experts have: it is possible
that they have full or partial information about the states of nature (st )t∈N, they may receive
information from time to time about future states of nature, and some may have full or
partial information about the advice given by the other experts.

For every distribution α ∈ 
(A) over the set of actions, define

U (α, s) :=
∑
a∈A

α(a)u(a, s). (14.95)

This is the expected payoff if the state of nature is s and the action that is chosen by the
probability distribution is α.

The information that the decision maker has in stage t includes the states of nature
in the past (in stages 1, 2, . . . , t − 1), the expert chosen in each past stage, and the
recommendations of the experts in each past stage. The set of all possible histories in
stage t is

H (t) := (S × E × A|E|)t−1. (14.96)

Denote a history in H (t) by ht = (s1, e1, a1, . . . , st−1, et−1, at−1), where aj = (aj
e )e∈E is

the vector composed of the recommendations of the experts in stage j .

Definition 14.41 A decision maker’s (behavior) strategy in a decision problem with
experts is a function

σ :
∞⋃
t=1

H (t) → 
(E). (14.97)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 For simplicity, we assume that each expert recommends an action, rather than a lottery over the actions. The results
presented in this section hold if we assume that each expert recommends a mixed action in each stage; the only
difference is that the proofs become more complex.

9 For the analysis we present here, all we need to assume is that the decision maker knows the payoff received in
each stage, and what payoff he would have received if he had followed the recommendation of each other expert.
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In other words, in every stage, the decision maker needs to choose, based on his
past choices and the performances of the experts in the past, one expert, and to imple-
ment the action recommended by that expert. The decision maker may choose an
expert in each stage by lottery. If the decision maker adopts strategy σ , after history
ht = (s1, e1, a1, . . . , st−1, et−1, at−1) he chooses one of the experts in E using the proba-
bility distribution σ (ht ): σ (e; ht ) is the probability that expert e is chosen. Since in stage
t expert e recommends the action at

e, the average payoff that the decision maker receives
up to stage T is

1

T

T∑
t=1

∑
e∈E

σ (e; ht )u
(
at

e, s
t
) = ∑

e∈E

(
1

T

T∑
t=1

σ (e; ht )u
(
at

e, s
t
))

, (14.98)

where st is the state of nature in stage t , and ht is the history up to stage t . If the decision
maker would follow the recommendation of a particular expert e, his average payoff up
to stage T would be

1

T

T∑
t=1

u
(
at

e, s
t
)
. (14.99)

We are using here the assumption that the action implemented by the decision maker does
not affect the way that the state of nature changes, and therefore if (st )t∈N is the sequence
of states of nature that obtain when the decision maker implements strategy σ , that same
sequence would obtain if he were always to choose expert e. The decision maker’s goal is
to attain a performance at least as good as the performance of any one of the experts.

Definition 14.42 A decision maker’s strategy σ is a no-regret strategy if for each expert
e ∈ E, and each sequence (s1, s2, . . .) of states of nature,

Pσ

(
lim inf
T→∞

(
1

T

T∑
t=1

u
(
at

et , s
t
)− 1

T

T∑
t=1

u
(
at

e, s
t
)) ≥ 0

)
= 1. (14.100)

In words, a strategy is a no-regret strategy if, with probability 1, the decision maker does
not regret the way he played: his performance is at least as good as the hypothetical
performance of any expert, independently of the way the state of nature changes. If a
decision maker has a no-regret strategy, he can pride himself in making decisions at least
as good as each expert.

Remark 14.43 Although the model we have presented here is a single-player model,
where the single player is the decision maker, it is convenient to think of this situation as
including an additional player, nature, who chooses the state of nature, and we imagine
that nature seeks to reduce the decision maker’s payoff as much as possible. By doing so,
we have defined a two-player zero-sum repeated game. �

Does a no-regret strategy exist? If so, can we construct it, or must we content ourselves
with proving its theoretical existence, without finding a no-regret strategy in a practical
way? Using the theory of approachability developed in this chapter, we will prove the
following theorem.
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Theorem 14.44 The decision maker has a no-regret strategy.

In addition, we will construct this strategy in a way that can easily be programmed into a
computer.

14.8.2 Existence of a no-regret strategy: a special case
Recall that for every finite set X the number of elements in X is denoted by |X|. We
first present a proof in the simple case where there are exactly |A| experts. Each expert
is identified with the action that he recommends in each stage. In other words, for every
action a ∈ A there is an expert e such that at

e = a in every stage t . We will later show
how the proof needs to be changed for the general case. Since the recommendations of
the experts are fixed, we can define a strategy to be a function associating for each t ∈ N,
each sequence of length t − 1 of actions chosen by the decision maker in the past, and
each sequence of length t − 1 of states of nature, with a probability distribution over the
set of actions.

Define an auxiliary game with vector payoffs GV as follows. In the auxiliary game,
Player 1 represents the decision maker whose set of actions is A, and Player 2 represents
nature, whose set of actions is S. The payoffs are |A|-dimensional and the payoff function
w is defined as follows: the vector payoff w(a, s) = (wb(a, s))b∈A that obtains when
Player 1 implements action a and Player 2 implements s is given by

wb(a, s) := u(a, s) − u(b, s). (14.101)

This is the difference between the payoff received by the decision maker if he chooses
action a (based on the recommendation of expert a, who always recommends action
a) and the payoff received by the decision maker if he chooses action b (based on the
recommendation of expert b, who always recommends action b).

A strategy for Player 1 in this auxiliary game with vector payoffs is a function

σ̂ :
∞⋃
t=1

(A × S)t−1 → 
(A). (14.102)

In words, a strategy associates every finite sequence of actions chosen by Player 1 and
states of nature chosen by Player 2 with a mixed action. As previously noted, σ̂ is a
strategy in the decision problem with experts, in the special case.

Denote by

C = {x ∈ RA : xi ≥ 0 ∀i ∈ A} (14.103)

the nonnegative orthant in RA. To prove that there exists a no-regret strategy, and to
describe such a strategy in detail, we will prove the following theorems.

Theorem 14.45 The set C is approachable by Player 1 in the auxiliary game with vector
payoffs GV .

Theorem 14.46 Every strategy σ of Player 1 that approaches the set C in GV is a
no-regret strategy for the decision maker in the decision problem with experts.
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We will first show that these two theorems prove Theorem 14.44. We will then proceed
to prove them.

By Theorem 14.45, the set C is approachable by Player 1 in the game GV by a strategy
in the auxiliary game that approaches C. By Theorem 14.46, the strategy σ is a no-regret
strategy for the decision maker in the decision problem with experts, and Theorem 14.44
is proved.

Proof of Theorem14.45: For every π ∈ RA define a two-player zero-sum one-stage game
Ĝπ in which the set of pure strategies of Player 1 is A, the set of pure strategies of Player
2 is S, and the payoff function Ŵπ is defined by

Ŵπ = 〈π, w(a, s)〉. (14.104)

We will show that for every π ∈ RA,

val(Ĝπ ) ≥ inf
x∈C

〈π, x〉, (14.105)

and Theorem 14.45 then follows from this equation and Corollary 14.26 on page 588,
because the set C is convex.

If π = �0, both sides of Equation (14.105) are zero, and the inequality holds. If there
exists an index a such that πa < 0, then the right-hand side of Equation (14.105) is −∞.
To see this, for each k ∈ N denote by xk the vector (0, . . . , 0, k, 0, . . . , 0), all of whose
coordinates are 0, except for coordinate a, which equals k. Since xk ∈ C,

inf
x∈C

〈π, x〉 ≤ inf
k∈N

〈π, xk〉 = −∞. (14.106)

In contrast, the left-hand side of Equation (14.105) is finite, being the value of a two-
player zero-sum game. The inequality in Equation (14.105) therefore holds in this case.

It remains to check the case where all the coordinates of π are nonnegative, and at least
one of them is strictly positive. Since both sides of Equation (14.105) are linear in π (i.e.,
val(Ĝλπ ) = λ val(Ĝπ ) and 〈λπ, x〉 = λ〈π, x〉 for every λ > 0), by multiplying both sides
of Equation (14.105) by λ = 1∑

a∈A πa
, which is a positive value, we may assume without

loss of generality that
∑

a∈A πa = 1, and then we may interpret π as a mixed strategy of
Player 1. We will show that in this case

val(Ĝπ ) ≥ 0 ≥ inf
x∈R

〈π, x〉. (14.107)

The right-hand inequality in Equation (14.107) holds, because �0 ∈ C, and therefore

inf
x∈C

〈π, x〉 ≤ 〈π, �0〉 = 0. (14.108)

We next turn our attention to the proof of the left-hand inequality of Equation (14.107).
Denote by 1s ∈ RS the column vector in which the coordinate s equals 1, and all the other
coordinates equal 0. For each s ∈ S the vector 1s corresponds to the pure strategy s of
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Player 2. We now show that Ŵπ (π, 1s) ≥ 0 for each s ∈ S.

Ŵπ (π, 1s) =
∑
e∈E

π(e)
∑
e′∈E

π(e′)(u(e, s) − u(e′, s)) (14.109)

=
∑
e∈E

π(e)

(
u(e, s) −

∑
e′∈E

π(e′)u(e′, s)

)
(14.110)

=
∑
e∈E

π(e)u(e, s) −
∑
e′∈E

π(e′)u(e′, s) = 0. (14.111)

It follows that Ŵπ (π, y) = 0 for every mixed action y ∈ 
(S). In other words, the mixed
strategy π guarantees Player 1 the payoff 0; therefore val(Ĝπ ) ≥ 0, which is the left-hand
inequality in Equation (14.105). �

Proof of Theorem 14.46: Let σ be a strategy of Player 1 in the auxiliary game GV that
approaches C. Then for every ε > 0, there exists T0 ∈ N such that for every strategy τ of
Player 2 in GV ,

Pσ,τ

(
d

(
1

T

T∑
t=1

w(at , st ), C

)
≤ ε ∀T ≥ T0

)
> 1 − ε. (14.112)

This equation implies that

Pσ,τ

(
lim

T→∞
d

(
1

T

T∑
t=1

w(at , st ), C

)
= 0

)
= 1. (14.113)

Since wb(a, s) = u(a, s) − u(b, s), and since C is the nonnegative orthant, we deduce that
for every b ∈ A,

Pσ,τ

(
lim inf
T→∞

(
1

T

T∑
t=1

u(at , st ) − 1

T

T∑
t=1

u(b, st )

)
≥ 0

)
= 1. (14.114)

This equation holds for every strategy τ of Player 2, and in particular for every sequence
of states (s1, s2, . . .) (constituting a pure strategy) in which Player 2 plays the action st in
stage t . This states precisely that σ is a no-regret strategy. �

14.8.3 Existence of a no-regret strategy: the general case
We now show how the proof of Theorem 14.44 needs to be changed when we do not
assume that E = A and that for every action a ∈ A there exists an expert recommending
that action.

Two changes are implemented in the definition of the game GV . First of all, since the
set of experts is E, the set of actions of Player 1 is E (and not A). Secondly, since the
recommendations of the experts change from stage to stage, the payoff function W is also
dependent on the stage t . For every e ∈ E and s ∈ S, and every stage t , the vector wt (e, s)
is in RE , and is defined by

Wt
e′ (e, s) = u

(
at

e, s
)− u

(
at

e′, s
)
. (14.115)
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The rest of the proof of Theorem 14.45 is similar to the proof above, with the only
difference being that now π is a vector in RE , and when πe ≥ 0 for all e ∈ E and∑

e∈E πe = 1, we interpret the vector π as a mixed action of Player 1 (Exercise 14.32).
The proof of Theorem 14.46 needs to be adapted to the case in which the payoffs change
during the game (Exercise 14.25).

14.9 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this chapter, we described a model of two-player repeated games with vector payoffs.
The central concept of the model is that of a set approachable by a player. We gave
a geometric sufficient condition for a closed set to be approachable: every closed set
containing a B-set for a player is approachable by him. Lehrer [2003] generalizes Black-
well’s Theorem (Theorem 14.14 on page 579) to the case in which the payoffs are in an
infinite-dimensional space rather than an m-dimensional space.

Hou [1971] proves the following theorem:

Theorem 14.47 A closed set C is approachable by player k if and only if it contains a
B-set for player k.

Another proof of the same theorem, arrived at independently, appears in Spinat [2002].
Since the set C is excludable by a player if and only if there exists δ > 0 such that the
set {x ∈ R : d(x, C) ≥ δ} is approachable by him, Theorems 14.14 and 14.47 provide a
geometric characterization of excludable sets.

Every closed and convex set is either approachable by one of the players, or excludable
by the other player (Theorem 14.25, page 588). We saw an example of a set C that is
neither approachable by Player 1 nor excludable by Player 2 (this set is necessarily not
convex). In that example, although the set C is not approachable by Player 1, for every t

sufficiently large, Player 2 has a strategy guaranteeing that the average payoff in stage t is
close to C. A set satisfying this property is called “weakly approachable” by Player 1.

Definition 14.48 A set S is weakly approachable by player k if for every ε > 0 there
exists T ∈ N such that for every t ≥ T there exists a strategy σk of player k (that depends
on t) satisfying the property that for every strategy σ−k of the other player

Eσk,σ−k
(d(gt , C)) ≤ ε. (14.116)

A set S is weakly excludable by player k if there exists δ > 0 such that the set {x ∈
Rm : d(x, S) ≥ δ} is weakly approachable by player k.

The difference between the concept of “approachability” and the concept of “weak
approachability” is subtle: the concept of “approachability” requires the existence of a
strategy guaranteeing that the average payoff up to stage t is close to C for all t ≥ T

(i.e., the same strategy is good for all stages t ≥ T ), while in the concept of “weak
approachability” the strategy can depend on t (and it may be the case that there is no
strategy that is good for all t ≥ T , if the set is not approachable).

The definitions imply that every set approachable by one of the players is weakly
approachable by that player, and every set excludable by one of the players is
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weakly excludable by that player. Vieille [1992] shows that every set is either weakly
approachable by Player 1 or weakly excludable by Player 2. Compare this to Theorem
14.25 (page 588), with respect to the concepts of approachable and excludable sets, where
a similar statement holds only for closed and convex sets.

In Section 14.7 (page 590), we used repeated games with vector payoffs to analyze a
repeated game with incomplete information on one side. A similar analysis for general
two-player zero-sum games with incomplete information for Player 2 and a finite set
of states of nature is conducted by Aumann and Maschler [1995], who use repeated
games with vector payoffs to show that the uniform value v(p) of a repeated game with
incomplete information for Player 2 is the smallest concave function that is greater than or
equal to u(p), where u(p) is the value of the one-stage game in which the state of nature
is chosen by the distribution p, and Player 1 does not make use of the information he has
regarding the state of nature (equivalently, this is the game in which neither player knows
the true state of nature). They also show that a strategy guaranteeing Player 2 the payoff
v(p) + ε is the strategy that approaches a proper set in an auxiliary repeated game with
vector payoffs. They also construct a simple strategy for Player 1, guaranteeing him v(p)
(Exercise 14.29).

A geometric characterization of equilibria in two-player repeated games with incom-
plete information on one side that are not zero-sum appears in Hart [1986] (see also
Aumann and Hart [1986]), and the existence of equilibria in these games is proved by
Sorin [1983] for games with two states of nature, and by Simon, Spież, and Toruńczyk
[1995], for games with an arbitrary number of states of nature. The existence of the value
and equilibria in games with different information structures is studied in Kohlberg and
Zamir [1974], Forges [1982], and Neyman and Sorin [1997, 1998], among others.

The first study of no-regret strategies was conducted by Hannan [1957]. The connection
between no-regret strategies and the concept of approachable sets was first made by Hart
and Mas-Colell [2000]. Several studies, including Foster and Vohra [1997] and Fudenberg
and Levine [1999], define no-regret in a stronger form than the one presented here.
Rustichini [1999], Lugosi, Mannor, and Stoltz [2007], and Lehrer and Solan [2007]
studied no-regret strategies under which the decision maker does not know the true state
of nature, but receives information that depends on the state of nature and the chosen
action. No-regret strategies and their applications are covered in detail in Cesa-Bianchi
and Lugosi [2006].

A characterization of approachable sets and excludable sets, where one of the players
is restricted to strategies with finite memories, is given by Lehrer and Solan [2006, 2008]
(such strategies are mentioned in Exercise 13.38, on page 563).

14.10 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A definition equivalent to that of a B-set, for convex sets, is given in Hart and Mas-Colell
[2000].

Exercise 14.23 is based on Lehrer [2002], who calls the condition appearing there “the
principle of approachability.” Exercise 14.28 is based on an example in Chapter I.3 in
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Aumann and Maschler [1995], and Exercise 14.29 is based on Example IV .4.1 in that
book. Exercise 14.30 is based on Zamir [1992]. Exercise 14.36 is based on Lehrer and
Solan [2007].

14.11 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

14.1 Let (X, d) be a metric space and let C be a subset of X. Prove that for each
x, y ∈ X,

d(x, C) ≤ d(x, y) + d(y, C). (14.117)

14.2 Prove Markov’s inequality: for every nonnegative random variable X, and
every c > 0,

P(X ≥ c) ≤ E(X)

c
. (14.118)

14.3 Describe the following situation as a repeated game with vector payoffs, where
Player 1 is M. Goriot, and Player 2 represents his daughters. At the start of every
month, Anastasia and Delphine decide how to relate to their father, M. Goriot,
that month: will they ignore his existence or pay him a visit now and again? M.
Goriot, for his part, decides whether to give his daughters a generous, or a stingy,
monthly allowance. If M. Goriot decides to be generous, he gives Anastasia 10
francs at the end of the month, and Delphine 12 francs, if his daughters have not
visited him that month; and he gives Anastasia 18 francs at the end of the month,
and Delphine 16 francs, if they have visited him. If M. Goriot decides to be stingy,
he gives Anastasia 3 francs at the end of the month, and Delphine 2 francs, if his
daughters have not visited him that month; and he gives Anastasia 5 francs at the
end of the month, and Delphine 8 francs, if they have visited him.

14.4 Prove the following two claims:

(a) If strategy σk approaches a set C for player k, then it approaches the closure of
C for that player.

(b) If strategy σk excludes a set C for player k, then it excludes the closure of C

for that player.

14.5 Prove that the following two claims hold for any closed set C ⊆ Rm (recall that M

is the maximal payoff of the game, in absolute value):

(a) C is approachable by a player if and only if the set {x ∈ C : ‖x‖ ≤ M} is
approachable by the other player.

(b) C is excludable by a player if and only if the set {x ∈ C : ‖x‖ ≤ M} is exclud-
able by the player.

(c) Show that if C is not closed, item (a) above does not necessarily hold.
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14.6 Prove the following claims:

(a) If strategy σk approaches a set C for player k, then it approaches every superset
of C for that player.

(b) If strategy σk excludes a set C for player k, then it excludes every subset of C

for that player.

14.7 Prove Theorem 14.8 on page 575: a set cannot be both approachable by one player
and excludable by the other player.

14.8 In this exercise we will prove that the set C3 defined in Example 14.4, page 574
(see Figure 14.4) is approachable by Player 1, using the strategy described there.

(a) Prove that if gt−1 is above the diagonal x1 + x2 = 1, then d(gt , �0) ≤
d(gt−1, �0) − 1

2t
.

(b) Prove that if gt−1 is under the diagonal x1 + x2 = 1, then d(gt , C2) ≤
(1 − 1

2t
)d(gt−1, C2).

(c) Using the fact that the series
∑∞

t=1
1
t

diverges, and that the sequence { 1
t
}

converges to 0, deduce that limt→∞ d(gt , C3) = 0.

14.9 For each of the following sentences, find an example in which the claim of the
sentence obtains:

(a) The sets C1 and C2 are approachable by Player 1, but the set C1 ∩ C2 is
excludable by Player 2.

(b) The set C1 is approachable by Player 1, the set C2 is excludable by Player 2,
and the set C1 \ C2 := C1 ∩ (C2)c is excludable by Player 2.

(c) The sets C1 and C2 are excludable by Player 2, but the set C1 ∪ C2 is approach-
able by Player 1.

14.10 Consider the following two-player game, with payoffs in R2:

Player 1

Player 2

B

T

RL

(2, 2)

(−1, 1)

(−1, −1)

(1, −1)

(a) Draw the sets R1(p) and R2(q), for each p and q.
(b) Prove that the following two sets are approachable by Player 1:

C1 = [(1,−1), (−1, 1)], (14.119)

C2 = [(0, 0), (2, 2)] ∪ [(0, 0), (1,−1)]. (14.120)



610 Repeated games with vector payoffs

(c) Prove that the following three sets are not approachable by Player 1:

C3 = [(−1, 1), (2, 2)], (14.121)

C4 = [(0, 0), (−1, 1)] ∪ [(0, 0), (−1,−1)], (14.122)

C5 = {(
x, 1

2

)
: −∞ < x < ∞}

. (14.123)

14.11 Let C1 be a convex set and let C2 be a convex set containing C1. Prove that if C1

is a B-set for a certain player, then C2 is also a B-set for that player.

14.12 In this exercise, we will show that Exercise 14.11 does not hold without
the condition that C1 and C2 are convex sets. Consider the game presented in
Exercise 14.10.

(a) Prove that the set C1 = [(0, 0), (2, 2)] ∪ [(0, 0), (1,−1)] is a B-set for Player 1.
(b) Prove that for ε > 0 sufficiently small, the set Cε, which is the union of C1

with the triangle whose vertices are (0, 0), (ε, ε), and (ε,−ε), is not a B-set for
Player 1.

14.13 Answer the following questions for each one of the games below, whose payoffs
are in R2.

(a) Draw the sets R1(p) and R2(q), for every p and q.
(b) Find four B-sets for Player 1.
(c) Find four B-sets for Player 2.

Player 1

Player 2

B

T

RL

(2, −1)

(0, 1)

(1, 1)

(0, 4)

Game A

Player 1

Player 2

B

T

RL

(3, 1)

(0, 0)

(1, 1)

(2, 2)

Game B

14.14 Answer the following questions for the game below, whose payoffs are in R2.

Player 1

Player 2

B

T

RL

(0, 2)

(1, 0)

(3, 1)

(0, 4)

(a) Draw the sets R1(p) and R2(q), for every p and q.
(b) Which of the following sets is a B-set for Player 1, which one is a B-set for

Player 2, and which one is neither? Justify your answers.
� C1 = [(1, 0), (0, 4)].
� C2 = [(0, 4), ( 6

11 , 20
11 )] ∪ [(0, 2), ( 6

11 , 20
11 )].



611 14.11 Exercises

� C3 = [(3, 1), ( 6
11 , 20

11 )] ∪ [(1, 1), ( 6
11 , 20

11 )].
� C4 = {( 6

11 , 20
11 )}.

14.15 Theorem 14.14 (on page 579) states that every B-set for a player is also an
approachable set for that player, and Theorem 14.47 (page 606) states that every
approachable set for a player contains a B-set for that player. In this exercise, we
show that an approachable set for a player may not be a B-set for that player.

Consider the game appearing in Example 14.4 (page 574).

(a) Prove that the set C, which is the union of two intervals, [(0, 0), ( 1
2 , 0)] and

[( 1
2 , 0), (1, 1

2 )] (see the accompanying figure), is not a B-set for Player 1.
(b) Find a B-set for Player 1 contained in C, and deduce that C is indeed an

approachable set for Player 1. Prove that the set that you have found is a B-set
for Player 1.

(0, 0)

(1, 1)

(1, 0)

C

14.16 In this exercise we will prove von Neumann’s Theorem (Theorem 5.11 on
page 151) using results proved in this chapter. Let � = (N, S1, S2, u) be a two-
player zero-sum game. Denote by v1 = maxσ1∈
(S1) minσ2∈
(S2) U1(σ1, σ2) (respec-
tively v1 = minσ2∈
(S2) maxσ1∈
(S1) U1(σ1, σ2)) the maxmin (respectively minmax)
value in mixed strategies. Consider the game to be a game with one-dimensional
vector payoffs, and define the sets C = [v1,∞) and D = (−∞, v1].

(a) Prove (without using von Neumann’s Theorem) that C is approachable by
Player 1.

(b) Prove (without using von Neumann’s Theorem) that D is approachable by
Player 2.

(c) Using the fact that v1 ≥ v1 (Exercise 4.34 on page 137), deduce that v1 = v1.

14.17 Let (Yi)∞i=1 be a sequence of random variables, Yi ∈ [0, 1] for every i ∈ N . Let
(Xi)∞i=1 be a sequence of independent random variables, with Bernoulli distribution
with parameter p, where p ∈ (0, 1). In other words, P(Xi = 1) = p, and P(Xi =
0) = 1 − p.

(a) Prove that10

P

(
lim

n→∞

(
1

n

n∑
i=1

Yi −
∑

{i : Xi=1} Yi

|{i : Xi = 1}|

)
= 0

)
= 1. (14.124)

In words, for n sufficiently large, the average of the first n elements in the
sequence (Yi)∞i=1 is close to the average of independently chosen elements:
every element is chosen with probability p.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 Recall that for every finite set X we denote by |X| the number of elements it contains.
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(b) Prove that Equation (14.124) holds, even when Yi depends on X1, X2, . . . , Xi−1

(but is independent of (Xj )j≥i) for each i ∈ {1, 2, . . . , n}.
Guidance: Consider the following game with vector payoffs in R4:

Player 2

Player 1
0

1

01

(0, 0, 1, 0)

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

Interpret Yn as the mixed action of Player 2 in stage n, and Xn as the pure action
of Player 1 in stage n. Prove that the strategy of Player 1, under which he plays
action 1 with probability p, and action 0 with probability 1 − p (independently of
previous choices) in each stage, approaches the set

C := {(yp, (1 − y)p, y(1 − p), (1 − y)(1 − p)) : 0 ≤ y ≤ 1} (14.125)

= {y(p, 0, 1 − p, 0) + (1 − y)(0, p, 0, 1 − p) : 0 ≤ y ≤ 1}. (14.126)

Prove that the fact that C is approachable by Player 1 using the above-described
strategy implies Equation (14.124) (in item (a)). Deduce the claim in item (b) from
this.

14.18 Prove that Blackwell’s Theorem (Theorem 14.14 on page 579) obtains even when
for every i ∈ I and j ∈ J , the payoff is a random variable X(i, j ) taking values
in Rm with expectation u(i, j ), and Player 1 observes, after every stage t , the value
of X(it , j t ) and the action j t of Player 2.

14.19 State the analogous corollary to Corollary 14.26 on page 588 for Player 2. Justify
your answer.

14.20 Prove that a compact and convex set C ⊆ Rm is approachable by a player if and
only if C ∩ H2(q) �= ∅ for every q ∈ 
(J ).

14.21 Prove Corollary 14.26 for closed and convex sets that are not compact: a compact
set C is approachable by Player 1 if and only if

val(Gα) ≥ inf
x∈C

〈α, x〉, ∀α ∈ Rm. (14.127)

14.22 Consider the following two-player game with payoffs in R2:

Player 1

Player 2

B

T

RL

(1, 1)

(0, 1)

(0, 0)

(1, 0)
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(a) Write down the payoff function Uπ in the game Gπ for every π = (π1, π2) ∈ R2

(for the definition of Uπ see Equation (14.68) on page 588).
(b) Draw the graph of the function val(Gπ ). That is, on the two-dimensional plane,

where the x axis is identified with π1, and the y axis is identified with π2, draw
val(Gπ1,π2 ) at each point.

(c) For the following sets C, compute the value of minx∈C〈π, x〉 as a function of
π , and determine which of them are approachable by Player 1.
(i) C1 = {( 1

2 , 1
2 )}.

(ii) C2 = [(0, 1), (1, 0)].
(iii) C3 = [(0, 1), (0, 0)].
(iv) C4 is the triangle whose vertices are (1, 1), (1, 0), and ( 1

2 , 1
2 ).

(v) C5 is the parallelogram whose vertices are ( 1
2 , 1), ( 1

4 , 1), ( 1
2 , 0), and ( 3

4 , 0).

14.23 The principle of approachability In this exercise, we will present the geometric
principle behind Blackwell’s Theorem. Let C ⊂ Rm be a compact and convex set,
and let (xt )t∈N be a sequence of vectors in Rm. Denote by xt = 1

t

∑t
j=1 xj the

average of the first t elements in the sequence (xt )t∈N and denote by y(xt , C) the
point in C that is closest to xt . Assume that for each t , the following inequality
holds:

〈xt − y(xt , C), xt+1 − y(xt , C)〉 ≤ 0, ∀t ∈ N. (14.128)

(a) Prove that if xt �∈ C, then Equation (14.128) holds if and only if the hyperplane
tangent to C at y(xt , C) separates xt+1 from xt .

(b) Prove that limt→∞ d(xt , y(xt , C)) = 0: the distance of the average xt from C

converges to 0.
(c) Explain why this exercise generalizes Blackwell’s Theorem for compact and

convex sets.

Guidance: See the last part of the proof of Lemma 14.15. For item (c) substitute
xt = u(it , j t ).

14.24 Let C be a compact and convex set in Rm. Let (xt )∞t=1 be a sequence of points in C

satisfying

〈xt , xt+1〉 ≤ 〈xt , z〉, ∀z ∈ C. (14.129)

Prove that limt→∞ d(xt , argminz∈S〈z, z〉) = 0: the sequence of averages (xt )∞t=1
converges to the point minimizing 〈z, z〉 in C.

Guidance: Show, using the convexity of C, that the set argminz∈C〈z, z〉 contains a
single point y. This is the point in C closest to the origin. Apply the principle of
approachability (Exercise 14.23) to the set argminz∈C〈z, z〉.

14.25 Let M > 0. For every k ∈ N, let u(k) : I × J → [−M, M]m be a vector payoff
function, and let G(k) be the repeated game whose payoff function is u(k). Let Ĝ

be the game in which the payoffs change from one stage to another: the payoffs in
stage k are given by the function u(k). Answer the following questions:
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(a) Let C ⊆ Rm be a convex and closed set. Prove that if for every k ∈ N the set
C is a B-set for Player 1 in G(k), then C is approachable by Player 1 in the
game Ĝ.

(b) Show by example that the result in the previous item does not necessarily hold
if C is not convex.

14.26 Consider the game described in Section 14.7 (page 590).

(a) Prove that the value of the one-stage game is 1
2 .

(b) Prove the value of the two-stage game is 3
8 .

(c) Denote by vT the value of the T -stage repeated game. Prove that
limT→∞ vT = 1

4 .

Guidance: For item (c), use the fact that the uniform value of the game
(Definition 14.28 on page 592) is 1

4 .

14.27 This exercise presents a generalization of the repeated game with incomplete
information for Player 2 in Section 14.7 (page 590) to the case where the state
of nature s is chosen by a probability distribution: P(s = 1) = p and P(s = 2) =
1 − p, where p ∈ [0, 1]. Denote by v(p) the uniform value of the game. We will
prove that v(p) = p(1 − p) for every p ∈ [0, 1].

(a) Prove that v(0) = v(1) = 0.
(b) Prove that Player 1, knowing s, can guarantee p(1 − p) by not using his

information, and playing the same mixed action in every stage. What mixed
action will he choose?

(c) Define C := conv{(0, 0), (1−p
2 , 0), (0, p

2 ), ( 1−p
2 , p

2 )}. Prove that if C is
approachable by Player 2, then v(p) ≤ p(1 − p).

(d) Prove that C is approachable by Player 2.
(e) Deduce that v(p) = p(1 − p) for every p ∈ [0, 1].
(f) For every ε > 0, find a strategy for Player 2 that guarantees p(1 − p) + ε.

14.28 In this exercise, we present an example of a repeated game with incomplete infor-
mation for Player 2, in which, under the optimal strategy, Player 1 reveals all
the information in his possession. Consider the repeated game with incomplete
information, as defined in Section 14.7 (page 590), with the following state games:

Player 1

Player 2

B

T

RL

0

−1

0

0

The state game s = 1

Player 1

Player 2

B

T

RL

0

0

−1

0

The state game s = 2

The state of nature is chosen using the distribution: P(s = 1) = p and P(s = 2) =
1 − p, where 0 ≤ p ≤ 1.
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(a) Denote by w(p) the value of the game in which Player 1 is restricted to playing
the strategies in B∗

1; in other words, he does not make use of his information
regarding the state of nature. Prove that w(p) = −p(1 − p).

(b) For each player, find a strategy guaranteeing him 0 in the repeated game.
Deduce that the uniform value of the game is v(p) = 0, for every p ∈ [0, 1],
and explain how Player 1 uses the information in his possession.

14.29 Repeat Exercise 14.28, using the following payoff functions:

Player 1

Player 2

B

T

RL

0

2

1

0

The state game s = 1

Player 1

Player 2

B

T

RL

0

1

2

0

The state game s = 2

(a) Prove that w(p) = (2−p)(1+p)
3 .

(b) Write out the corresponding repeated game with vector payoffs GV .
(c) Sketch, in the plane, the sets F and R2(q) for q ∈ [0, 1].
(d) Prove that for all p ∈ [0, 1], the set

C : = conv

{
(0, 0) ,

(
0,

p2 + 2

3

)
,(

p2 − 2p + 3

3
, 0

)
,

(
p2 − 2p + 3

3
,
p2 + 2

3

)}
(14.130)

is a B-set for Player 2 in the game GV .
(e) What is v(p), the uniform value of the repeated game, for every p ∈ [0, 1]?

Justify your answer.

Guidance: To prove that C is a B-set for Player 2 in the game GV , divide the points
in F into three sets: A1 := {x ∈ F : x1 ≤ p2−2p+3

3 }, A2 := {x ∈ F : x2 ≤ p2+2
3 },

and A3 := F \ (A1 ∪ A2). The q corresponding to x ∈ A1 in the definition of the
B-set (of Player 2) is q = p2+2

3 ; the q corresponding to x ∈ A2 in the definition of

the B-set (of Player 2) is q = p2−2p+3
3 . For x ∈ A3, compute the supporting line

of C at the point (p2−2p+3
3 , p2+2

3 ) that is the perpendicular to the line connecting x

to that point, and show that there is a q such that this supporting line separates x

from R2(q).

14.30 In this exercise, we present an example of a repeated game with incomplete infor-
mation for Player 2 in which, under the optimal strategy, Player 1 reveals only some
of the information in his possession. Consider the repeated game with incomplete
information for Player 2, where Player 1 has two actions I = {T , B}, Player 2 has
three actions J = {L, M, R}, and there are two states of nature S = {1, 2}. The
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state of nature is chosen by the toss of a fair coin: P(s = 1) = P(s = 2) = 1
2 , and

the state games are given by the following tables:

Player 1

Player 2

B

T

ML R

4

4

0

0

−2

2

The state game s = 1

Player 1

Player 2

B

T

ML R

0

0

4

4

2

−2

The state game s = 2

(a) Prove that when Player 1 does not use the information in his possession, he
can guarantee at most 0; that is, the value of the game in which Player 1’s set
of strategies is B∗

1 , and Player 2’s set of strategies is B2, is 0.
(b) Prove that when Player 2 also knows the state of nature, the value of the game

is 0.
(c) Returning to the game in which only Player 1 knows the state of nature, define

the strategy σ̂1 of Player 1 as follows:
� In the first stage, if s = 1, play the mixed action [ 3

4 (T ), 1
4 (B)]. If s = 2, play

the mixed action [ 1
4 (T ), 3

4 (B)].
� In each stage t > 1, repeat the action that was played in the first stage; i.e.,

play either T in every stage, or B in every stage, according to the result of
the lottery in the first stage.

Compute the conditional probability P(s = 1 | i1 = T ) that the state of the
world is s = 1, given that Player 1 played T in the first stage. Compute also
P(s = 1 | i1 = B).

(d) Show that for every strategy of Player 2, the conditional expectation of the
average payoff gt , given the action of Player 1 in the first stage, is at least 1.
Deduce that Player 1 can guarantee at least 1 in the infinitely repeated game.

(e) Prove that if the set C = [0, 1]2 is approachable by Player 2, then the uniform
value of the game is at most 1.

(f) Draw, in the plane, the set of possible payoffs F and the sets R2(0, 0, 1),
R2(0, 1, 0), R2(1, 0, 0), R2( 1

2 ,
1
2 , 0), and R2( 1

2 , 0, 1
2 ).

(g) Prove that C is approachable by Player 2. Note that when checking the condition
in the definition of a B-set, one needs to distinguish between points on the
diagonal x1 = x2 and points below the diagonal.

(h) In which stages of the game does Player 1 reveal information on the state of
nature? Does he ever entirely reveal the state of nature?

14.31 In this exercise, we generalize the results presented in Section 14.7 (page 590),
and Exercises 14.28, 14.29, and 14.30, to two-player zero-sum infinitely repeated
games with incomplete information on one side. Consider the following game:

� There are K state games (states of nature). In all state games, the set of
actions of Player 1 is I = {1, 2, . . . , I }, and the set of actions of Player 2 is
J = {1, 2, . . . , J }. The payoff function in state game k is uk; uk(i, j ) is the
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payoff that Player 2 pays Player 1 when the state of nature is the matrix uk , and
the pair of actions chosen is (i, j ). Denote S = {1, 2, . . . , K}.

� The game begins with a move of chance that selects one of the payoff matrices
according to the probability distribution p = (pk)Kk=1, which is common knowl-
edge among the players.

� Player 1 knows which state game has been chosen, but Player 2 does not have
this information.

� In each stage, the two players choose their actions simultaneously: Player 1
chooses an action in I, and Player 2 chooses an action in J .

� In each stage t , when coming to choose an action, each player knows the actions
chosen by both players in the previous stages. The players are not informed of
their payoffs after each stage (although Player 1, knowing the state game and the
actions chosen, can calculate the payoffs, while Player 2 cannot do so).

� This description of the game is common knowledge among the players.

For every distribution p ∈ 
(S), denote the game described above by G(p), denote
by v(p) the value of G(p), if the game has a value, and denote by D(p) the one-
stage game in which the payoff matrix is chosen according to the distribution p,
and neither Player 1 nor Player 2 knows which matrix has been chosen. The game
D(p) is a one-stage game, and therefore its value exists. Denote this value by w(p).

Let cav w be the smallest concave function that is pointwise greater than or
equal to w. In other words:

(cav w)(q) ≥ w(q), ∀q ∈ 
(S). (14.131)

In this exercise, we will prove that the value v(p) exists, and equals (cav w)(p),
and we will construct the players’ optimal strategies.

We first prove that Player 1 can guarantee this value.

(a) Show that for every p ∈ 
(S), Player 1 can guarantee w(p) in G(p) (find a
strategy of Player 1 that guarantees this value).

(b) Let p1, p2, . . . , pL ∈ 
(S), and let α = (αl)Ll=1 be a distribution over
{1, 2, . . . , L} satisfying p = ∑L

l=1 αlp
l . Consider the following strategy σ ∗

1 of
Player 1: if uk0 is the payoff function that has been selected in the chance move
at the beginning of the game, randomly choose l0 ∈ {1, 2, . . . , L} according to
the following distribution λk0 = (λk0

1 , λ
k0
2 , . . . , λ

k0
L ):

λ
k0
l = αlp

l
k0∑L

l′=1 αl′p
l′
k0

= αlp
l
k0

pk0

. (14.132)

In each stage of the game, play the optimal strategy in the game D(pl0 ).
We will prove that this strategy guarantees Player 1 the payoff

∑L
l=1 αlw(pl)

in G(p).
To accomplish this, consider the game G′(p), a variation of G(p), where

Player 2 is informed of the index l0 that Player 1 chose. Show that after Player 2
knows l0, the conditional probability that the chosen payoff matrix is uk , given
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l0, equals p
l0
k . Deduce from this that in G′(p), the strategy σ ∗

1 guarantees
Player 1 the11 payoff

∑L
l=1 αlw(pl).

(c) Using the fact that in the game G(p), Player 2 has fewer strategies than he has
in G′(p) (because he has more information in G′(p)), deduce, with the help of
Exercise 4.27 (page 135), that in G(p), the strategy σ ∗

1 guarantees Player 1 the
payoff

∑L
l=1 αlw(pl).

(d) Deduce that Player 1 can guarantee (cav w)(p) in G(p).

We now prove that Player 2 can also guarantee (cav w)(p) in G(p). Define an
auxiliary game with vector payoffs GV , where the sets of actions of the players are
I and J respectively, and the matrix of vector payoffs is

u(i, j ) = (u1(i, j ), u2(i, j ), . . . , uK (i, j )) ∈ RK. (14.133)

Define

Z := {z ∈ RK : 〈q, z〉 ≥ w(q), ∀q ∈ 
(S)}. (14.134)

The significance of Z stems from the following claim:

(e) Prove that (cav w)(p) = minz∈Z〈p, z〉.
For every z ∈ Z, define

Mz := z − RK
+ = {x ∈ RK : xk ≤ zk ∀k ∈ S}. (14.135)

As we will see, the set Mz is approachable by Player 2 in GV , and this is the set
corresponding to the rectangles C defined in Equation (14.85) (page 596), and in
Exercises 14.29 and 14.30.

(f) Prove that the set Mz is approachable by Player 2 in GV if and only if for every
π ∈ RK ,

max
y∈
(J )

min
x∈
(I )

Uπ (x, y) ≥ min
z′∈Mz

〈π, z′〉. (14.136)

Guidance: use Corollary 14.26 (page 588), reversing the roles of the players.
(g) Prove that Equation (14.136) obtains for π = �0.
(h) Let π �= �0 satisfy the property that there exists k ∈ S such that πk > 0. Prove

that the right-hand side of Equation (14.136) equals −∞, while the left-hand
side is finite, and therefore Equation (14.136) obtains.

(i) We now show that z ∈ Z if and only if Equation (14.136) holds for every π �= �0
satisfying πk ≤ 0 for all k ∈ S. Let π �= �0 satisfy πk ≤ 0 for all k ∈ S. Define
q̂k = − πk∑K

k′=1 πk′
. Show that q̂ = (̂qk)Kk=1 ∈ 
(S).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 The lottery that chooses l0 has the property that the conditional distribution over S, after the lottery, will be one of
the probability distributions p1, p2, . . . , pL with probabilities α1, α2, . . . , αL, respectively. It follows that if for
any l0 chosen, Player 1 can guarantee w(pl0 ), then he can guarantee

∑L
l=1 αlw(pl) in G(p). This random choice

is the only stage in which Player 1 uses the knowledge he has regarding the payoff matrix that has been chosen.
After l0 has been chosen, Player 1 plays, in every stage, an optimal strategy in G(pl0 ), independently of the true
payoff matrix uk0 , and thus he does not reveal any additional information about the chosen payoff matrix in those
stages.
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(j) Prove that Equation (14.136) obtains for π if and only if the following equation
obtains:

min
y∈
(J )

max
x∈
(I )

Uq̂(x, y) ≤ max
z′∈Mz

〈̂q, z′〉. (14.137)

(k) Prove that the right-hand side of Equation (14.137) equals 〈q, z〉.
(l) Prove that the left-hand side of Equation (14.137) equals w(̂q).
(m)Deduce that z ∈ Z if and only if Mz is approachable by Player 2 in GV .
(n) Let z0 ∈ Z satisfy 〈p, z0〉 = minz∈Z〈p, z〉. Deduce that Mz0 is approachable

by Player 2 in GV .
(o) Prove that the strategy of Player 2 that approaches Mz0 in GV guarantees him

(cav w)(p) in G(p).

14.32 We proved Theorem 14.44 (page 603) for the case in which |E| = |A|, and every
expert recommends one action in every stage. Prove the theorem for any set E of
experts.
Guidance: Use Exercise 14.25.

14.33 In this exercise we consider a decision problem without experts. A strategy σ of
a decision maker in a decision problem is a no-regret strategy if for every action
â ∈ A, and every sequence (s1, s2, . . .) of states of nature,

Pσ

(
lim inf
T→∞

(
1

T

T∑
t=1

u(at , st ) − 1

T

T∑
t=1

u(̂a, st )

)
≥ 0

)
= 1. (14.138)

Prove that there exists a no-regret strategy in every decision problem.
Guidance: Show that this problem may be described as a decision problem with
experts, and use Theorem 14.44 (page 603) to prove the claim.

14.34 In this exercise, we present Blackwell’s proof of Theorem 14.44 (page 603),
which states that there exists a no-regret strategy when there are |A| experts, and
each of them is identified with one action (as was assumed in Section 14.8.2, on
page 603).

Consider a decision problem with experts, where E = A, and for every action
a ∈ A there exists an expert e ∈ E such that at

e = a for every t ∈ N. Define a game
with vector payoffs, where the set of actions of Player 1 is A, the set of actions
of Player 2 is S, and the payoffs are (|S| + 1)-dimensional vectors (w(s, a))s∈S

a∈A,
where w(s, a) = ((ws ′(s, a))s ′∈S, U (s, a)), defined as follows:

ws ′(s, a) = 1 s ′ = s,

ws ′(s, a) = 0 s ′ �= s.
(14.139)

Define a set C ⊆ R|S|+1 as follows:

C := {(q, x) ∈ 
(S) × R : x ≥ max
p∈
(A)

U (p, q)}. (14.140)

(a) Prove that C is a convex set.
(b) Prove that C is not excludable by Player 2.
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(c) Deduce that C is approachable by Player 1, and prove that every strategy of
Player 1 that approaches C is a no-regret strategy: if Player 1 plays this strategy,
then with probability 1

lim inf
t→∞ u(xt , yt ) − max

a∈A
U (a, yt ) ≥ 0. (14.141)

14.35 In this exercise, we present an alternative proof to the proof given in
Exercise 14.34. Repeat Exercise 14.34 for the game where the set of actions
of Player 1 is A, the set of actions of Player 2 is S, and the payoffs are (|S| × |A|)-
dimensional vectors (w(s, a))s∈S

a∈A, with w(s, a) = (ws ′,a′(s, a))s
′∈S

a′∈A defined as fol-
lows:

ws ′,a′(s, a) = 1 (s ′, a′) = (s, a),
ws ′,a′(s, a) = 0 (s ′, a′) �= (s, a),

(14.142)

and for the following set C

C := {
q ∈ 
(S × A) : U (1a, q|a) ≥ max

p∈
(A)
U (p, q|a), ∀a ∈ A

}
, (14.143)

where U is the multilinear extension of u, and for every action a ∈ A, q|a is the
conditional distribution over S given a, with this conditional distribution defined
by

q|a(s) :=
{

q(s,a)∑
s′∈S q(s ′,a) if

∑
s ′∈S q(s′′a) > 0,

0 if
∑

s ′∈S q(s′, a) = 0.
(14.144)

14.36 Let S be a finite set of states of nature, and let A be a finite set of actions available
to a decision maker. Let F : 
(S) → 2A be a set-valued function associating each
y ∈ 
(S) with a set F (y) ⊆ A and satisfying the property that for every a ∈ A,
the set F−1(a) := {y ∈ 
(S) : a ∈ F (y)} is closed and convex. When the state
of nature is chosen according to y, the best actions, from the perspective of the
decision maker, are those in F (y). Define a game with (|A| × |S|)-dimensional
vector payoffs as follows: the payoff u(a, s) that is attained when the state of
nature is s, and the action chosen is a, is the unit vector whose value is 0 at every
coordinate except the coordinate (a, s), where its value is 1. Denote this vector by
1as ∈ R|A|×|S|. Define a set C ⊂ R|S|×|A| as follows:

C := conv

{∑
s∈S

ys1as, a ∈ A, y ∈ F−1(a)

}
. (14.145)

(a) Prove that the set C is a convex set.
(b) Prove that C is approachable by Player 1.
(c) Let nt

a be the number of stages, up to t , in which the action a is chosen, and let
yt

a be the empirical distribution of the states of nature in all stages up to stage
t in which the action a is chosen:

nt
a := |{j ≤ t : aj = a}|, yt

a(s) := 1

nt
a

|{j ≤ t : sj = s, aj = a}|.
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Prove that if the decision maker plays a strategy that approaches C, and if
lim inft→∞

nt
a

t
> 0, then limt→∞ d(yt

a, F
−1(a)) = 0. In other words, if the den-

sity of the stages where the action a is chosen is positive, then the empirical
distribution of the states of nature in the stages in which the action a is chosen
approaches F−1(a), which is the set of distributions for which a is the best
response in the decision maker’s opinion.

14.37 Morris notices that in the proof of Theorem 14.45 (page 603), in order to prove
that val(Ĝπ ) ≥ infx∈C〈π, x〉 for every π ∈ RA, the only fact that is used is that the
vectors �0 and (xk)k∈N are in the nonnegative quadrant of R. Morris therefore claims
that every set containing these vectors is approachable in the auxiliary game. Is
Morris correct? If not, what is his error?

14.38 Prove that a set cannot be weakly approachable by Player 1 and also weakly
excludable by Player 2.
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Chapter summary
In this chapter we present bargaining games, which model situations in which two or
more players bargain toward an agreed-upon outcome. The set of all possible outcomes
is called the feasible set and each outcome can be attained only by the unanimous
agreement of all players. Different players typically prefer different outcomes, which
explains the bargaining aspect of the model. A default outcome, called the
disagreement point, is realized if the players fail to reach an agreement.

A solution concept for bargaining games is a function that assigns to every bargaining
game an outcome that can be looked at as the outcome that would be recommended to
the players by an arbitrator or a judge. We list several desirable properties that a
solution concept for two-player bargaining games could satisfy and provide the unique
solution concept that satisfies all these properties, namely, the Nash solution for
bargaining games. Variants of the Nash solution, like the Kalai–Smorodinsky solution,
are obtained by imposing a different set of properties that a solution concept should
satisfy. Finally, the model and some of the results are extended to bargaining games
with more than two players.

It is frequently the case that two (or more) parties conduct negotiations over an issue, with
the payoff to each party dependent on the outcome of the negotiation process. Examples
include negotiations between employers and employees on working conditions, nations
negotiating trade treaties, and company executives negotiating corporate mergers and
acquisitions. In each of these cases, there is a range of outcomes available, if only the
parties can come to an agreement and cooperate. Sometimes negotiations do not lead
to an agreement. Employees can leave their place of work, countries can impose high
tariffs, hurting mutual trade, and negotiations on mergers and acquisitions can fail, with
no acquisition taking place. Such bargaining situations are typically not zero-sum: if two
countries fail to agree on a trade treaty, for example, they may both suffer from decreased
trade.

We will model bargaining games between two parties using a set S ⊆ R2, and a vector
d ∈ R2. A point x = (x1, x2) ∈ S represents a potential bargaining outcome expressed in
units of utility, where xi is player i’s utility from the bargaining outcome, or in units of
money. (Utility theory was presented in Chapter 2.) The set S thus represents the collection
of possible bargaining outcomes, and the vector d represents the outcomes in the case
where no agreement emerges from the bargaining process. The model presented in this
chapter was introduced and first studied by Nash [1950a].

622
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Before we continue, let us consider two simple examples of bargaining games.

Example 15.1 Suppose two players are to divide between them a potential profit of $100. If the players come

to an agreement, they divide the money based on their agreement; if they fail to agree, neither of
them receives anything. This is a simple model for a situation in which the abilities of the players
are complementary and both players are needed to produced a profit; examples of such situations
include an investor and the holder of a patent, and an investor and a landowner.

Figure 15.1(a) depicts this game graphically. The set of possible agreements is the interval

S = {(x, 100 − x) : 0 ≤ x ≤ 100}, (15.1)

and the vector of disagreement d = (0, 0). The first coordinate represents the outcome for Player
1, and the second coordinate represents the outcome for Player 2. If the outcomes are interpreted
in dollars, and if the two players are of similar economic status, it is reasonable for them to divide
the $100 equally.

S

d

100

0
1000

x 1

x2

(a) (b)

S

d

10

0
1000

u2(x2)

u1(x1)

Figure 15.1 Graphic presentation of the bargaining game in Example 15.1, in dollars (a) and in
utility units (b)

Suppose now that Player 1’s utility from money is u1(x) = x, and Player 2’s utility from money
is u1(x) = √

x. In utility units, the set of possible outcomes is

Ŝ = {(x,
√

100 − x) : 0 ≤ x ≤ 100}, (15.2)

and the disagreement point is d̂ = (0, 0) (see Figure 15.2(b)). How will they now divide the
$100? �

As we can see, the set of possible agreements can be described in various ways,
depending on the units in which results are measured. Which of the two depictions is
preferable? We will not answer this question in this chapter, but instead only check which
agreements can reasonably be expected, once the units in which outcomes are measured
have been set.

Example 15.2 Larry and Sergey can, by cooperating, attain a potential profit of $100. They need to agree

on dividing this sum between them. If they cannot come to an agreement, they will not cooperate,
there will be no profit, and neither will receive any payoff. If they come to an agreement, they
will cooperate, and divide the money according to the agreement. However, Larry will be required
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to pay tax at a rate of 50% of his share of the profit, whereas Sergey will be taxed at a rate of
only 30% of his share. In this case, the disagreement point is d = (0, 0), and the set of possible
agreements is the interval S between (50, 0) and (0, 70) (see Figure 15.2).

d
Larry

Sergey

70

0
500

S

Figure 15.2 Graphic presentation of the bargaining game in Example 15.2 �

Even rational players may sometimes fail to reach a compromise. This is why players
on occasion turn to an arbitrator, to determine a fair agreement. How should an arbitrator
decide which is the fairest agreement among all the possible agreements? Under any
proposed agreement, a party to the agreement who receives less than he would receive
under his optimal agreement can claim that the arbitrator is unfair! For the arbitrator to be
able to explain how he arrived at the proposed agreement and defend his proposal, he needs
to base his method of choosing the agreement on principles agreeable to both players, and
show how his proposed agreement follows from those principles. It is also desirable for
the principles to determine an agreement in such a way that any other suggested agreement
would fail to satisfy one or more of the principles.

The following principles, which we present in an intuitive manner, are examples of
principles that can be used to guide arbitrators:

� Symmetry: If the two players are equal both in their abilities and in how disagreement
will affect them (a formal definition of this concept appears later in this chapter; see
Definition 15.5), then under the arbitrator’s proposed agreement, both players receive
the same payoff.

� Efficiency: There does not exist a possible agreement that is better for both players than
the proposed agreement.

Suppose that the arbitrator lists principles according to which he plans to choose a proposed
agreement. He then needs to find a function that associates every bargaining game with
a proposed agreement. Such a function will be called a “solution concept.” The list of
principles will be expressed as a list of mathematical properties to be satisfied by this
function.

If the arbitrator chooses a list of desired principles that is too long, he may discover that
there is no solution concept that satisfies every principle. If the list is too short, there may
be many solution concepts that satisfy all the principles. In such a case, the arbitrator needs
to find a way to choose one solution concept out of the many possible solution concepts,
which is tantamount to adding another principle to the list. When there is exactly one
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solution concept that satisfies all the principles, the arbitrator can propose one agreement
for every bargaining game, and defend his choice.

In his mathematical model, Nash presented several desired properties, and pointed
to a unique solution concept that satisfies all those properties. We will present Nash’s
properties, and then introduce two more properties and the solution concepts that follow
from them. This approach to finding a solution concept based on a list of properties
is called the axiomatic approach, and the properties underlying the associated solution
concept are often called axioms.

15.1 Notation
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Let x, y ∈ Rm be two vectors. Denote x ≥ y if xi ≥ yi for all i ∈ {1, 2, . . . , m}. Denote
x > y if x ≥ y and x �= y. Denote x � y if xi > yi for all i ∈ {1, 2, . . . , m}.

Given vectors x, y ∈ Rm, c ∈ R and sets S, T ⊆ Rm define

x + y := (x1 + y1, x2 + y2, . . . , xm + ym), (15.3)

xy := (x1y1, x2y2, . . . , xmym), (15.4)

cx := (cx1, cx2, . . . , cxm), (15.5)

cS := {cx : x ∈ S}, (15.6)

x + S := {x + s : s ∈ S}, (15.7)

xS := {xs : s ∈ S}, (15.8)

S + T := {x + y : x ∈ S, y ∈ T }. (15.9)

If x1, x2, . . . , xn are vectors in Rm, denote by conv{x1, x2, . . . , xn} the smallest convex set
in Rm (using the set inclusion relation) containing the points x1, x2, . . . , xn. For example,
if x, y, and z are three points in the plane and are not colinear, then conv{x, y, z} is the
triangle whose vertices are x, y, and z.

Given a compact set S ⊂ R2, and a continuous function f : S → R, denote by

argmax{x∈S}f (x) := {x ∈ S : f (x) ≥ f (y) ∀y ∈ S} (15.10)

the set of points in S at which the maximum of f is attained.

15.2 The model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 15.3 A bargaining game is an ordered pair (S, d) in which:

� S ⊆ R2 is a nonempty, compact, and convex set, called the set of alternatives.
� d = (d1, d2) ∈ S is called the disagreement point (or conflict point).
� There exists an alternative x = (x1, x2) ∈ S satisfying x � d.

Denote the collection of all bargaining games by F .
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Figure 15.3 A bargaining game in which S is not closed

We interpret a bargaining game as a situation in which two players need to agree on an
alternative x = (x1, x2) ∈ S. If they come to such an agreement, Player 1’s payoff is x1,
and Player 2’s payoff is x2. If the players cannot come to an agreement, the outcome of
the game is d; i.e., Player 1’s payoff is d1, and Player 2’s payoff is d2. The assumptions
appearing in the definition of a bargaining games are justified as follows:

� The set of alternatives S is bounded; i.e., the maximal and minimal outcomes of each
player are bounded.

� The set of alternatives S is closed, and therefore, the boundary of every sequence of
possible outcomes in S is also in S. Without this assumption, it may be the case that
there is no optimal solution. For example, if the set of alternatives is S = {(x1, x1) : 0 ≤
x1 < 1}, a half-closed and half-open interval, the players do not have a most-preferred
alternative: for every proposed solution, there is a solution that is closer than it to (1, 1),
and is therefore more preferred by both (see Figure 15.3).

� The set of alternatives S is convex; i.e., a weighted average of possible alternatives
is also an alternative. This is a reasonable assumption when we relate to outcomes as
linear von Neumann–Morgenstern utilities (see Chapter 2), and the players can conduct
lotteries over two (or more) alternatives. For example, a lottery that chooses one possible
outcome with probability 1

3 , and another outcome with probability 2
3 , is also a possible

outcome of a bargaining process.
� We assume that there exists an alternative x ∈ S such that x � d, to avoid dealing with

degenerate cases in which there is no possibility that both players can profit from an
agreement. Such cases require separate proofs (Exercise 15.12).

Definition 15.4 A solution concept is a function ϕ associating every bargaining game
(S, d) ∈ F with an alternative ϕ(S, d) ∈ S.

The interpretation we give to a solution concept ϕ is that if two players are playing a
bargaining game (S, d), the point ϕ(S, d) is the alternative that an arbitrator will propose
that the players accept as an agreement.

15.3 Properties of the Nash solution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present several properties that one can require from solution concepts
of bargaining games. These properties were first proposed by John Nash in 1953, and they
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are the mathematical expression of principles that could guide an arbitrator who is called
upon to propose a bargaining agreement.1 In the next section, we will show that there
exists a unique solution concept satisfying these properties. We will then critique some
of these properties, and present alternative properties (which are also open to critique),
leading to other solution concepts to the bargaining game.

15.3.1 Symmetry
Definition 15.5 A bargaining game (S, d) ∈ F is symmetric if the following two proper-
ties are satisfied:

� d1 = d2 (the disagreement point is symmetric).
� If x = (x1, x2) ∈ S, then (x2, x1) ∈ S.

Geometrically, symmetry implies that S is symmetric with respect to the main diagonal in
R2, where the disagreement point is located. The symmetry property forbids the arbitrator
from giving preference to one party over the other when the game is symmetric.

Definition 15.6 A solution concept ϕ is symmetric (or satisfies the symmetry property) if
for every symmetric bargaining game (S, d) ∈ F the vector ϕ(S, d) = (ϕ1(S, d), ϕ2(S, d))
satisfies ϕ1(S, d) = ϕ2(S, d).

15.3.2 Efficiency
The goal of bargaining is to improve the situations of the players. We therefore do not
want to propose an alternative that can be improved upon, that is, that is strictly preferred
by one player and does not harm the interests of the other player. If such an alternative
exists, the arbitrator will prefer it to the proposed alternative.

Definition 15.7 An alternative x ∈ S is called an efficient point of S if there does not
exist an alternative y ∈ S, y �= x, such that y ≥ x.

Denote by PO(S) the set of efficient points2 of S.

Definition 15.8 A solution concept ϕ is efficient (or satisfies the efficiency property) if
ϕ(S, d) ∈ PO(S) for each bargaining game (S, d) ∈ F .

Definition 15.9 An alternative x ∈ S is called weakly efficient in S if there is no alter-
native in S that is strictly preferred to x by both players; in other words, there is no
alternative y ∈ S satisfying y � x.

Denote the set of weakly efficient points in S by POW (S). It follows by definition
that PO(S) ⊆ POW (S) for each set S ⊆ R2; as the following example shows, this set
inclusion can be a proper inclusion.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 These properties are also called the Nash axioms in the literature.
2 PO stands for Pareto optimum, named after the Italian economist Vilfredo Pareto (1848–1923). In his 1906 book,

Manuale di Economia Politica, Pareto developed the idea that a distribution of resources in a society is nonoptimal
if it is possible to increase at least one person’s welfare without decreasing the welfare of any other individual.
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Example 15.10 Consider the bargaining game in Figure 15.4. The set of possible outcomes that cannot

be improved from the perspective of at least one player, i.e., PO(S), appears in bold in part A.
The set of possible outcomes that cannot be improved from the perspective of both players, i.e.,
POW (S), appears in bold in part B. For example, the outcome (30, 100) is inefficient, since the
outcome (40, 100) is better from the perspective of Player 1. On the other hand, there is no outcome
that is strictly better for both players than (30, 100). In other words, (30, 100) ∈ POW (S), but
(30, 100) �∈ PO(S).

d

100

40

0
100400

x1

x2

PO(S)

S

Efficient points
d

100

40

0
100400

x1

x2

POW(S)

Weakly efficient points

S

Figure 15.4 The efficient points of S in Example 15.10 �

Definition 15.11 A solution concept ϕ is weakly efficient if ϕ(S, d) ∈ POW (S) for each
bargaining game (S, d) ∈ F .

The sets PO(S) and POW (S) are on the boundary of S, and therefore ϕ(S, d) is on the
boundary of S whenever ϕ is an efficient or a weakly efficient solution concept.

15.3.3 Covariance under positive affine transformations
When the axes of a bargaining game represent monetary payoffs, it is reasonable to require
that the solution concept be independent of the units of measurement. In other words, if we
measure the payoff to one player in cents instead of dollars, we get a different bargaining
game (in which the coordinate corresponding to each point is larger by a factor of 100).
In this case, we want the coordinate corresponding to the solution to change by the same
ratio.

Another possible property to adopt is covariance under translations. This property
implies that if we add a constant to each one of a certain player’s payoffs, the solution will
change by the same constant: the amount of money that each player has at the start of the
bargaining process should not change the profit that each player gets by bargaining.

Definition 15.12 A solution concept ϕ is covariant under changes in the units of mea-
surement if for each bargaining game (S, d) ∈ F , and every vector a ∈ R2 such that
a � 0,

ϕ(aS, ad) = aϕ(S, d) = (a1ϕ1(S, d), a2ϕ2(S, d)). (15.11)
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Figure 15.5 Independence of irrelevant alternatives

A solution concept ϕ is covariant under translations if for each bargaining game (S, d) ∈
F , and every vector b = (b1, b2) ∈ R2,

ϕ(S + b, d + b) = ϕ(S, d) + b = (ϕ1(S, d) + b1, ϕ2(S, d) + b2). (15.12)

We combine these two properties into one, the property of covariance under positive
affine transformations. Recall that a positive affine transformation in the plane is a function
x #→ ax + b, where a, b ∈ R2, and a � 0.

Definition 15.13 A solution concept ϕ is covariant under positive affine transformations
if for every bargaining game (S, d) ∈ F , for every vector a ∈ R2 such that a � 0, and
for every vector b ∈ R2,

ϕ(aS + b, ad + b) = aϕ(S, d) + b. (15.13)

While covariance under multiplication by a � 0 (change of units) is reasonable when
considering bargaining over money, covariance under translations is open to critique
because the amount of money a player has does, in general, affect his attitude towards any
extra money over which the players are bargaining. If we wish to take this into consid-
eration, we need to consider not the amount of money a player gets, but his utility from
this amount of money. In other words, covariance under positive affine transformations is
a natural assumption when the alternatives are expressed as pairs of utilities: the utility of
each player from the alternative. As we saw in the chapter on the theory of utility (Chap-
ter 2), von Neumann–Morgenstern utility functions are determined only up to positive
affine transformations, so that we need to impose the condition that solution concepts to
bargaining games be independent of the particular representation chosen for the players’
utility functions.

15.3.4 Independence of irrelevant alternatives (IIA)
Suppose that S ⊆ T and ϕ(T , d) ∈ S (see Figure 15.5); i.e., in the bargaining process of
the game (T , d), the players have checked all the alternatives in T and decided that the
best alternative is ϕ(T , d), which happens to be located in S. What happens if the set of
possible alternatives is now restricted to S? One could make the case that the players will
still choose ϕ(T , d), because if there were a better alternative in S, that alternative would
also be available in the game (T , d), and that alternative should then have been chosen,
rather than ϕ(T , d).
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d

N (S, d )S

Figure 15.6 The Nash solution (the darkened rectangle is the rectangle of maximal
area)

Definition 15.14 A solution concept ϕ satisfies the property of independence of irrelevant
alternatives (IIA) if for every bargaining game (T , d) ∈ F , and every subset S ⊆ T ,

ϕ(T , d) ∈ S =⇒ ϕ(S, d) = ϕ(T , d). (15.14)

As we see in the intuitive “justification” presented above, this property is reasonable
when a solution concept is supposed to reflect the “best” outcome: if the alternative ϕ(T , d)
that is the best alternative out of all the alternatives in T is in S, then if we delete the
alternatives in T \ S, it will still be the best alternative. If, however, a solution concept is
supposed to reflect the outcome of a compromise between the players, then it is possible
to claim that even an alternative that is not chosen may influence the solution concept. In
such cases, the independence of irrelevant alternatives is open to critique.

15.4 Existence and uniqueness of the Nash solution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we prove the existence of a unique solution concept that satisfies the
properties of symmetry, efficiency, covariance under positive affine transformations, and
independence of irrelevant alternatives. We will also present a formula for computing this
solution for every bargaining game in F .

An alternative x ∈ S is individually rational in S if x ≥ d. Since d ∈ S, the set of
individually rational alternatives is not empty. If x is not individually rational in S, then
at least one player strictly prefers d to x, and since each player can enforce the condition
that the bargaining outcome is d, it is reasonable to suppose that such an alternative x will
not be the end result of the bargaining process.

Theorem 15.15 There exists a unique solution concept N for the family F satisfying
symmetry, efficiency, covariance under positive affine transformations, and independence
of irrelevant alternatives. The solution N (S, d) of the bargaining game (S, d) is the
individually rational alternative x in S that maximizes the area of the rectangle whose
bottom left vertex is d, and whose top right vertex is x (see Figure 15.6).

The point N (S, d) is called the Nash agreement point (or the Nash solution) of the
bargaining game (S, d). Note that for every x ∈ S satisfying x ≥ d, the area of the rectangle
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whose bottom left vertex is d, and whose top right vertex is x, is given by the product
(x1 − d1)(x2 − d2). The product (x1 − d1)(x2 − d2) is called the Nash product. We will
denote it here by f (x).

We will prove the theorem in three steps. We first show that for every bargaining game
in the family F , there exists a unique alternative maximizing the area of this rectangle.

Lemma 15.16 For every bargaining game (S, d) ∈ F there exists a unique point in the
set

argmax{x∈S,x≥d}(x1 − d1)(x2 − d2). (15.15)

Proof of Lemma 15.16: If we translate all the points in the plane by adding −d to each
point, we get the bargaining game (S − d, (0, 0)). Since the area of a rectangle is unchanged
by translation, the points at which the Nash product is maximized for the bargaining game
(S, d) are translated to the points at which the Nash product is maximized in the bargaining
game (S − d, (0, 0)). We can therefore assume that, without loss of generality, d = (0, 0),
and then

f (x) = x1x2. (15.16)

The set of individually rational points in S, which we denote by D := {x ∈ S, x ≥ d},
is the intersection of the compact and convex set S with the closed and convex set
{x ∈ R2 : x ≥ d}, so that it, too, is compact and convex. As we already noted, the set D is
nonempty because it contains the disagreement point d.

Since the function f is continuous, and the set D is compact, there exists at least one
point y in D at which the maximum is attained. Suppose by contradiction that there exist
two distinct points y and z in D at which the maximum of f is attained. In particular,

y1y2 = z1z2. (15.17)

Define

w := 1
2y + 1

2z. (15.18)

Since D is convex, and y, z ∈ D, it follows that w ∈ D. We will show that

f (w) > f (y), (15.19)

contradicting the fact that the Nash product is maximized at y (and at z). The assumption
that y �= z therefore leads to a contradiction, hence y = z, and we will be able to conclude
that the Nash product is maximized at a unique point.

One way to prove Equation (15.19) is to note that for every c > 0 the function x2 = c
x1

is
strictly convex. For c = y1y2, both (y, f (y)) and (z, f (z)) are on the graph of the function,
and therefore (w, f (w)) is above the graph. In particular, w1w2 > c = y1y2.

A direct proof of the claim is as follows. In Figure 15.7, the points y and z are noted,
with A, B, C, and D denoting four rectangular areas. From the figure we see that

y1z2 + z1y2 = A + 2B + C + D > A + 2B + C = y1y2 + z1z2. (15.20)
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Figure 15.7 The areas of the rectangles defined by y and z are equal

Thus we have

f (w) = w1w2 = (
1
2y1 + 1

2z1
) (

1
2y2 + 1

2z2
)

(15.21)

= 1
4y1y2 + 1

4y1z2 + 1
4z1y2 + 1

4z1z2 (15.22)

> 1
4y1y2 + 1

4y1y2 + 1
4z1z2 + 1

4z1z2 (15.23)

= 1
2y1y2 + 1

2z1z2 = f (y), (15.24)

where Equation (15.23) follows from Equation (15.20) and Equation (15.24) follows from
Equation (15.17). In summary, f (w) > f (y), which is the desired contradiction. �

From Lemma 15.16, the function N defined by

N (S, d) := argmax{x∈S,x≥d}(x1 − d1)(x2 − d2) (15.25)

is well defined and single-valued and is therefore a solution concept. Since there exists
x ∈ S satisfying x � d, one has max{x∈S,x≥d} f (x) > 0, and therefore N (S, d) � d.

We next show that this solution concept satisfies the four properties of Theorem 15.15.

Lemma 15.17 The solution concept N satisfies the properties of symmetry, efficiency,
covariance under positive affine transformations, and independence of irrelevant alter-
natives.

Proof:
N satisfies symmetry: Let (S, d) be a symmetric bargaining game, and let

y∗ := N (S, d) = argmax{x∈S,x≥d}(x1 − d1)(x2 − d2). (15.26)

Denote by z the point z = (y∗
2 , y∗

1 ). Since S is symmetric, and y∗ ∈ S, we deduce that
z ∈ S. Since d1 = d2, the area of the rectangle defined by y∗ and d equals the area of the
rectangle defined by z and d (see Figure 15.8):

f (y∗) = (y∗
1 − d1)(y∗

2 − d2) = (z2 − d1)(z1 − d2) = (z1 − d1)(z2 − d2) = f (z).

(15.27)
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By Lemma 15.16, the maximum of f over S is attained at a unique point. There-
fore y∗ = z, leading to y∗

1 = y∗
2 , as required.

N satisfies efficiency: If y is not efficient in S then there exists z ∈ S satisfying (a) z ≥ y

and (b) z �= y. Then the area of the rectangle defined by z and d is strictly greater than the
area of the rectangle defined by y and d, and therefore N (S, d) �= y (see Figure 15.8).

N satisfies covariance under positive affine transformations: The maximum of the func-
tion f over {x ∈ S, x ≥ d} is attained at the point N (S, d). Applying the positive affine
transformation x #→ ax + b to the plane combines a translation with multiplication by a
positive constant at every coordinate. A translation does not change the area of a rectangle,
and multiplication by a = (a1, a2) multiplies the area of the rectangle by a1a2. It follows
that if prior to the application of the transformation the Nash product maximizes at y,
then after the application of the transformation x #→ ax + b the Nash product maximizes
at ay + b.

N satisfies independence of irrelevant alternatives: This follows from a general fact:
let S ⊆ T , let g : T → R be a function, and let w ∈ argmax{x∈T ,x≥d}g(x). If w ∈ S,
then w ∈ argmax{x∈S,x≥d}g(x) (explain why the claim that N satisfies independence of
irrelevant alternatives follows from this general fact). To see why this claim holds, note
that since w ∈ S and S ⊆ T ,

max
{x∈S,x≥d}

g(x) ≥ g(w) = max
{x∈T ,x≥d}

g(x) ≥ max
{x∈S,x≥d}

g(x). (15.28)

It follows that

max
{x∈T ,x≥d}

g(x) = max
{x∈S,x≥d}

g(x), (15.29)

and therefore w ∈ argmax{x∈S,x≥d}g(x). �
To complete the proof of Theorem 15.15, we need to prove the uniqueness of the

solution concept.

Lemma 15.18 Every solution concept ϕ satisfying symmetry, efficiency, covariance under
positive affine transformations, and independence of irrelevant alternatives is identical to
the solution concept N defined by Equation (15.25).
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Figure 15.9 The bargaining game (S, d) (a) and the game obtained by
implementation of the positive affine transformation L, along with the symmetric
square T (b)

Proof: Let ϕ be a solution concept satisfying the four properties of the statement of the
theorem. Let (S, d) be a bargaining game in F , and denote y∗ := N (S, d). We will show
that ϕ(S, d) = y∗.

Step 1: Applying a positive affine transformation L.
Since there is an alternative x in S such that x � d, the pointN (S, d) = y∗ ∈ {z ∈ S : z ≥
d} at which the Nash product is maximized satisfies y∗ � d. We can therefore define a
positive affine transformation L over the plane shifting d to the origin, and y∗ to (1, 1)
(see Figure 15.9). This function is given by

L(x1, x2) =
(

x1 − d1

y∗
1 − d1

,
x2 − d2

y∗
2 − d2

)
. (15.30)

Since y∗
1 > d1 and y∗

2 > d2, the denominators in the definition of L are positive.
The function L is of the form L = ax + b, where a1 = 1

y∗
1−d1

> 0, a2 = 1
y∗

2−d2
> 0,

b1 = − d1
y∗

1−d1
, and b2 = − d2

y∗
2−d2

. Since the solution concept N satisfies covariance under
positive affine transformations,

N (aS + b, (0, 0)) = N (aS + b, ad + b) = ay∗ + b = (1, 1). (15.31)

Step 2: x1 + x2 ≤ 2 for every x ∈ aS + b.
Let x ∈ aS + b. Since S is convex, the set aS + b is also convex (Exercise 15.7). Therefore,
since both x and (1, 1) are in aS + b, the interval connecting x and (1, 1) is also in aS + b.
In other words, for every ε ∈ [0, 1], the point zε defined by

zε := (1 − ε)(1, 1) + εx = (1 + ε(x1 − 1), 1 + ε(x2 − 1)) (15.32)
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is in aS + b. If ε is sufficiently close to 0 then zε ≥ (0, 0), and therefore zε is one of the
points in the set {w ∈ aS + b, w ≥ (0, 0)}. It follows that for each such ε,

f (zε) ≤ max
{w∈aS+b,w≥(0,0)}

f (w) = f (N (aS + b, (0, 0))) = f
(
(1, 1)

) = 1. (15.33)

Hence

1 ≥ f (zε) = zε
1z

ε
2 = 1 + ε(x1 + x2 − 2) + ε2(x1 − 1)(x2 − 1) (15.34)

= 1 + ε(x1 + x2 − 2 + ε(x1 − 1)(x2 − 1)). (15.35)

Therefore, for every ε > 0 sufficiently small,

0 ≥ ε(x1 + x2 − 2 + ε(x1 − 1)(x2 − 1)), (15.36)

leading to the conclusion that

2 + ε(x1 − 1)(x2 − 1) ≥ x1 + x2. (15.37)

Taking the limit as ε approaches 0 yields 2 ≥ x1 + x2, which is what we wanted to show.

Step 3: ϕ(S, d) = N (S, d).
Let T be a symmetric square relative to the diagonal x1 = x2 that contains aS + b,
with one side along the line x1 + x2 = 2 (see Figure 15.9(b)). Since aS + b is com-
pact (and thus bounded), such a square exists. By the symmetry and efficiency of ϕ,
one has ϕ(T , (0, 0)) = (1, 1). Since the solution concept ϕ satisfies independence of
irrelevant alternatives, and since aS + b is a subset of T containing (1, 1), it follows
that ϕ(aS + b, (0, 0)) = (1, 1). Since the solution concept ϕ satisfies covariance under
positive affine transformations, one can implement the inverse transformation L−1 to
deduce that ϕ(S, d) = y∗. Since y∗ = N (S, d), we conclude that ϕ(S, d) = N (S, d), as
required. �

15.5 Another characterization of the Nash solution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present another geometric characterization of the solution concept N
defined in Equation (15.25).

Definition 15.19 Let S be a closed and convex set in R2, and let x be an alternative on
the boundary of S. A supporting line of S at x is any line through x such that the set S lies
in one of the closed half-planes defined by it.

By a general theorem from the theory of Convex Sets (the Separating Hyperplane
Theorem; see Section 23.2, page 943), for every convex set S ⊆ R2 and every point x on
the boundary S there exists a supporting line of S at x.

If the boundary of S is smooth at a point x, there exists a unique supporting line of S at
x, which is the tangent line to S at x. If, in contrast, x is a “corner” of S, there are several
supporting lines at x (see Figure 15.10).

Recall that since the Nash solution is an efficient solution concept, N (S, d) ∈ PO(S):
the Nash solution is in the boundary of S.



636 Bargaining games

Figure 15.10 Examples of supporting lines of closed and convex sets

d

αα

x2

x1

l

N (S, d )

Figure 15.11 The second characterization of the Nash solution

Theorem 15.20 For every bargaining game (S, d) ∈ F , one has N (S, d) = y if and only
if (a) y ∈ PO(S), (b) y � d, and (c) there exists a supporting line l of S at y, such that
the triangle whose vertices are d, y, and the intersection point of l with the line x2 = d2

is an equilateral triangle, whose base is the line x2 = d2 (see Figure 15.11).

In other words, the angle between the line connecting d with N (S, d) and the x1-axis
equals the angle between the supporting line l and the x1-axis.

Proof: Given a bargaining game (S, d) ∈ F , denote y∗ := N (S, d). In the proof of
Lemma 15.18, we saw that there exists a positive affine transformation L such that
L(d) = (0, 0) and z∗ := L(y∗) = (1, 1). We also proved there that the set L(S), the image
of S under the transformation L, is a subset of the half-plane x1 + x2 ≤ 2, and therefore
the line x1 + x2 = 2 is a supporting line of L(S) at z∗ (see Figure 15.12(b)). In addition,
the angle between the line connecting z∗ and d, and the x1-axis, is 45◦, and this is also
the angle between the line x1 + x2 = 2 and the x1-axis. It follows that the triangle whose
vertices are L(d), z∗, and the intersection of the line x1 + x2 = 2 with the x1-axis is an
equilateral triangle.

The inverse transformation L−1 maps the supporting line x1 + x2 = 2 of L(S) at z∗ =
L(y∗) to the supporting line l of S at y∗ (see Exercise 15.6), and (1, 1) to N (S, d) (see
Figure 15.12). Similarly, a positive affine transformation maps an equilateral triangle
whose base is the line x2 = d2 to an equilateral triangle (whose base is parallel to the x1-
axis; Exercise 15.11). It follows that S has a supporting line at y∗ defining an equilateral
triangle, as required.
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Figure 15.12 Proof of Theorem 15.20. The bargaining game prior to the
implementation of L (a), and after the implementation of L (b)

We now prove the opposite direction; i.e., we will show that if there is an efficient
point y ∈ S, y � d, and a supporting line l of S at y defining an equilateral triangle, then
necessarily y = N (S, d). Since y � d, there is an affine transformation L, L(x) = ax + b

where a � 0, mapping d to (0, 0), y to (1, 1), and l to the supporting line of aS + b at
ay + b. In addition, the triangle formed by the line connecting ad + b = (0, 0) with
ay + b = (1, 1), the image of the supporting line al + b, and the axis x1 = 0, is an
equilateral triangle.

The angle between the line connecting (0, 0) to (1, 1) and the x1-axis is 45◦. Since
the triangle we described is an equilateral triangle, the line al + b also intersects the
x1-axis at a 45◦ angle, and it is therefore the line x1 + x2 = 2. The point that maximizes
the Nash product in the triangle whose vertices are (0, 0), (2, 0), and (0, 2) is (1, 1), and
since this point is in the set aS + b, it follows that N (aS + b, (0, 0)) = (1, 1). Therefore,
y = N (S, d), which is what we wanted to show. �

In the next two subsections we present applications of this characterization of the Nash
solution.

15.5.1 Interpersonal comparison of utilities
In the previous sections, we described the Nash point as a solution concept based on
several properties. This solution concept, similar to every solution concept in game the-
ory, is convincing only insofar as the properties characterizing it are convincing. In the
case of the Nash solution, the property of independence of irrelevant alternatives is open
to critique (see Sections 15.3.4 (page 629) and 15.7 (page 641)). This motivates inter-
est in the question of whether the solution concept can be characterized in a different
manner. Shapley [1969] proposed such a characterization, based on the following two
properties:
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� Egalitarianism:3 At the solution point, the profit in utility units, relative to the dis-
agreement point, is the same for both players.

� Utilitarianism:4 The players will choose an alternative that maximizes the sum of their
profits (in utility units), relative to the disagreement point.

The main difficulty in applying these properties is that within the framework of the von
Neumann–Morgenstern utility theory (Chapter 2), a player’s utility function is determined
only up to a positive affine transformation, so there is no way to compare or add together
the utilities of different players. This is called the “interpersonal comparison of utilities”
problem in the literature.

Shapley’s approach to this problem is that although it is impossible to compare utilities
between the players over all games, in every particular game we can regard the alternative
which the players finally agree upon as a reflection of the exchange rate between their
utilities that emerged in the bargaining process. In particular, Shapley’s suggestion is that
the minus of the slope c of the supporting line5 at the agreement point should be considered
the exchange rate between the utility of the second player and the utility of the first player.
The reasoning behind this suggestion is that at this point, slightly moving the agreement
point within the set of efficient points PO(S) yields approximately c units of profit/loss
to the second player, with a unit of loss/profit to the first player (prove that this is true).

We next present Shapley’s characterization of the Nash solution.

Definition 15.21 An alternative x = (x1, x2) ∈ S is a solution of a bargaining game (S, d)
if there exists a positive number c satisfying:

� Egalitarianism: x2 − d2 = c(x1 − d1).
� Utilitarianism: x ∈ argmaxy∈S{(y2 − d2) + c(y1 − d1)}.

Shapley’s characterization states that the only possible candidate for a solution concept
of the bargaining game, according to this definition, is the Nash solution. In that case, the
constant c is minus the slope of a supporting line to S at the Nash point.

Theorem 15.22 Let (S, d) ∈ F be a bargaining game such that for each efficient point
satisfying y � d there exists a unique tangent to S at y. Then there exists a unique
alternative x ∈ S that is a solution of the game according to Definition 15.21. Furthermore,
this alternative is x = N (S, d).

The proof of this theorem is accomplished using Theorem 15.20, and is left to the reader
(Exercise 15.18).

15.5.2 The status quo region
Given a bargaining game (S, d), we ask what are the disagreement points that, with the
same feasible set S, yield the same solution. That is, what is the collection of all the points
d̂ such that N (S, d̂) = N (S, d)? By Theorem 15.20, if S has a unique supporting line at

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Shapley used the term “equitability” for this concept.
4 Shapley used the term “efficiency” for this concept.
5 For simplicity, we assume here that S has a unique supporting line at the agreement point.
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Figure 15.13 The points d̂ such that N (S, d̂) = N (S, d)

the point N (S, d), then the point d̂ satisfies this condition if and only if it is located on
the ray emanating from N (S, d) and passing through d (see Figure 15.13(a)).

If there are several supporting lines for S at the point N (S, d), then d̂ may be located on
any ray emanating fromN (S, d), forming, along with one of the supporting lines, an equi-
lateral triangle whose base is on the axis x2 = d2 (the darkened area in Figure 15.14(b)).
This line (or region) is called the status quo line (or status quo region).

Suppose that in the current situation, the players are at point d. Both players are
interested in signing an agreement that will improve this situation. The set of alternatives
S represents the possible situations to which the players can move. Since the players
believe in the Nash solution, they have an interest in following a process that will move
them to y∗ = N (S, d). For various reasons (for example, the players may not trust each
other) they want to arrive at the Nash point by way of a series of interim agreements that
will not change the balance of power; none of the players will have a reason to object to
the common goal of reaching y∗ throughout the process. Since the two parties believe in
the Nash solution, we require that y∗ continue to be the Nash solution in all the interim
stages, where the disagreement point is the situation in the interim stage. This property is
satisfied when the interim states are on the status quo line (or in the status quo region).
As long as the interim state is on this line (or in this region) y∗ is the Nash solution of the
changing bargaining problem throughout the process.

15.6 The minimality of the properties of the Nash solution
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the previous section, we showed that there exists a unique solution concept satisfying
the four properties of the Nash solution. We will show here that if one of these properties
is left out, uniqueness is lost. In the following examples, for each property in turn, we
will exhibit a solution concept for the family F with respect to which that property fails
to hold, but the other three properties do hold. Since the Nash solution satisfies all four
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properties, it will follow that for every set of three of the four properties there exist at least
two solution concepts satisfying these three properties.

Example 15.23 Leaving out efficiency Define a solution concept ϕ as follows:

ϕ(S, d) := d +N (S, d)

2
. (15.38)

This solution is located “halfway” between the disagreement point and the Nash solution. Out of
the four Nash properties, the only property that this solution concept does not satisfy is efficiency
(Exercise 15.1). �

Example 15.24 Leaving out symmetry: preferring one player to another Define a solution concept ϕ as

follows:

ϕ(S, d) := argmax{x∈PO(S) : x≥d}x1. (15.39)

This solution is Player 1’s most-preferred alternative among the efficient and individually rational
alternatives. Out of the four Nash properties, the only property that this solution concept does not
satisfy is symmetry (Exercise 15.2). �

Example 15.25 Leaving out covariance under positive affine transformations For every angle 0◦ < α <

90◦ let λα(S, d) be the highest point in S on the line emanating from the disagreement point d at
angle α relative to the line x2 = d2 (see Figure 15.14).

λα(S)

d
α

S

Figure 15.14 The solution concept λα

The solution concept λ45◦ (S, d) satisfies all the Nash properties except for covariance under
positive affine transformations (Exercise 15.3). �

Example 15.26 Leaving out independence of irrelevant alternatives Define a solution concept ϕ

as follows. If there exists a positive affine transformation L satisfying the property that
(L(S), L(d)) is a symmetric bargaining game, then ϕ(S, d) := N (S, d). Otherwise, ϕ(S, d) :=
argmax{x∈PO(S) : x≥d}x1 is the best efficient and individually rational alternative for Player 1. Out of
the four Nash properties, the only one that this solution concept fails to satisfy is independence of
irrelevant alternatives (Exercise 15.4). �
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Figure 15.15 The bargaining game (T , (0, 0)), and the bargaining game (S, (0, 0))
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We have seen that if one seeks a solution concept satisfying symmetry, efficiency, covari-
ance under positive affine transformations, and independence of irrelevant alternatives,
the only solution concept one obtains is the Nash solution. But are these properties reason-
able? Can an arbitrator who believes in these properties persuade the contending players
that these are reasonable properties upon which to base his decisions? It is easy to make a
case for efficiency, because it is reasonable for the players to agree to improve one player’s
situation if doing so does not come at the expense of the other player.

Covariance under affine transformations, in contrast, is open to criticism, because
changing the location of the disagreement point d and the set of alternatives S may give rise
to new claims on the part of the players. For example, when two players of approximately
equal abilities are negotiating the division of $1,000, the symmetric solution ($500, $500)
seems reasonable. If, in contrast, one of the players is very wealthy, there may be two
opposite influences on the outcome of the bargaining process: on one hand, it may appear
more just for the person who is more in need of the money to receive a greater share,
with his justification being that an additional $500 will have little effect on the wealthy
player’s condition, but is significant for a poor player. On the other hand, a wealthy player
can exploit this fact to his advantage: he can hold out for a greater share of the money,
knowing that if negotiations fail and the players walk away with nothing, this state of
affairs will be harder on the poor player, who therefore has greater incentive to yield to
the wealthy player’s demands out of fear of being left with nothing. As we stated above,
covariance under affine transformations is necessary when outcomes are stated in units of
utility.

The property that has drawn the greatest share of attention is the property of indepen-
dence of irrelevant alternatives. The next example is taken from Luce and Raifa [1957].
Consider the two bargaining games in Figure 15.15.

Nash’s solution for both bargaining games is (50, 10). We do not dispute that this
solution appears reasonable for the game (T , (0, 0)) (Game A), but we will present a case
here that the solution appears unreasonable for the game (S, (0, 0)) (Game B). Suppose
that both players accept (50, 10) as a fair solution for the game (T , (0, 0)), and then turn
to playing (S, (0, 0)). Player 2 can now claim that alternative (50, 10) is unreasonable:
in the bargaining game (T , (0, 0)) both players compromise to some extent to arrive at
the outcome (50, 10), but in contrast, in the bargaining game (S, (0, 0)), the outcome



642 Bargaining games

1

0

0.75
0.7

210.750 d

N (S2, d)

N (S1, d)

Figure 15.16 The Kalai–Smorodinsky critique of the Nash solution

(50, 10) gives Player 1 his highest possible payoff, while Player 2 does not receive his
highest possible payoff. It is therefore reasonable for Player 2 to demand more than 10,
by claiming that Player 1 should also compromise and receive less than he would from
his best alternative.

Another critique of the Nash solution arises from the following example, given by Kalai
and Smorodinsky [1975]. Let S1 and S2 be the two compact and convex sets in the plane
defined by:

� S1 is the convex hull of the points (0, 0), (0, 1), (1, 0), (0.75, 0.75) (the darkly shaded
area in Figure 15.16).

� S2 is the convex hull of the points (0, 0), (0, 1), (1, 0), (1, 0.7) (the lightly shaded area
in Figure 15.16).

The set S2 contains the set S1. In addition, both players are better off in the bargaining
game (S2, (0, 0)) than in the bargaining game (S1, (0, 0)): for every point x ∈ S1 (except
for the points (1, 0) and (0, 1)), there is a point y ∈ S2 satisfying y � x. In this sense,
by playing (S2, (0, 0)), the players are both in an improved situation, and Kalai and
Smorodinsky therefore claim that one should expect the solution of (S2, (0, 0)) to be better
for both players than the solution of (S1, (0, 0)).

Since the bargaining game (S1, (0, 0)) is symmetric, N (S1, (0, 0)) = (0.75, 0.75). By
drawing an equilateral triangle whose vertices are (0, 0), (1, 0.7), (2, 0) (see Figure 15.16)
and using Theorem 15.20, we deduce that N (S2, (0, 0)) = (1, 0.7). Notice that under N ,
Player 2’s situation is worsened in going from (S1, (0, 0)) to (S2, (0, 0)) (in S1 he receives
0.75, as opposed to 0.7 in S2). At the same time, this critique is not unequivocal, because
although both players are better off, one may argue that in a certain sense Player 1’s
situation is “more improved” than Player 2’s, because the set of efficient points has
“moved more to the right than upwards.”

Additional critiques that have been applied to the Nash solution are presented in Exer-
cises 15.22 and 15.23. Despite these critiques, the Nash solution is still regarded as the
most important solution concept for bargaining games. It is more frequently applied than
other proposed solution concepts, which are also open to critique.
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Up to now, we have dealt with solution concepts defined over the family F of bargaining
games. In this section, we will consider solution concepts defined over other families of
bargaining games. Our goal will be to replace the property of independence of irrele-
vant alternatives with a different property, a monotonicity property. We will present two
different monotonicity properties, and study the solution concepts implied by each of
them.

The first monotonicity property we will study is the following.

Definition 15.27 A solution concept ϕ satisfies full monotonicity over a family F0 of
bargaining games if for every pair of bargaining games (S, d) and (T , d) in F0 such that
S ⊆ T ,

ϕ(S, d) ≤ ϕ(T , d). (15.40)

The full monotonicity property is satisfied if adding more possible outcomes does not
make a player’s situation worse. The second monotonicity property is more complex. For
every compact set S ⊂ R2, define

m1(S) := max{x1 ∈ R : there exists x2 ∈ R such that (x1, x2) ∈ S}, (15.41)

and

m2(S) := max{x2 ∈ R : there exists x1 ∈ R such that (x1, x2) ∈ S}. (15.42)

The maximal payoff that Player 1 can possibly get is m1(S), and m2(S) is the maximal
payoff that Player 2 can get (see Figure 15.17). The point (m1(S), m2(S)) is called the
utopia point of the game. This point is typically not in S, as in Figure 15.17.

The second monotonicity property is, in a sense, a weaker version of full monotonicity.

Definition 15.28 A solution concept ϕ satisfies limited monotonicity over a family F0 of
bargaining games if for every pair of bargaining games (S, d) and (T , d) in F0 satisfying
(a) S ⊆ T , (b) m1(S) = m1(T ), and (c) m2(S) = m2(T ), it is the case that

ϕ(S, d) ≤ ϕ(T , d). (15.43)



644 Bargaining games

A solution concept ϕ which satisfies full monotonicity also satisfies limited monotonic-
ity. As the example in Figure 15.16 shows, the Nash solution does not satisfy limited mono-
tonicity over the family of gamesF , since in that example S1 ⊂ S2, m1(S1) = m1(S2) = 1,
m2(S1) = m2(S2) = 1, and N (S2, d) �≥ N (S1, d).

Denote by F0 the family of bargaining games (S, d) satisfying:

1. The set S is compact and convex.
2. The disagreement point is d = (0, 0).
3. x ≥ (0, 0) for every x ∈ S, and there exists x ∈ S such that x � (0, 0).
4. Comprehensiveness: If x ∈ S, then the rectangle defined by (0, 0) and x is also

contained in S:

[0, x1] × [0, x2] ⊆ S, ∀x ∈ S. (15.44)

We already encountered the first condition in the definition of the family of bargaining
games F . The second condition states that if the players cannot arrive at a compromise,
neither of them gets anything. This assumption imposes no loss of generality if we add the
property of covariance under translations. The third condition states that every alternative
in S is weakly preferred to the disagreement point; any other alternative would be rejected
by one of the players, and therefore we can omit it from S. The fourth condition is
equivalent to enabling the players to throw away (or donate to charity) some of their
profits from the bargaining process.

Since the disagreement point is (0, 0), it suffices to denote the bargaining games in F0

by S, instead of (S, d). By the definition of a bargaining game, there exists x ∈ S satisfying
x � d = (0, 0). It follows that m1(S) > 0, m2(S) > 0, and S ⊆ [0, m1(S)] × [0, m2(S)].

In this section we will focus on bargaining games in F0. A solution concept over F0 is
a function associating every bargaining game S in this family with an alternative in S.

Definition 15.29 A solution concept ϕ satisfies (first-order) homogeneity if for every
bargaining game S and every real number c > 0,

ϕ(cS) = cϕ(S). (15.45)

This property is a weakening of the property of independence of units of measurement,
because it requires covariance only for every linear transformation that multiplies both
coordinates by the same constant.

Definition 15.30 A solution concept ϕ satisfies strict individual rationality if for every
bargaining game S,

ϕ(S) � (0, 0). (15.46)

This property requires that each player obtain a strictly positive profit relative to the
disagreement point. Because there exists x ∈ S satisfying x � (0, 0), it is reasonable to
require that both players profit from cooperation.

For every angle 0◦ < α < 90◦, define a solution λα over the family F0 as follows: λα(S)
is the highest point in S on the ray emanating from the disagreement point (0, 0) at angle
α, relative to the axis x2 = 0 (see Figure 15.18).
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) and the angle α

For every 0◦ < α < 90◦, the solution λα satisfies weak efficiency, homogeneity, strict
individual rationality, and full monotonicity. In addition, if α = 45◦, the solution λα also
satisfies symmetry (Exercise 15.24). The next theorem, due to Kalai [1977], shows that
these are all the solution concepts satisfying these properties.

Theorem 15.31 Let ϕ be a solution concept over F0 satisfying weak efficiency, homo-
geneity, strict individual rationality, and full monotonicity. Then there exists an angle
0◦ < α < 90◦ such that ϕ = λα.

Proof: Let ϕ be a solution concept satisfying the four properties of the statement of the
theorem.

Step 1: Defining α.
Define the set 
 ⊂ R2 as follows:


 = {x ∈ [0, 1]2 : x1 + x2 ≤ 1}. (15.47)

Denote y∗ := ϕ(
) (see Figure 15.19). Since ϕ satisfies weak efficiency and strict indi-
vidual rationality, the solution y∗ = ϕ(
) is in the interior of the interval connecting (0, 1)
with (1, 0).

Let α = arctan( y∗
2

y∗
1
) be the angle of the line connecting (0, 0) with y∗ (see Figure 15.19).

Then ϕ(
) = y∗ = λα(
). We will prove that ϕ(S) = λα(S) for every S ∈ F0. For the
rest of the proof, we fix S ∈ F0.
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Step 2: ϕ(S) ≥ λα(S).
Recall that ϕ(
) = y∗ = (y∗

1 , y∗
2 ) � (0, 0). For every ε ∈ (0, min{ 1

y∗
1
− 1, 1

y∗
2
− 1}), con-

sider the convex set Vε whose extreme points are (0, 0), (0, y∗
2 (1 + ε)), y∗, (y∗

1 (1 + ε), 0)
(see Figure 15.20). Since ε < 1

y∗
1
− 1 and ε < 1

y∗
2
− 1, we deduce that Vε ⊆ 
.

We now show that ϕ(Vε) = y∗. Since ϕ satisfies full monotonicity, ϕ(Vε) ≤ ϕ(
) = y∗.
Since ϕ satisfies weak efficiency, ϕ(Vε) is an efficient point of Vε . But the only weakly
efficient point x in Vε satisfying x ≤ y∗ is y∗, and therefore ϕ(Vε) = y∗.

Denote z∗ := λα(S). Since y∗ and z∗ are both points on the line emanating from (0, 0)
and forming an angle α with the axis x2 = 0,

y∗
1 (1 + ε)

y∗
2 (1 + ε)

= y∗
1

y∗
2

= z∗1
z∗2

. (15.48)

Denote cε := z∗1
y∗

1 (1+ε) =
z∗2

y∗
2 (1+ε) . We deduce

cεy
∗
1 (1 + ε) = z∗1, cεy

∗
2 (1 + ε) = z∗2. (15.49)

Denote

zε = cεy
∗ = z∗

1 + ε
. (15.50)

The set cεVε and the point zε are depicted in Figure 15.21. Note that since S is a compre-
hensive set, it follows that cεVε ⊆ S.

Since the solution concept ϕ satisfies homogeneity,

ϕ(cεVε) = cεϕ(Vε) = cεy
∗ = zε = z∗

1 + ε
. (15.51)

Since the solution concept ϕ satisfies full monotonicity, and cεVε ⊆ S, we deduce that
ϕ(S) ≥ z∗

1+ε
. This inequality holds for every ε > 0 that is sufficiently small. Letting ε

converge to 0 yields ϕ(S) ≥ z∗ = λα(S), which is what we wanted to show.
In the example in Figure 15.21 there exists only one weakly efficient point in S that is

greater than or equal to λα(S), and therefore in this case ϕ(S) = λα(S). As can be seen in
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Figure 15.22 The set S (in grey) and the set S∗

Figure 15.22, when the boundary of S is parallel to one of the axes, there may be several
weakly efficient points in S that are greater than or equal to λα(S). We will now deal with
this case.

Step 3: ϕ(S) = λα(S).
Let ε > 0, and define z∗ε = (1 + ε)z∗. Let S∗ be the smallest convex and comprehensive
set containing S and z∗ε (see Figure 15.22).

From what we showed in Step 2, ϕ(S∗) ≥ λα(S∗). As the only weakly efficient point in
S∗ that is greater than or equal to λα(S∗) is λα(S∗) itself, we deduce that

ϕ(S∗) = λα(S∗) = z∗ε = z∗(1 + ε). (15.52)

Since S ⊂ S∗, and since ϕ satisfies full monotonicity,

ϕ(S) ≤ ϕ(S∗) = z∗(1 + ε), (15.53)
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Figure 15.23 The Kalai–Smorodinsky solution

and this inequality holds for all ε > 0. Letting ε converge to 0 yields

ϕ(S) ≤ z∗ = λα(S). (15.54)

Together with the result of Step 2, we conclude that ϕ(S) = λα(S), which is what we
wanted to show. �

The next theorem, which is proved in Kalai and Smorodinsky [1974], characterizes the
solution concept obtained from the limited monotonicity property.

Theorem 15.32 There exists a unique solution concept KS over the family F0 satisfying
symmetry, efficiency, independence of the units of measurement, and limited monotonic-
ity. That solution is the highest point located in S and on the line l(S) connecting the
disagreement point (0, 0) with the utopia point (m1(S), m2(S)) (see Figure 15.23).

The alternative KS(S) is called the Kalai–Smorodinsky solution or the Kalai–
Smorodinsky agreement point.

Proof:
The KS solution is well defined: Denote by l(S) the line that passes through the disagree-
ment point (0, 0) and the utopia point (m1(S), m2(S)). Since there exists x ∈ S satisfying
x � (0, 0), necessarily m1(S) > 0 and m2(S) > 0. It follows that l(S) is a strictly increas-
ing line. Since (0, 0) is on the line l(S), there exists at least one point in S on this line.
Since S is compact, the highest point in S that is on l(S) is well defined, and located in S.
Denote this point by KS(S). In particular, KS is a solution concept over the family F0.

KS satisfies symmetry: If S is a symmetric bargaining game, then m1(S) = m2(S). In
particular, the line l(S) is the diagonal x1 = x2, and therefore the point KS(S), located on
this line, satisfies KS1(S) = KS2(S). We deduce from this that the solution KS satisfies
symmetry.

KS satisfies efficiency: Let S ∈ F0. Denoting x∗ = KS(S), we will show that x∗ is an
efficient point; i.e., there does not exist y in S satisfying y ≥ x∗ and y �= x∗.

If x∗ is inefficient, there is y ∈ S satisfying one of the following three properties:

1. y � x∗,
2. y1 > x∗

1 and y2 = x∗
2 , or

3. y1 = x∗
1 and y2 > x∗

2 .
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2

m2(S)

x∗ y

z l(S )

w x∗ y
m2(S )

m1(S)

l(S)

Figure 15.24 Efficiency

Case 1: There exists y ∈ S satisfying y � x∗ (see Figure 15.24(a)).
Since S is comprehensive, the rectangle defined by (0, 0) and y is contained in S, and

therefore x∗ is in the interior of S. In particular, x∗ is not the highest point in S on the line
l(S), contradicting its definition. It follows that this case is impossible.

Case 2: y1 > x∗
1 and y2 = x∗

2 .
Since mi(S) ≥ x∗

i for i = 1, 2, we can distinguish between two alternatives: m2(S) > x∗
2

(see Figure 15.24(b)) and m2(S) = x∗
2 (see Figure 15.24(c)).

If m2(S) > x∗
2 , then there exists z ∈ S satisfying z2 = m2(S) > x∗

2 . Since S is convex,
the interval connecting y with z is contained in S. But this interval contains a point w

satisfying w � x∗, which is impossible, as shown in Case 1.
As we saw in Case 1, if m2(S) = x∗

2 , then since y1 > x∗
1 , necessarily m1(S) > x∗

1 . It
follows that the line l(S) is located under x∗, and does not pass through it, contradicting
the definition of KS(S), so that this case, too, is impossible.

Case 3: y1 = x∗
1 and y2 > x∗

2 .
This case is similar to Case 2, switching the roles of the players, and is therefore impossible.

KS satisfies independence of units of measurement: Let S be a bargaining game in F0.
Denote x∗ := KS(S). Let a ∈ R2 such that a � (0, 0). We will show that KS(aS) = ax∗.
Since a1 > 0 and a2 > 0, it follows by definition that mi(aS) = aimi(S) for i = 1, 2.
Therefore, under the positive affine transformation x #→ ax the line l(S) is mapped to the
line l(aS). In particular, ax∗ is located on the line l(aS). Since a � (0, 0), we deduce that
az � ax∗ for every z ∈ S if and only if z � x∗. Since x∗ is the highest point in S on the
line l(S), we obtain that ax∗ is the highest point in aS on the line l(aS), which is what we
wanted to show.

KS satisfies limited monotonicity: Let S and T be two bargaining games in F0 satisfying
m1(S) = m1(T ), m2(S) = m2(T ), and S ⊆ T .

Since m1(S) = m1(T ) and m2(S) = m2(T ), one has l(S) = l(T ), and since S ⊆ T , the
highest point in T on this line is not below the highest point in S on the line.

KS is the only solution satisfying these properties: Let ϕ be a solution concept satisfying
symmetry, efficiency, independence of units of measurement, and limited monotonicity.
We will prove that ϕ = KS .
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x∗ = KS(S)

T

0

m2(S)

m1(S)0

Figure 15.25 The sets T (in dark grey) and S (in light and dark grey)

Let S be a bargaining game in F0, and denote x∗ := KS(S). Let T be the following set
(see Figure 15.25):

T := conv{(0, 0), (0, m2(S)), x∗, (m1(S), 0)}. (15.55)

The set T is contained in S. To see this, note that the point (0, 0) is a disagreement
point and is therefore in S. Since S is comprehensive, the points (0, m2(S)) and (m1(S), 0)
are also in S, and by the definition of the Kalai–Smorodinsky solution the point x∗

is in S. Finally, the set S is convex and therefore T is contained in S. Furthermore,
KS(T ) = KS(S) = x∗ (why?).

Since ϕ and KS satisfy independence of units of measurement, symmetry, and effi-
ciency, ϕ(T ) = KS(T ) (Exercise 15.10). Since ϕ and KS satisfy limited monotonicity,

ϕ(S) ≥ ϕ(T ) = KS(T ) = KS(S) = x∗. (15.56)

Since KS is efficient, the only alternative in S that is greater than or equal to x∗ is x∗

itself. Therefore, ϕ(S) = x∗ = KS(S), which is what we wanted to show. �

15.9 Bargaining games with more than two players
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the previous sections we concentrated on bargaining games with two players. But
there are cases in which more than two players conduct negotiations. Examples include
the distribution of government ministries among governing coalitions in parliamentary
democracies, and the financing of joint projects.

Definition 15.33 A bargaining game is a triple (N, S, d), where:

� N is a finite set of players.
� S ⊆ RN is a nonempty, compact, and convex set of alternatives.
� d ∈ RN is a disagreement point.
� There exists x ∈ S satisfying x � d.

Denote by FN the family of bargaining games (N, S, d) with the set of players N ,
and by F∗ = ∪{N⊂N}FN the family of all bargaining games with a finite number of
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players. As in the case of two players, a solution concept for bargaining games over the
set of players N is a function associating each bargaining game (N, S, d) ∈ FN with an
alternative ϕ(N, S, d) ∈ S, and a solution concept (for the collection of all bargaining
games with an arbitrary number of players) is a function associating every bargaining
game (N, S, d) ∈ F∗ with an alternative ϕ(N, S, d) ∈ S.

This model has the following interpretation: an alternative in S is the outcome of a
bargaining process if and only if all the players agree to cooperate. In other words, in this
model no proper subset of N can obtain an outcome in S except for d. A model that takes
into account the possibility that various proper subcoalitions of N can on their own obtain
an outcome that is preferred by their members will be presented in Chapter 16.

We now specify the properties we will use in studying bargaining games with more than
two players. The definitions of efficiency, covariance under positive affine transformations,
and independence of irrelevant alternatives are analogous to the definitions in Section 15.3
(page 626).

We next define the concept of symmetry for this case.

Definition 15.34 A bargaining game (N, S, d) ∈ F∗ is called a symmetric game if:

� di = dj for every pair of players i, j ∈ N: the disagreement point is symmetric.
� (xπ(i))i∈N ∈ S for every alternative x ∈ S and every permutation π of N .

A solution concept ϕ satisfies symmetry if ϕi(N, S, d) = ϕj (N, S, d) for every sym-
metric bargaining game (N, S, d) ∈ F∗, and every pair of players i, j ∈ N .

Theorem 15.15 (page 630) can be generalized to the case in which there are more than
two players:

Theorem 15.35 There exists a unique solution concept N ∗ for the family of bargaining
games F∗ satisfying the properties of symmetry, efficiency, covariance under positive
affine transformations, and independence of irrelevant alternatives. For every bargaining
game (N, S, d) ∈ F∗, the point N ∗(N, S, d) is the vector x in S satisfying x � d that
maximizes the product

∏
i∈N (xi − di).

The proof is analogous to the proof in the case |N | = 2 (Exercise 15.29).

Another property of a solution concept, which appears in various contexts, is the
property of consistency.

Definition 15.36 A solution concept ϕ satisfies consistency if for every bargaining game
(N, S, d) ∈ F∗, and every nonempty set of players I ⊂ N , (ϕi(I, S, d))i∈I is the solution
of the bargaining game (I, Ŝ, d̂) in which:

� d̂i = di for every i ∈ I : The disagreement point is derived from the disagreement point
of the original game.

� Ŝ = {
(xi)i∈I ∈ RI :

(
(xi)i∈I , (ϕj (N, S, d))j �∈I

) ∈ S
}
. The set of alternatives is the set of

all alternatives in S at which all the players who are not in I get the outcome offered to
them under the solution concept ϕ.
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A solution concept satisfies consistency if after the bargaining game has ended, every set
of players who decide to go to arbitration and renegotiate only the shares of the members
of that set discover that the arbitrator (who acts according to the solution concept ϕ) will
not change the outcome they previously attained. The consistency property is the only
property we have presented that involves games with different numbers of players.

A permutation π of the set of players N defines a mapping π : RN → RN by

π(x) := (xπ(i))i∈N. (15.57)

For a set S ⊆ RN define

π(S) := {π(x) : x ∈ S}. (15.58)

The bargaining game (N, π(S), π(d)) is the game (N, S, d), in which the names of the
players have been changed according to the permutation π .

A solution concept satisfies anonymity if when the names of the players are changed,
the proposed solution concept changes accordingly. Such a solution concept cannot dis-
criminate between the players solely because of their names.

Definition 15.37 A solution concept ϕ satisfies anonymity if for every bargaining game
(N, S, d) ∈ F ∗, and every permutation π of the set of players N ,

ϕπ(i)(π(S), π(d)) = ϕi(S, d), ∀i ∈ N.

This property is also called independence of the names of the players in the literature.

Denote by F∗
0 the family of bargaining games (N, S, d) satisfying:

1. The set of players N is a finite set.
2. The disagreement point is d = �0 := (0, 0, · · · , 0).
3. The set S is a nonempty, compact, and convex set in RN .
4. x ≥ �0 for every x ∈ S, and there exists x ∈ S such that x � �0.
5. Comprehensiveness: If x ∈ S, then the n-dimensional rectangle defined by d and x is

also contained in S:

×
i∈N

[di, xi] ⊆ S, ∀x ∈ S. (15.59)

Note that every solution concept that satisfies anonymity also satisfies symmetry. The
following theorem is proved in Lensberg [1988].

Theorem 15.38 The only solution concept for the family of bargaining games F∗
0 that

satisfies efficiency, anonymity, covariance under positive affine transformations, and con-
sistency is the Nash solution N ∗.

This characterization does not use the independence of irrelevant alternatives prop-
erty. Thus, when restricted to the family of bargaining games F∗

0 , adding the consistency
property, which is meaningless when |N | = 2, makes independence of irrelevant alter-
natives superfluous. Since the Nash solution N ∗ satisfies the independence of irrelevant
alternatives property, one deduces that this property follows from the other properties
characterizing the Nash solution N ∗.
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15.10 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A discussion of the influence risk aversion has on the outcomes of bargaining games (see
Exercise 15.21) can be found in Kihlstrom, Roth, and Schmeidler [1981]. The difficulty
pointed out in Exercise 15.22 was first noted in Perles and Maschler [1981], which suggests
an alternative solution concept that overcomes this difficulty.

15.11 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

15.1 Prove that the solution concept defined in Example 15.23 (page 640) satisfies
the properties of symmetry, covariance under positive affine transformations, and
independence of irrelevant alternatives, but does not satisfy efficiency.

15.2 Prove that the solution concept defined in Example 15.24 (page 640) satisfies
the properties of efficiency, covariance under positive affine transformations, and
independence of irrelevant alternatives, but does not satisfy symmetry.

15.3 Prove that the solution concept λ450 (S, d) (see Example 15.25 on page 640) satisfies
the properties of efficiency, symmetry, and independence of irrelevant alternatives,
but does not satisfy the property of covariance under affine transformations.

15.4 Prove that the solution concept defined in Example 15.26 (page 640) satisfies the
properties of efficiency, symmetry, and covariance under positive affine transfor-
mations, but does not satisfy the property of independence of irrelevant alternatives.

15.5 Let (S, c) be a bargaining game, and let (T , d) be the image of (S, c) under
the positive affine transformation x #→ ax + b on R2; that is, T = aS + b and
d = ac + b. Prove that the set argmaxy∈T (y1 − d1)(y2 − d2) is the image of the set
argmaxx∈S(x1 − c1)(x2 − c2) under this transformation.

15.6 Let S ⊂ R2, let x ∈ S be an alternative on the boundary of S, and let l be a
supporting line6 of S at x. Let x #→ ax + b be a positive affine transformation on
R2. Prove that the line al + b is a supporting line of the set aS + b at the point
ax + b.

15.7 Let S ⊂ R2 be a convex set, and let a, b ∈ R2. Prove that the set aS + b is convex.

15.8 Let ϕ be a solution concept (for F ) satisfying symmetry and efficiency. Prove that
for every symmetric bargaining game (S, d), the outcome ϕ(S, d) is the highest
point on the line x1 = x2 that is also in S (in other words, the point in S and on the
line x1 = x2 for which x1 is maximal).

15.9 Let ϕ be a solution concept (for F ) satisfying symmetry, efficiency, and inde-
pendence of the units of measurement. Let a, b > 0 be positive numbers, and

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Here we are identifying the line l with the set of points contained in it: the line l defined by the equation
αx1 + βx2 = γ is identified with the collection of points {x ∈ R2 : αx1 + βx2 = γ }.
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let S be the triangle whose vertices are (0, 0), (a, 0), and (0, b). Prove that
ϕ(S, (0, 0)) = (

a
2 , b

2

)
.

15.10 Let ϕ be a solution concept (for F ) satisfying symmetry, efficiency, and inde-
pendence of the units of measurement. Let a, b > 0 be positive numbers, and let
x = (x1, x2) be a point on the ray emanating from (0, 0) and passing through (a, b),
satisfying x1 > a

2 . Let S be the quadrangle whose vertices are (0, 0), (a, 0), (0, b),
and x. Prove that ϕ(S, (0, 0)) = x.

15.11 Prove that under a positive affine transformation of the plane, an equilateral triangle
whose base is the x1-axis is transformed into an equilateral triangle whose base is
parallel to the x1-axis.

15.12 Let ϕ be a solution concept (for F ) satisfying the properties of efficiency and
individual rationality. Let (S, d) be a bargaining game satisfying the following
property: there is an alternative x ∈ S satisfying x ≥ d, but there is no x ∈ S

satisfying x � d. What is ϕ(S, d)?

15.13 A set solution concept for a family of bargaining games F̃ is a function ϕ associat-
ing every bargaining game (S, d) in F̃ with a subset of S (which may contain more
than a single point). Let f : R4 → R be a function. Define a set solution concept
ϕ as follows:

ϕ(S, d) = argmaxx∈Sf (d, x). (15.60)

(a) Give an example of a function f for which ϕ(S, d) is not always a single point.
(b) Prove that ϕ satisfies independence of irrelevant alternatives. In other words,

if T ⊇ S and x ∈ ϕ(T , d) ∩ S, then x ∈ ϕ(S, d).

15.14 Let ϕ1 and ϕ2 be two solution concepts for the family of bargaining gamesF . Define
another solution concept ϕ for the family of bargaining games F as follows:

ϕ(S, d) = 1
2ϕ1(S, d) + 1

2ϕ2(S, d). (15.61)

For each of the following properties, prove or disprove the following claim: if ϕ1

and ϕ2 satisfy the property, then the solution concept ϕ also satisfies the same
property.

(a) Symmetry.
(b) Efficiency.
(c) Independence of irrelevant alternatives.
(d) Covariance under positive affine transformations.

15.15 Two players are to divide $2,000 between them. The utility functions of the players
are the amounts of money they receive: u1(x) = u2(x) = x. If they cannot come
to agreement, neither of them receives anything. For the following cases, describe
the bargaining game derived from the given situation, in utility units, and find its
Nash solution of the game.
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(a) Given any division which the players agree upon, the first player receives his
full share under the agreed division, and the second player pays a tax of 40%.

(b) Repeat the situation in the previous item, but assume that the second player
pays a tax of 60%.

(c) The first player pays a tax of 20%, and the second pays a tax of 30%.

15.16 Two players are to divide $2,000 between them. The utility function of the first
player is u1(x) = x. The utility function of the second player is u2(x) = √

x. For
each of the following two situations, describe the bargaining game derived from
the situation, in utility units, and find its Nash solution.

(a) If the two players cannot come to an agreement, neither of them receives any
payoff.

(b) If the two players cannot come to an agreement, the first one receives $16, and
the second receives $49 (note that in this case the disagreement point in the
utility space is (16, 7)).

15.17 Find the Nash solution for the bargaining game in which

S =
{
x ∈ R2 :

x2
1

162
+ x2

2

202
≤ 1

}
, (15.62)

and

(a) The disagreement point is (0, 0).
(b) The disagreement point is (10, 0).

15.18 Prove Theorem 15.22 on page 638: for every bargaining game (S, d), the only
alternative that constitutes a solution concept according to Definition 15.21
(page 638) is the Nash solution N (S, d). Moreover, the constant c equals minus
the slope of the supporting line of S at the point N (S, d).

15.19 Let (S, d) ∈ F be a bargaining game.

(a) Prove that there exists a unique efficient alternative in S minimizing the absolute
value |(x1 − d1) − (x2 − d2)|. Denote this alternative by x∗.

Let Y be the collection of efficient alternatives y in S satisfying the property that
the sum of their coordinates y1 + y2 is maximal.

(b) Show that the Nash solution N (S, d) is on the efficient boundary between x∗

and the point in Y that is closest to x. In particular, if x∗ ∈ Y then x∗ = N (S, d).

15.20 Let (S, d) ∈ F be a bargaining game. Denote by x2 = g(x1) the equation defining
the north-east boundary of S. Prove that if g is strictly concave and twice differ-
entiable, then the point x∗ = N (S, d) is the only efficient point x in S satisfying
−g′(x1)(x1 − d1) = (x2 − d2).

15.21 Suppose two players have utility functions for money given by

u1(x) = xα1, u2(x) = xα2, (15.63)
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where 0 < α1 < α2 < 1. The Arrow–Pratt risk aversion index of player i is
rui

(x) := − u′′
i (x)

u′
i (x) (see Exercise 2.28 on page 37 for an explanation of this index).

(a) Are the players risk-seeking or risk-averse? In other words, are their utility
functions convex or concave?

(b) Player i is more risk-averse than player j if rui
(x) ≥ ruj

(x) for every x. Which
of the two players is more risk-averse?

(c) The players are to divide between them a potential profit of A dollars, but
this profit can only be realized if the players can come to agreement on how to
divide it. What is the Nash solution of this bargaining game, when the outcomes
are in units of utility? Which of the players receives the greater payoff?

(d) What is the effect of risk aversion on the Nash outcome of a bargaining game
in this example?

15.22 Two bargaining games, (S, (0, 0)) and (T , (0, 0)), are given by

S = {x ∈ R2
+ : 2x1 + x2 ≤ 100}, (15.64)

T = {x ∈ R2
+ : x1 + 2x2 ≤ 100}. (15.65)

David and Jonathan face the following situation. With probability 1
2 , they will

negotiate tomorrow over the bargaining game (S, (0, 0)), and with probability 1
2 ,

they will negotiate over the bargaining game (T , (0, 0)).
David and Jonathan believe in the Nash solution, but they do not know which

bargaining game they will play. Jonathan proposes that they apply the Nash solution
in each of the two bargaining games (when it is reached), and therefore their
expected utility is

1
2N (S, (0, 0)) + 1

2N (T , (0, 0)). (15.66)

David counterproposes as follows: since the probability that they will negotiate
over each of the bargaining games is 1

2 , the players are actually facing the bargaining
game (1

2S + 1
2T , (0, 0)), where the set 1

2S + 1
2T is defined by

1
2S + 1

2T = {
1
2x + 1

2y : x ∈ S, y ∈ T
}
. (15.67)

They should therefore implement the Nash solution over the game ( 1
2S +

1
2T , (0, 0)), which then should be

N
(

1
2S + 1

2T , (0, 0)
)
. (15.68)

To compute the set 1
2S + 1

2T , draw the set 1
2S, and “slide” the set 1

2T along its
efficient points (see Figure 15.26(c)).
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Figure 15.26 The bargaining games (S, (0, 0)), (T , (0, 0)) and ( 1
2S + 1

2T , (0, 0))

Compute 1
2N (S, (0, 0)) + 1

2N (T , (0, 0)), and N
(

1
2S + 1

2T , (0, 0)
)
. Did you get

the same result in both cases?

15.23 Repeat Exercise 15.22 for the following bargaining games (S, (0, 0)) and
(T , (0, 0)):

S = {x ∈ R2
+ : x1 + x2 ≤ 4}, (15.69)

T = {
x ∈ R2

+ : x1 + x2 ≤ 5, 3
4x1 + x2 ≤ 4

}
. (15.70)

15.24 Prove that for every 0◦ < α < 90◦, the solution λα defined on page 640 satisfies
weak efficiency, homogeneity, strict individual rationality, and full monotonicity.
In addition, if α = 45◦, the solution λα satisfies symmetry.

15.25 Prove the minimality of the set of properties characterizing the solution concept
λα, as listed in Theorem 15.31 (page 645). In other words, prove (by examples)
that for every three properties out of the four properties mentioned in the statement
of Theorem 15.31 there exists a solution concept satisfying all three properties, but
not the fourth.

15.26 Solve Exercises 15.15 and 15.16, assuming the players accept the Kalai–
Smorodinsky solution, not the Nash solution. To convert the bargaining game
(S, d) in F to a bargaining game in F0 (over which the Kalai–Smorodinsky solu-
tion is defined), apply the positive affine transformation x #→ x − d and remove
all the points y that do not satisfy y ≥ (0, 0).

15.27 Solve Exercises 15.22 and 15.23, assuming the players accept the Kalai–
Smorodinsky solution, rather than the Nash solution. To convert the bargaining
game (S, d) in F to a bargaining game in F0 (over which the Kalai–Smorodinsky
solution is defined), apply the positive affine transformation x #→ x − d and remove
all the points y that do not satisfy y ≥ (0, 0).

15.28 Prove the minimality of the set of properties defining the Kalai–Smorodinsky
solution. In other words, prove (by examples) that for any set of three of the four
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properties characterizing the solution concept, there exists a solution concept over
F0 that satisfies those three properties, but not the fourth property.

15.29 Prove Theorem 15.35 (page 651), which characterizes the Nash solution for bar-
gaining games with any number of players.
Hint: Look at the function ln(

∏n
i=1(xi − di)).



16 Coalitional games with
transferable utility

Chapter summary
Coalitional games model situations in which players may cooperate to achieve their
goals. It is assumed that every set of players can form a coalition and engage in a
binding agreement that yields them a certain amount of profit. The maximal amount
that a coalition can generate through cooperation is called the worth of the coalition.

In this and subsequent chapters we ask which coalitions of players will form, and, if
the players are partitioned into a certain collection of coalitions, how each coalition will
divide its worth. Specifically, in this chapter we present the model of coalitional games,
and introduce various classes of coalitional games: revenue games, cost games, simple
games, weighted majority games, market games, sequencing games, spanning tree
games, and cost-sharing games. We define the notion of strategic equivalence between
games.

We then turn to define the notion of a solution concept. A single-valued solution
concept is a function that assigns to each coalitional game a vector in RN indicating the
amount each player receives. A set solution concept is a function that assigns to each
coalitional game a set of vectors in RN . Single-valued solution concepts model a judge or
an arbitrator who has to recommend to the players how to divide the worth of the
coalition among its members. A set solution concept may indicate which divisions are
more likely than others.

Finally, using barycentric coordinates, we introduce a graphic representation of
three-player coalitional games.

The games we studied in the previous chapters, with the exception of Chapter 15, were
characterized by the assumption that each player acted independently of the actions of the
other players. Even if there is nothing preventing correlation of actions between the players
and no limit on the information being exchanged among them, and even when there is an
observer who can give the players recommendations on which actions to choose (as in the
chapter on correlated equilibria), correlations and recommendations are not binding on
the players: a player always has the option of choosing any action from the set of actions
available to him. For that reason, such games are called noncooperative games. In this
chapter and the following chapters we will study cooperative games. Cooperative games
model situations in which the players may conclude binding agreements that impose a
particular action or series of actions on each player. The bargaining games that we studied
in Chapter 15 are examples of cooperative games, since the players can agree and commit
themselves to choosing a particular outcome from the set of possible alternatives S: they

659
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can sign an agreement binding them to implement the actions required to obtain this
outcome. The subject of this chapter and the next four chapters is cooperative games with
a finite number of players. The concept of Nash equilibrium as it is applied to strategic-
form and extensive-form games is insufficient for analyzing such games because every
agreement, being a binding agreement, constitutes an equilibrium

Cooperative game theory therefore concentrates on questions such as which sets of
players (coalitions) will agree to conclude binding agreements? Which agreements can
reasonably be expected to be arrived at by players (and which are not reasonable)? Which
agreements can reasonably be proposed to the players by an arbitrator or a judge? For this
reason, cooperative games are also called coalitional games, to underscore the fact that
the situations modeled by cooperative games involve issues related to the formation of
coalitions by the players.

As in noncooperative game theory, in cooperative game theory a player may be a person,
corporation, nation, and so on. The only requirement is that players be capable of arriving
at decisions, and committing to those decisions. In addition, when a coalition is formed,
the coalition must be able to undertake commitments binding on all its members. We will
see that cooperative games can be used to study situations in which the “players” are more
abstract objects, such as roads, flights, political parties, and so on.

In this chapter, and Chapters 17, 18, 19, and 20, we will concentrate on finite games with
transferable utilities. Such games involve a finite number of players, and every coalition
is associated with a sum that it can guarantee for itself.

Definition 16.1 A coalitional game with transferable utility (TU game) is a pair (N ; v)
such that:1

� N = {1, 2, . . . , n} is a finite set of players. A subset of N is called a coalition. The
collection of all the coalitions is denoted by 2N .

� v : 2N → R is a function associating every coalition S with a real number v(S), satis-
fying v(∅) = 0. This function is called the coalitional function of the game.2

The real number v(S) is called the worth of the coalition S. The significance of this is
that if the members of S agree to form the coalition S, then as a result they can produce
(or expect to receive) the sum of v(S) units of money, independently of the actions of the
players who are not members of S.

The fact that v(S) is a real number is an expression of two assumptions of the model:

� The utilities of all the players can be measured in a common unit, such as monetary
units.

� Utility (money) can be tranferred between the players.

Under these assumptions, we can summarize the worth of each coalition using a single
number v(S), which is the amount of utility (= money) that a coalition S can produce
by cooperation among its members. Situations in which a coalition creates utilities that
cannot be transferred between the members of the coalition, such as reputation, prestige,

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Such games are also called coalitional games with side payments in the literature.
2 The function v is also called the characteristic function of the game.
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political influence, and so on, are not dealt with by this model, and are instead described
by coalitional functions without transferable utility. An example of such a model is the
bargaining game discussed in Chapter 15.

In contrast to the commonplace meaning of the term “coalition,” for mathematical
convenience a set containing only one player, and similarly the empty set ∅, will each be
called a coalition. As we saw in the definition of coalitional games, it is standard to set
the worth of the empty coalition at 0.

Under the interpretation used here, a coalitional game is sometimes called a profit
game. We may also be interested in what is termed a cost game, in which the worth of a
coalition S is the sum that the members of the coalition must pay. An example of a cost
game is given by a set of townships that wish to pave a network of roads, where the worth
of a coalition is the cost of paving a network of roads connecting only the townships in
that coalition. The coalitional function in a cost game is denoted by c: it is the function
associating each coalition S with the costs c(S) that the members of S will bear if they
agree to form a coalition. It is again mathematically convenient to define c(∅) = 0.

The term “forming a coalition” is given to varying interpretations, depending on the
situation one wishes to model. The property common to all coalition formations is the
fact that the members of a coalition agree to join the coalition, and commit to their roles
within it. A coalition cannot form without the agreement of all its members.

We remark that when we say that coalitions S and T are formed, we mean that they
are disjoint: S ∩ T = ∅. If one or more players participate in two coalitions S and T , it is
meaningless to say that S and T are formed.

A coalitional game model (N ; v) (or (N ; c)) always includes a basic assumption: the
money gained (or paid) by a coalition S, if it is formed, does not depend on the behavior of
players who are not in S, nor on other coalitions that may form. This assumption greatly
restricts the applicability of the model. For example, in an economic analysis of oligopoly,
in which a set of manufacturers forms a coalition, the coalitional game model cannot take
into account the effects of coalitions of players formed outside of the oligopoly on the
oligopoly’s profits. There exists a more general model called a game in partition function
form, which is not considered in this book, that takes into account the possibility that the
profit of every coalition S may depend on the partition into coalitions of the players who
are not members of S.

16.1 Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present several situations that can be analyzed as coalitional games.

16.1.1 Profit games
Profit games are games in which players profit according to the coalitions they form. For
example, imagine a situation with three entrepreneurs: Orville, Ron, and Wilbur. Orville
has ideas for various new inventions and patents, and he estimates his profits from these
inventions to be $170,000 per year. Ron has a sharp business sense, and is interested
in forming a business consultancy, which he estimates can yield profits of $150,000 per
year. Wilbur, an excellent salesman, is interested in forming a sales company, which he
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estimates can yield profits of $180,000 per year. The three entrepreneurs recognize that
their talents are complementary, and that if they work together, they can profit more than if
they each work separately. Ron can advise Orville regarding which patents command the
greatest market demand, so they estimate that together they can gain profits of $350,000
per year. Wilbur can sell Orville’s inventions, so they estimate that together they can gain
profits of $380,000 per year. Ron and Wilbur together can form a business consulting
and sales corporation, which they estimate can gain profits of $360,000 per year. If all
three of them work together, Ron can tell Orville which inventions will enjoy the greatest
market demand, and then Wilbur can sell those inventions; the estimated profits of all
three working together is $560,000 per year.

The entrepreneurs understand that it is to their advantage to work together, but it is not
so immediately clear how they ought to divide among them the profits of a joint company,
should they form one, because the contribution of each entrepreneur is different from
that of the others, and the profit each one can earn working alone also differs from one
entrepreneur to the next.

The coalitional game that corresponds to this situation (with payoffs in dollars) is as
follows:3

v(∅) = 0,

v(Wilbur) = 180,000,

v(Orville) = 170,000,

v(Ron) = 150,000,

v(Orville, Wilbur) = 380,000,

v(Ron, Wilbur) = 360,000,

v(Orville, Ron) = 350,000,

v(Orville, Wilbur, Ron) = 560,000.

16.1.2 Cost games
Cost games are similar to profit games, but the worth of a coalition in a cost game
represents the price the coalition members must pay if the coalition were to form. We
present an example of a cost game.

Sweden, Norway, and Finland are interested in constructing a dam for generating 3
gigawatts of electricity; each country will receive one-third of the electricity generated by
the dam. The cost of constructing the dam is $180 million. The question the leaders of the
three nations need to decide is how to divide that cost between them. Since each country
will receive one-third of the generated electricity, it is reasonable to require that each one
also contribute one-third of the construction costs. But suppose that it is discovered that
there is a river inside Sweden appropriate for a smaller dam, that can generate 2 gigwatts
of electricity, at a construction cost of $100 million. Sweden then claims that if the three
countries agree to share the cost of the larger dam equally, with each paying $60 million,
then Sweden would be better off building a smaller dam with either Norway or Finland,

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 For simplicity, we will write v(Orville, Wilbur) instead of v({Orville, Wilbur}).



663 16.1 Examples

with each paying $50 million. But Finland and Norway can also build a smaller dam
generating 2 gigawatts together, at a cost of $130 million. Any country that fails to join
the two other countries in a joint dam-constructing project will have no choice but to build
a 1 gigawatt electricity-generating plant alone. The cost of constructing such a plant is
$80 million for Sweden, $90 million for Norway, and $70 million for Finland.

Given this, how should the three countries divide the cost of constructing a large dam
between them?

The coalitional game corresponding to this situation is the following. Let c(S) represent
the cost in millions of dollars for coalition S to provide a gigawatt of electricity to each
member country (costs are listed in millions of dollars).

c(∅) = 0,

c(Finland) = 70,

c(Sweden) = 80,

c(Norway) = 90,

c(Sweden, Finland) = 100,

c(Sweden, Norway) = 100,

c(Norway, Finland) = 130,

c(Sweden, Norway, Finland) = 180.

16.1.3 Simple games
A coalitional game is simple if the worth of any coalition is either 0 or 1.

Definition 16.2 A coalitional game (N ; v) is called simple if for each coalition S, either
v(S) = 0, or v(S) = 1.

In a simple game, a coalition S is called winning if v(S) = 1, and is called losing if
v(S) = 0. It is sometimes convenient to represent simple games by indicating the family
of winning coalitions W = {S ⊆ N : v(S) = 1}.

Simple games can model committee votes, including cases in which the voting rule
is not necessarily majority rule. We interpret v(S) = 1 as meaning that the coalition S

can pass a motion, and v(S) = 0 as meaning that coalition S cannot pass a motion on its
own. For example, the United Nations Security Council has 5 permanent members, and
10 nonpermanent members. Every permanent member can cast a veto on any Security
Council resolution, and adopting a resolution requires the support of a majority of 9
council members. Ignoring the possibility of abstention in votes, this means that for a
resolution to be adopted by the council it needs the support of all 5 permanent members,
and at least 4 nonpermanent members. The coalitional function v corresponding to this
game is

v(S) =
{

1 if |S| ≥ 9 and S contains all the permanent members,
0 for any other coalition S.

(16.1)
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Another example is the legislative process in the United States. Passing a bill into law in
the United States requires the signature of the President of the United States, and a simple
majority in both the Senate (composed of 100 Senators) and the House of Representatives
(composed of 435 members), or alternatively the two-thirds majority in both the Senate
and the House of Representatives required to override a presidential veto. In Exercise 16.2,
the reader is asked to write down the coalitional game corresponding to this situation. In
this example, v(S) is not measured in units of money, but rather in terms of “gover-
nance,” or “victory,” or “the power to make decisions,” and v(S) takes the values of either
0 or 1.

16.1.4 Weighted majority games
Weighted majority games are a special case of simple games. In the British Parliament’s
House of Commons, for example, which is comprised of 650 members, a coalition requires
a majority of 326 members to form a government. Suppose there are three parties rep-
resented, the first with 282 seats, the second with 260 seats, and the third with 108
seats.

Denote by 1 the “worth” of being the governing coalition and by 0 the “worth” of being
in the opposition. The coalitional game corresponding to this situation is a three-player
game. Since no single party has 326 seats or more, no party alone can form a governing
coalition. Therefore,

v(1) = v(2) = v(3) = 0.

Since every pair of parties together has more than 326 seats, each pair of parties may
form a governing coalition, and all three parties together may form a governing coalition.
Therefore,

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1.

Note that although each party has a different number of parliament members, when this
situation is presented as a coalitional game, the parties have entirely symmetric roles. We
now define the family of weighted majority games.

Definition 16.3 A coalitional game (N ; v) is a weighted majority game if there exists
a quota q ≥ 0 and nonnegative real weights (wi)i∈N , one for each player, such that the
worth of each nonempty coalition S is

v(S) =
{

1 if
∑

i∈S wi ≥ q,

0 if
∑

i∈S wi < q.
(16.2)

A weighted majority game is denoted by [q; w1, w2, . . . , wn]. The example above
with the three parties in the British House of Commons is the weighted majority game
[326; 282, 260, 108]. Every weighted majority game is a simple game, but not every simple
game can be represented as a weighted majority game (Exercise 16.10).
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16.1.5 Market games
Market games are games arising from economic situations. Consider five traders, three
of whom arrive to market with 100 liters of gin apiece, and two others with 100 liters of
tonic apiece. Assuming that customers are interested solely in cocktails of equal parts gin
and tonic, the traders recognize that they must cooperate with each other. The price for a
cocktail composed of equal parts gin and tonic is $100 per liter.

Denoting the set of traders with gin by G, and the set of traders with tonic by T ,
the coalitional game corresponding to this situation is given by the following coalitional
function:4,5

v(S) = 20,000 × min{|S ∩ G|, |S ∩ T |}. (16.3)

The formal definition and analysis of market games appear in Section 17.4 (page 702).

16.1.6 Sequencing games
Sequencing games are games in which players are to be ordered in a particular sequence;
every player prefers being placed earlier in the queue to being placed later in it.

Consider three customers, Eileen, Barbara, and Gail, who seek to hire an architect. The
following table presents the placements in the queue of each customer in the architect’s
schedule book, the amount of time the architect needs to devote to each customer, and the
financial loss of each customer from every day lost until the completion of the architectural
job she wishes to accomplish.

Number in the Queue Name Time to completion of job Loss per day (in dollars)
1 Eileen 3 2,000
2 Barbara 4 1,500
3 Gail 2 3,000

The current sequencing of the architect’s work leads to a loss of 3 × $2,000 = $6,000 for
Eileen, a loss of 7 × $1,500 = $10,500 for Barbara, and a loss of 9 × $3,000 = $27,000
for Gail. But if Barbara and Gail were to exchange places in the queue, Gail’s loss would
fall to 5 × $3,000 = $15,000, while Barbara’s loss would rise to 9 × $1,500 = $13,500.
The sum of their losses together, however, falls by $9,000 (from $37,500 to $28,500);
hence if Gail were to compensate Barbara for this by paying her, say, $5,000, both of
them would profit from the new scheduling. Eileen and Gail cannot switch places unilat-
erally: such a switch would affect Barbara, and could not be accomplished without her
consent.

We can similarly compute the optimal scheduling of jobs that can be arrived at by
changing the ordering of Eileen, Barbara, and Gail’s jobs, as well as the gain achievable
by each coalition of two or three players. The coalitional function corresponding to the
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4 For every coalition S, |S| denotes the number of members of coalition S.
5 The constant 20,000 is the worth of a cocktail composed of 100 liters of gin and 100 liters of tonic.
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Amherst Belchertown Conway
Central drainage point 12 4

Amherst 40 3
Belchertown 04 2

Conway 23 0

Figure 16.1 Costs of laying sewage pipes

sequencing game is:

v(Eileen) = 0,

v(Barbara) = 0,

v(Gail) = 0,

v(Eileen, Barbara) = 0,

v(Eileen, Gail) = 0,

v(Barbara, Gail) = 9,000,

v(Eileen, Gail, Barbara) = 14,000.

In general, a sequencing game is given by an ordering of the sets of players, the amount
of time that needs to be devoted to each player, and the cost per day borne by each player
until the completion of the job he needs accomplished. We call a re-ordering of the players
feasible for coalition S if under both orderings (the new ordering and the original ordering)
the amount of time needed for completing the job of every player who is not a member of
S is unchanged. For example, the ordering [1: Gail, 2: Barbara, 3: Eileen] is feasible for
the coalition {Eileen, Barbara, Gail}, but is not feasible for the coalition {Eileen, Gail}.
Every sequencing game corresponds to a coalitional game in which the worth of coalition
S is the amount of money that the members of the coalition can save by forming the
optimal feasible ordering (for S).

16.1.7 Spanning tree games
We will give a formal presentation of spanning tree games in Section 17.8. In this section,
we present one example of such games.

Suppose that local authorities have decided to connect three villages, Amherst, Belcher-
town, and Conway, to a single sewage system. The chief engineer of the project knows
that directly connecting each village to the central drainage point into the sewage line is
not necessarily the most cost-effective method: for example, it may be more cost-effective
to connect only Conway to the central drainage point, and connect the other two villages
to Conway. The table in Figure 16.1 depicts the cost of laying a sewage pipe between
every pair of villages, and the cost in millions of dollars of connecting each village to the
drainage point.

These costs are graphically depicted in Figure 16.2.
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Belchertown
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Figure 16.2 A graphical presentation of the costs of laying sewage pipes

After crunching the numbers, the chief engineer concludes that the most cost-effective
solution is to connect Amherst and Belchertown directly to the main sewage line, and to
connect Conway to Belchertown (see Figure 16.2, and check that this is the least expensive
connection option). The total cost of this project is $5,000,000. The next question is how
to divide this cost between the three villages. If the residents of Belchertown are asked to
bear a third of the cost, $1,666,666, they may well claim that the cost of connecting them
directly to the central drainage point is only $1,000,000. Why should they then subsidize
the other villages?

The coalitional game corresponding to this situation, in which the worth of each coali-
tion is the minimal cost of connecting the members of that coalition, directly or indirectly
via other villages, to the central drainage point, is:

c(Amherst) = 2,

c(Belchertown) = 1,

c(Conway) = 4,

c(Amherst, Belchertown) = 3,

c(Amherst, Conway) = 5,

c(Belchertown, Conway) = 3,

c(Amherst, Belchertown, Conway) = 5.

In general, spanning tree games are games based on a connected graph, one of whose
vertices is called the source, each player is associated with a node, and every edge of the
graph is associated with a nonnegative cost. The cost c(S) of a coalition S is the minimal
cost of a collection of edges connecting all the members of S to the source. Since the
collection of edges that attains the minimal cost is a tree (containing no circular paths),
these games are called spanning tree games.

16.1.8 Cost-sharing games
Cost-sharing games model situations in which the cost of a service is to be divided among
different users, where different users need different amounts of that service.
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An example of such a situation, as presented in Littlechild [1974], is the construction of
landing and takeoff runways in airports. Suppose an airport authority intends to construct
a new landing runway in an international airport, and needs to decide:

1. The length of a new runway.
2. The price to charge every airplane using the new runway.

The longer the runway, the greater the construction cost, the more land that needs to be
appropriated, and the greater the maintenance costs. On the other hand, if the runway
is insufficiently long, large airplanes will be unable to land or take off. Charging every
airplane an equal amount per landing and takeoff seems unfair: why should airplanes
capable of landing on a shorter runway pay as much as airplanes needing a long runway?
Why should the smaller airplanes subsidize the needs of the large airplanes? This situation
can be depicted as a cost game, in which a set of players is a set of flights, and the worth
of a coalition is the cost of a landing and takeoff runway that is sufficiently long to satisfy
the needs of all the flights in the coalition.

This is an example in which the “players” are not decision makers in the usual sense, but
rather takeoffs and landings. The real decision makers, of course, are airline executives,
but it is more convenient to model takeoffs and landings as players in the game, because
the relevant information for the problem we are solving is related to the price of takeoffs
and landings. This game is discussed in greater detail in Exercise 18.16 (page 777).

16.2 Strategic equivalence
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The descriptions presented in the examples above do not uniquely define the coalitional
functions of their corresponding games. For example, the worth of a coalition in the cost
game presented in Section 16.1.1 can be calculated in British pounds instead of American
dollars, using an exchange rate. A different perspective on the situation takes into account
all the incomes of all the entrepreneurs. For example, if Wilbur has an income of $10,000
from renting a house he owns, while Orville and Ron have incomes of $5,000 and $4,000
from other endeavors, the coalitional function can be rewritten to take into account the
total income of each member of every coalition. The different games obtained this way
can all be considered to be equivalent from the perspectives of the players, because the
income every entrepreneur draws from his other endeavors should not affect his income
from joining a coalition with other players. We now present a formal definition of this sort
of equivalence.

Let (N ; v) be a coalitional game, and let a > 0. The game (N ; w) defined by

w(S) = av(S), ∀S ⊆ N (16.4)

is the game derived from (N ; v) by changing the units of measurement of the worth of
each coalition, by the exchange rate a. Suppose that in addition to changing the units of
measurement, we give the sum bi to every player i, independently of the coalition he joins
(bi can also be a negative value). If every coalition takes into account the extra sums thus
received by every one of its members, we get the game (N ; u), whose coalitional function
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is given by

u(S) = av(S) +
∑
i∈S

bi, ∀S ⊆ N. (16.5)

We next introduce some convenient notation. For every coalition S, let RS be an |S|-
dimensional Euclidean space, where every axis is associated with one of the players in
coalition S. In other words, if x ∈ RS we denote the coordinates of x by (xi)i∈S .

For every vector x ∈ RN , define

x(S) :=
∑
i∈S

xi, ∅ �= S ⊆ N, (16.6)

x(∅) := 0. (16.7)

In general, xi denotes the amount of money that player i receives (or pays in a cost game).
It follows that the quantity x(S) is the sum of the payments received by members of
coalition S.

Definition 16.4 A coalitional game (N ; w) is strategically equivalent to the game (N ; v)
if there exists a positive number a, and a vector b ∈ RN , such that for every coalition
S ⊆ N :

w(S) = av(S) +
∑
i∈S

bi = av(S) + b(S). (16.8)

In other words, (N ; w) is derived from (N ; v) by changing the units of measurement, and
adding a constant sum that every player receives or pays at the start of the game.

Theorem 16.5 The strategic equivalence relation is an equivalence relation; i.e., it is
reflexive, symmetric, and transitive.6

Proof: To show that (N ; v) is equivalent to itself, in order to prove reflexivity, set a = 1
and b = (0, 0, . . . , 0).

We next show that the strategic equivalence relation is symmetric; i.e., if (N ; w) is
strategically equivalent to (N ; v), then (N ; v) is strategically equivalent to (N ; w). To see
this, if w(S) = av(S) + b(S) for every S ⊆ N , where a > 0, then

v(S) = 1

a
w(S) +

∑
i∈S

−bi

a
. (16.9)

In other words, v(S) = ãw(S) + b̃(S), where ã = 1
a

> 0 and b̃i = − bi

a
for every i ∈ N .

We complete the proof by showing that the strategic equivalence relation is transi-
tive. Suppose that (N ; v) is strategically equivalent to (N ; w), and (N ; w) is strategically
equivalent to (N ; u), i.e., there exist a, a′ > 0 and b, b′ ∈ RN such that

v(S) = aw(S) + b(S), w(S) = a′u(S) + b′(S), ∀S ⊆ N. (16.10)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 A binary relation P over a set X is reflexive if aPa for all a ∈ X. It is symmetric if aPb implies bPa. It is transitive
if aPb and bPc imply aPc.
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Then

v(S) = aw(S) + b(S), w(S) = a′u(S) + b′(S), (16.11)

where a, a′ > 0. Then

v(S) = aw(S) + b(S) = aa′u(S) + (ab′ + b)(S). (16.12)

In other words, v(S) = ãu(S) + b̃(S), where ã = aa′ > 0 and b̃i = ab′
i + bi for every

i ∈ N . This means that (N ; v) is strategically equivalent to (N ; u). �

Definition 16.6 The game (N ; v) is 0 − 1 normalized if v(i) = 0 for every player i ∈ N

and v(N ) = 1. The game is 0 − 0 normalized if v(i) = 0 for every player i ∈ N and
v(N) = 0. The game is 0 − (−1) normalized if v(i) = 0 for every player i ∈ N and
v(N) = −1.

The next theorem states that every coalitional game is strategically equivalent to a
0 − 1, or 0 − 0, or 0 − (−1) normalized game. The proof of the theorem is left to the
reader (Exercise 16.17).

Theorem 16.7 Let (N ; v) be a coalitional game.

1. (N ; v) is strategically equivalent to a 0 − 1 normalized game if and only if v(N) >∑
i∈N v(i).

2. (N ; v) is strategically equivalent to a 0 − 0 normalized game if and only if v(N) =∑
i∈N v(i).

3. (N ; v) is strategically equivalent to a 0 − (−1) normalized game if and only if v(N) <∑
i∈N v(i).

A coalitional game (N ; v) is called 0-normalized if v(i) = 0 for every i ∈ N . By
Theorem 16.7, every game is strategically equivalent to a 0-normalized game.

16.3 A game as a vector in a Euclidean space
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Denote the set of nonempty coalitions by P(N) := {S ⊆ N, S �= ∅}. The space of
coalitional games with the set of players N , GN , is equivalent7 to the (2n − 1)-
dimensional Euclidean space RP(N): a coalitional game (N ; v) is associated with a point
z = (zS)S∈P(N) ∈ RP(N) if and only if v(S) = zS for each coalition S ∈ P(N). The space
RP(N) is a vector space: a game can be multiplied by a constant, and two games can be
added together. The equivalence between RP(N) and GN induces a vector space structure
on GN . For every coalitional function v and every real number α, define the coalitional
function αv as follows:

(αv)(S) := αv(S), ∀S ⊆ N. (16.13)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 Note that when a point in RP(N) is written as a vector with 2n − 1 elements, it is necessary to state which coalition
is associated with each coordinate.
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For every pair of coalitional functions v and w, define the coalitional function v + w as
follows:

(v + w)(S) := v(S) + w(S), ∀S ⊆ N. (16.14)

When α is positive, multiplying by α can be interpreted as changing the units of measure-
ment by α. The game (N ; v + w) can be interpreted as a situation in which the players are
playing two games (N ; v) and (N ; w), and the worth of each coalition is the sum of the
worth of the coalition in both games. This definition applies to situations in which (a) both
the games (N ; v) and (N ; w) are related to each other, in the sense that every coalition
formed in one is also formed in the other, and (b) the worth of a coalition formed in one
game does not affect its worth in the other game, and therefore (v + w)(S) := v(S) + w(S)
for every coalition S.

16.4 Special families of games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Up until now we have not imposed any conditions on the coalitional function v. But
these functions sometimes satisfy properties that have implications for the solutions of the
game. We now present several such properties.

Definition 16.8 A coalitional game (N ; v) is superadditive if for any pair of disjoint
coalitions S and T ,

v(S) + v(T ) ≤ v(S ∪ T ). (16.15)

A superadditive game is one in which two disjoint coalitions that choose to merge can
obtain at least what they could obtain if they instead were to work separately. This property
makes the formation of large coalitions an advantage in superadditive games; there is
“positive pressure” to form the grand coalition N . Although this is not an unequivocal
determination, as we will see in Example 16.12, superadditivity serves as a justification
for the assumption that the grand coalition N will be formed, and many solution concepts
therefore focus mainly on this case.

The corresponding definition for cost games is as follows.

Definition 16.9 A cost game (N ; c) is superadditive if for every pair of disjoint coalitions
S and T ,

c(S ∪ T ) ≤ c(S) + c(T ). (16.16)

The assumption of superadditivity appears natural at first, but there are examples in
which it does not obtain: in some cases, merging coalitions can be detrimental to the
aims they seek to achieve, for political, legal, personal, or other reasons. For example,
the merger of several large companies is liable to lead to a cartel, which is illegal, or to
bureaucratic bloating that can reduce efficiency.
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Definition 16.10 A coalitional game (N ; v) is monotonic if for any pair of coalitions S

and T , such that S ⊆ T ,

v(S) ≤ v(T ). (16.17)

In monotonic games, as a coalition grows larger its worth is not reduced. Although there
may superficially appear to be a resemblance between the definitions of superadditive
games and monotonic games, the two concepts are significantly different.

A monotonic game is not necessarily superadditive, and a superadditive game is not
necessarily monotonic (Exercise 16.21). In addition, while superadditivity is invariant
under strategic equivalence (Exercise 16.22), monotonicity is not invariant under strategic
invariance, since every game is strategically equivalent to a monotonic game (Exercise
16.24). The following example depicts two games that are strategically equivalent; one is
monotonic, and the other is not monotonic.

Example 16.11 Consider two three-player games (N ; v) and (N ; w) with the following coalitional functions:

v(S) = |S|,∀S ⊆ N, (16.18)

w(S) = −|S|,∀S ⊆ N. (16.19)

The coalitional game (N ; v) is monotonic, and the coalitional game (N ; w) is not monotonic. Yet
the two games are strategically equivalent. To see this, let a = 1 and let b ∈ R3 be defined by
b = (−2,−2,−2). Then

w(S) = −|S| = |S| − 2|S| = av(S) + b(S). (16.20)

�

16.5 Solution concepts
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The main questions that are the focus of coalitional game theory include:

1. What happens when the players play the game? What coalitions will form, and if a
coalition S is formed, how does it divide the worth v(S) among its members?

2. What would a judge or an arbitrator recommend that the players do?

The answers to these two questions are quite different. The question regarding the coali-
tional structure that the players can be expected to form is a difficult one, and will not be
addressed in this book. We will often assume that the grand coalition N is formed and
ask how will the players divide among them the worth v(N). The answer to this question
is generally a set solution, i.e., a solution that contains several possible payoff vectors,
according to which the players may choose to divide v(N) among them. On the other
hand, a recommendation of a judge or an arbitrator is usually a point solution, i.e., a single
payoff vector.
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Example 16.12 Majority game Let (N ; v) be the three-player coalitional game in which N = {1, 2, 3}, and

the coalitional function v is given by

v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1.

What can we expect to happen in this game? It is reasonable to suppose that a coalition of two
players will form and that, given the symmetry between the players, the members of the coalition
will divide the worth equally among themselves. This leads to one of the following payoff vectors
in the set {(

1
2 , 1

2 , 0
)
,
(

1
2 , 0, 1

2

)
,
(
0, 1

2 , 1
2

)}
. (16.21)

Without more information about the players, it is not possible to know which payoff vector will
finally be chosen.

In contrast, if the players were to approach an arbitrator and ask him to determine how to divide
the sum 1 that they can achieve, given the symmetry between the players it is reasonable to expect
that the arbitrator will recommend a split of ( 1

3 , 1
3 , 1

3 ).
We can therefore regard the three outcomes

{
( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 )
}

as a set solution to
the game, while ( 1

3 , 1
3 , 1

3 ) is a point solution. �

The simple majority game in Example 16.12 is superadditive (verify!), but there is a
high likelihood in this game that the grand coalition N will not form.

Definition 16.13 Let U be a family of coalitional games (over any set of players). A
solution concept (over U ) is a function ϕ associating every game (N ; v) ∈ U with a subset
ϕ(N ; v) of RN . A solution concept is called a point solution if for every coalitional game
(N ; v) ∈ U , the set ϕ(N ; v) contains only one element.

Note that in Definition 16.13, it is possible for a particular game (N ; v) to satisfy
ϕ(N ; v) = ∅.

Sometimes the players form the grand coalition N , and sometimes several coalitions
are formed instead. Both the set solutions and the point solutions that we will see in the
examples below depend on the coalitional structures that are formed.

Definition 16.14 A coalitional structure is a partition B of the set of players N .

In other words, a coalitional structure is a collection of disjoint and nonempty sets
whose union is N . Examples of coalitional structures for a set of players N = {1, 2, 3, 4}
include:

All the players play as isolated individuals: B = {{1}, {2}, {3}, {4}}.
Two two-player coalitions form: B = {{1, 2}, {3, 4}}.
Players 2 and 3 form a coalition: B = {{1}, {2, 3}, {4}}.
All the players form the grand coalition: B = {{1, 2, 3, 4}}.
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A point solution offers a single solution to every game, given the coalitional structure:
for every coalition S in a coalitional structure, it offers one and only one way to divide
the worth v(S) among the members of the coalition. A set solution offers a set of vector
payoffs for every game and every coalitional structure. We use the notation ϕ(N ; v;B)
to denote a (set or point) solution, when B is the coalitional structure that is formed.
When the coalitional structure that is formed contains only the coalition N , i.e., B =
{N}, we will omit the explicit denotation of the coalitional structure and instead write
ϕ(N ; v).

Definition 16.15 Let (N ; v) be a game, and let B be a coalitional structure. A vec-
tor x ∈ RN is called efficient8 for the coalitional structure B if for every coalition
S ∈ B,

x(S) = v(S). (16.22)

A vector x is called individually rational if for every player i ∈ N ,

xi ≥ v(i). (16.23)

When the players divide into coalitions, forming a coalitional structure B, it is reasonable
to suppose that each coalition S ∈ B will divide its worth v(S) among its members:
the members of the coalition cannot divide among themselves more than the sum v(S)
available to the coalition, and there is no point in dividing less than v(S), because then part
of the worth v(S) available to the coalition is wasted. Therefore, if xi is the sum that player
i receives (or pays), it is reasonable that

∑
i∈S xi = v(S) holds for every coalition S ∈ B.

In that case, the vector x = (xi)i∈N is efficient for a coalitional structure B. Since every
player can guarantee for himself v(i) if he does not join any coalition, it is reasonable to
suppose that every player will demand at least that sum. In other words, xi ≥ v(i): this is
the individual rationality property of the vector x.

This leads to the definition of the set of imputations as the set of all efficient and
individually rational payoffs.

Definition 16.16 Let (N ; v) be a coalitional game, and let B be a coalitional structure.
An imputation for the coalitional structure B is a vector x ∈ RN that is efficient for
the coalitional structure B, and individually rational. The set of all imputations for the
coalitional structure B is denoted by X(B; v).

When the coalitional structure is B = {N} we will say for short “imputation” instead
of “imputation for the coalitional structure {N},”and write X(N ; v) instead of X({N}; v).
Note that the set X(B; v) is compact in RN (see Exercise 16.31).

When there are two players N = {1, 2}, the set of imputations is

X(N ; v) = {x ∈ RN : x1 ≥ v(1), x2 ≥ v(2), x1 + x2 = v(1, 2)}. (16.24)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 The efficiency property is sometimes also called social rationality.
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This set can be empty (if v(1) + v(2) > v(1, 2)), an isolated point (if v(1) + v(2) =
v(1, 2)), or an interval (if v(1) + v(2) < v(1, 2)). In the last case, the extreme points of
the interval are (v(1), v(1, 2) − v(1)) and (v(1, 2) − v(2), v(2)).

Example 16.17 Let N = {1, 2, 3}, and let the coalitional function be

v(1) = v(2) = v(3) = 0, v(1, 2) = 2, v(1, 3) = 3, v(2, 3) = 4, v(1, 2, 3) = 7.

The set of imputations is given by the triangle whose vertices are (7, 0, 0), (0, 7, 0), and (0, 0, 7)
(see Figure 16.3(a)). The sets of imputations for the coalitional structures containing two sets are
intervals (see Figure 16.3(b)).

For the coalitional structure {{1}, {2}, {3}}, the only imputation is (0, 0, 0). The collections of
imputations for coalitional structures containing two sets are the interval (see Figure 16.3(b)):

X({{1, 2}, {3}}; v) = [(0, 2, 0), (2, 0, 0)], (16.25)

X({{1, 3}, {2}}; v) = [(0, 0, 3), (3, 0, 0)], (16.26)

X({{2, 3}, {1}}; v) = [(0, 4, 0), (0, 0, 4)]. (16.27)

(0, 7, 0)

(7, 0, 0)

(0, 0, 7)

x2

x1

x3

(a)

(0, 7, 0)

(7, 0, 0)

(0, 0, 7)

x2

x1

x3

X({{1, 2}, {3}}; v)

X ({{2, 3}, {2}}; v)

X({{1, 3}, {1}}; v)

(b)
Figure 16.3 The set of imputations of all the coalitional structures in Example 16.17 �

The set of imputations may be empty: this happens if there is a coalition S ∈ B such
that

∑
i∈S v(i) > v(S).

Let N be a set of players, and B be a coalitional structure. One possible solution concept
is

ϕ(N ; v;B) := X(B; v). (16.28)

This is the set of all possible individually rational and efficient outcomes. In other words,
if x �∈ X(B; v), it is not reasonable for the players to divide among themselves the sum
they receive according to x. This is a weak solution: in many games the set X(B; v) is
very large (as in Example 16.17). When the set X(B; v) is empty, it is unclear whether or
not the coalitional structure B will be formed, and if it is formed, this solution concept
provides no prediction regarding the outcome of the game.
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(0, 7, 0)

(7, 0, 0)

(0, 0, 7)

(0, 7
2 , 7

2 )

(3, 3, 1)
x2

x1

x3

Three-dimensional space Two-dimensional space

(0, 7, 0)

(7, 0, 0)

(0, 0, 7)

(0, 7
2 , 7

2 )
(3, 3, 1)

Figure 16.4 The set of imputations in Example 16.17

(0, 7, 0)

(7, 0, 0)

(0, 0, 7)

x2

x1

x3

(4, 3, 0)

(0, 3, 4)

Three-dimensional space

(0, 0, 7)

(0,7,0) (7, 0, 0)
(4, 3, 0)

(0, 3, 4)

Two-dimensional space

Figure 16.5 Imputations at which x2 ≥ 3, or, equivalently, x1 + x3 ≤ 4

16.6 Geometric representation of the set of imputations
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

As we saw in Example 16.17, although the set of imputations is a subset of RN , the effi-
ciency constraint (

∑n
i=1 xi = x(N) = v(N)) implies that this set is located in an (n − 1)-

dimensional subspace. Since a large part of our intuition comes from graphical represen-
tations of figures, and the smaller the dimension of the space in which they are displayed,
the easier it is to present them, it is more convenient to present the set of imputations in
Rn−1. This advantage is especially pronounced in three-player games, because in that case
the set of imputations is a triangle in R3, which can be more conveniently presented in R2

(see Figure 16.4).
The set of all imputations in which one coordinate is fixed is a straight line parallel to

the corresponding side of the triangle. Figure 16.5 depicts (in both R3 and R2) the set of
imputations x in Example 16.17 satisfying x2 ≥ 3. This is also the set of imputations x in
Example 16.17 satisfying x1 + x3 ≤ 4.

In a 0-normalized three-player game it is convenient to present the set of imputations as
an equilateral triangle in R2 whose height is v(N) (as opposed to its height in R3, which is
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(7, 0, 0)

(0, 0, 7) (0, 7, 0)

x
x1

x2 x3

Figure 16.6 The barycentric coordinates of x: the distances of the point x from the
three sides of the triangle

(0, 0, 7) (0, 7, 0)

(7, 0, 0)

( 7
2 , 7

2 , 0)

7
2

7
2

(a) (b)

(0, 0, 7) (0, 7, 0)

(7, 0, 0)

(1, 3, 3)1

3 3

Figure 16.7 The sum of the distances of every point from the sides of a triangle
equals the height of the triangle

√
3

2 v(N); check that this is true). The sides of the triangle will be labeled by the names of
the three players, 1, 2, and 3. A point in the triangle will be denoted by x = (x1, x2, x3),
where xi is the distance of the point from the side labeled i, for i ∈ {1, 2, 3}. Recall that
in an equilateral triangle, the sum of the distances of each point from the three sides of the
triangle equals the height of the triangle (see Exercise 16.35). It follows that the vertices
of the triangle are (v(N ), 0, 0), (0, v(N), 0), and (0, 0, v(N)), and every point in the tri-
angle satisfies x1 + x2 + x3 = v(N) (see Figures 16.6 and 16.7). Similarly, every point in
the triangle corresponds to an efficient imputation because the game is 0-normalized and
the distance of the point from each one of the sides of the triangle is nonnegative, hence
xi ≥ 0 = v(i). This coordinate system is called the barycentric coordinate system, and
it can be generalized to any number of players. For further discussion of this topic, see
Section 23.1 (page 916). Barycentric coordinates have the following physical interpre-
tation. If we place weights x1, x2, and x3 respectively at the three vertices (v(N), 0, 0),
(0, v(N ), 0), and (0, 0, v(N )) of the triangle, the center of mass of the system will be the
point x = (x1, x2, x3). The word barycenter means “center of mass,” which is where the
term barycentric coordinates comes from.
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16.7 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Simple games and weighted majority games were first introduced in von Neumann and
Morgenstern [1944]. Market games were first introduced in Shapley and Shubik [1963].
Sequencing games were first introduced in Curiel, Pederzoli, and Tijs [1989]. Span-
ning tree games were first introduced in Claus and Kleitman [1973] and in Bird [1976].
Exercise 16.6 is taken from Tamir [1991].

16.8 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

16.1 By finding the appropriate weights, show that the United Nations Security Council
game described by Equation (16.1) (page 663) is a weighted majority game.

16.2 Passing a bill into law in the United States requires the signature of the President
of the United States, and a simple majority in both the Senate (composed of 100
Senators) and the House of Representatives (composed of 435 members), or alter-
natively a two-thirds majority in both the Senate and the House of Representatives
required to override a presidential veto.

(a) Write down the coalitional function of the corresponding game.
(b) Is this a weighted majority game? If you answer yes, write down the quota and

weights of the game. If you answer no, prove that it is not a weighted majority
game.

16.3 Sequencing game Don, a painter, is hired to paint the houses of Henry, Ethan, and
Tom. The following table depicts the sequential ordering of each client in Don’s
schedule book, the amount of time required to paint his house, and the loss he
suffers from every day that passes until work is completed.

Sequential ordering Name Time required Daily loss in dollars
1 Henry 5 200
2 Ethan 3 550
3 Tom 4 400

Write down the coalitional function of the corresponding sequencing game in which
the worth of a coalition is the sum of money that the members of the coalition can
save by changing their ordering in a feasible way in Don’s schedule book.

16.4 Write down the coalitional functions in each of the following weighted majority
games:

(a) [4; 3, 2, 1, 1].
(b) [5; 3, 2, 1, 1].
(c) [4; 3, 1, 1, 1].
(d) [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
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16.5 The board of directors of a certain company contains four members (including
the chairman of the board). A motion is passed by the board only if the chairman
approves it, and it is supported by a majority of the board (i.e., gets at least three
votes). Write down the coalitional function of the corresponding game.

16.6 Spanning tree games The following figure depicts a network of roads connecting
the capital city, Washington, with three nearby towns, Bethesda, Silver Spring, and
McLean. The towns are responsible for maintaining the roads between themselves
and the capital. The maintenance cost of every segment of road is listed as a unit.

In the figure, a large dot indicates a vertex at which a town is located, and a
small dot indicates a vertex at which no town is located.

Define c(S) as the minimal cost required for all the towns in coalition S to be
connected with the capital. Write down the coalitional function.

McLean Silver  Spring

Washington

Bethesda

11

1
11 11

11

16.7 Repeat Exercise 16.6 for each of the following networks. The maintenance cost of
each road segment is indicated next to it.

Wilmington Baltimore

Washington

Silver Spring

Richmond

5
55

50
20

10

30

20

Rockville Alexandria

Washington

2

44 4

54
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New York City

5

2

7

Newburgh

Albany

3

8

Binghamton

4

6

Montreal

Buffalo

16.8 Prove that the following weighted majority games share the same coalitional func-
tion, and therefore they are different representations of the same game.

[2; 1, 1, 1], [9; 8, 2, 7], [9; 8, 1, 8].

16.9 The representation [2; 1, 1, 1] of the game in Exercise 16.8 has the property that
the sum of the weights equals the quota 2 in every minimal winning coalition, that
is, a winning coalition such that every one of its proper subsets is not winning.
These weights are called homogeneous weights, and the representation is called a
homogeneous representation.

In general, weights w1, w2, . . . , wn are called homogeneous weights if there
exists a real number q such that in the weighted majority game [q; w1, w2, . . . , wn]
the equality

∑
i∈S wi = q holds for every minimal winning coalition S. This rep-

resentation is called a homogeneous representation.
For each of the following weighted majority games determine whether it has a

homogeneous representation. If yes, write it down. If no, explain why.

(a) [10; 9, 1, 2, 3, 4].
(b) [8; 5, 4, 2].
(c) [9; 7, 5, 3, 1].
(d) [10; 7, 5, 3, 1].

16.10 A projective game with seven players Consider a simple game with seven play-
ers, with winning coalitions:

{1, 2, 4}, {2, 3, 5}, {1, 3, 6}, {3, 4, 7}, {1, 5, 7}, {2, 6, 7}, {4, 5, 6},

and every coalition containing at least one of these winning coalitions. The game is
presented graphically in the following figure. Each winning coalition must contain
three players who are either all along one of the straight lines, or all on the
circle.
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1

32

7

5

64

Prove that this game cannot be represented as a weighted majority game.

16.11 A player i in a simple game (N ; v) is called a veto player if v(S) = 0 for every
coalition S that does not contain i. The player is called a dictator if v(S) = 1 if
and only if i ∈ S.

(a) Prove that in a simple game satisfying the property that v(S) + v(N \ S) = 1
for every coalition S ⊆ N , there exists at most one veto player, and that player
is a dictator.

(b) Find a simple three-player game satisfying v(S) + v(N \ S) = 1 for every
coalition S ⊆ N that has no veto player.

16.12 Market game A set of merchants N1 = {1, 2} sell their wares in the market.
Each merchant has an “initial endowment” (0, 1

2 ): the first number represents the
amount of gin the merchant has and the second number the amount of tonic the
merchant has. A second set of merchants N2 = {3, 4, 5} also sells in the same
market, and each member of this set has an initial endowment of (1, 0). The total
bundle available to a coalition S ⊆ N1 ∪ N2 is(|S ∩ N2|, 1

2 |S ∩ N1|
)
,

where |R| denotes the number of members of coalition R.
Consumers will only buy cocktails containing equal parts gin and tonic. The

net profit from selling α units of cocktail is α dollars. Describe this situation as a
coalitional game, and write down in detail the coalitional function.

16.13 Repeat Exercise 16.12, but assume that the initial endowment of the merchants in
N1 is (0, 2

3 ).

16.14 Are the following three-player games strategically equivalent? Justify your
answer.

v(1) = 6, v(2) = 5, v(3) = 8, v(1, 2) = 10, v(1, 3) = 20,

v(2, 3) = 50, v(1, 2, 3) = 80,

w(1) = 13, w(2) = 10, w(3) = 19, w(1, 2) = 25, w(1, 3) = 55,

w(2, 3) = 140, w(1, 2, 3) = 235.



682 Coalitional games with transferable utility

16.15 Let (N ; v) be the coalitional game with N = {1, 2, 3} and the following coalitional
function:

v(1) = 3, v(2) = 6, v(3) = 8, v(1, 2) = 12, v(1, 3) = 15,

v(2, 3) = 18, v(1, 2, 3) = 80.

Write down a 0 − 1 normalized coalitional game (N ; w) that is strategically equiv-
alent to (N ; v).

16.16 What is the coalitional function of the game derived from

v(1) = 20, v(2) = 30, v(3) = 50, v(1, 2) = 10, v(1, 3) = 15,

v(2, 3) = 40, v(1, 2, 3) = 5,

if each player is given an initial sum of $1,000?

16.17 Prove Theorem 16.7 (page 670): let (N ; v) be a coalitional game. Then

(a) (N ; v) is strategically equivalent to a 0 − 1 normalized game if and only if
v(N) >

∑
i∈N v(i).

(b) (N ; v) is strategically equivalent to a 0 − 0 normalized game if and only
if v(N ) = ∑

i∈N v(i).
(c) (N ; v) is strategically equivalent to a 0 − (−1) normalized game if and only if

v(N ) <
∑

i∈N v(i).

16.18 Describe the family of all superadditive games in which the set of players is
N = {1, 2}.

16.19 Let (N ; v) be a coalitional game with a set of players N = {1, 2, 3} and coalitional
function

v(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if S = ∅,

1 if S = {1}, {2},
2 if S = {3},
4 if |S| = 2,

5 if |S| = 3.

(a) Is (N ; v) a superadditive game?
(b) What is the set of imputations of this game?

16.20 Prove that the convex combination of superadditive games is also superadditive. In
other words, if (N ; v) and (N ; w) are superadditive games, and if 0 ≤ λ ≤ 1, then
the game (N, λv + (1 − λ)w) defined by

(λv + (1 − λ)w)(S) := λv(S) + (1 − λ)w(S) (16.29)

is also superadditive.

16.21 Give an example of a monotonic game that is not superadditive, and an example
of a superadditive game that is not monotonic.
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16.22 Prove that every game that is strategically equivalent to a superadditive game is
itself superadditive.

16.23 Prove that a convex combination of monotonic games is also monotonic. In other
words, if (N ; v) and (N ; w) are monotonic games, and if 0 ≤ λ ≤ 1, then the game
(N, λv + (1 − λ)w) defined by

(λv + (1 − λ)w)(S) := λv(S) + (1 − λ)w(S) (16.30)

is also monotonic.

16.24 (a) Is the three-player game (N ; v) in which v is given by

v(1) = 3, v(2) = 13, v(3) = 4, v(1, 2) = 12, v(1, 3) = 15,

v(2, 3) = 1, v(1, 2, 3) = 10

monotonic? Justify your answer.
(b) Find a monotonic game that is strategically equivalent to (N ; v).
(c) Prove that every game is strategically equivalent to a monotonic game. It follows

that the property of monotonicity is not invariant under strategic equivalence.

16.25 Let (N ; v) be a nonnegative coalitional game, i.e., v(S) ≥ 0 for every coalition
S ⊆ N .

(a) Prove that if (N ; v) is superadditive then (N ; v) is monotonic.
(b) Show by example that the converse does not hold: it is possible for (N ; v) to

be monotonic but not superadditive.

16.26 The 0-normalization of a coalitional game (N ; v) is a coalitional game (N ; w) that
is strategically equivalent to (N ; v) and satisfies w(i) = 0 for every player i ∈ N .
A coalitional game is called 0-monotonic if its 0-normalization is a monotonic
game.

(a) Which of the following monotonic games with set of players N = {1, 2, 3} is
0-monotonic?
(i) v(1) = 5, v(2) = 8, v(3) = 15, v(1, 2) = 10, v(1, 3) = 30, v(2, 3) =

50, v(1, 2, 3) = 80.
(ii) v(1) = 5, v(2) = −2, v(3) = 7, v(1, 2) = 9, v(1, 3) = 30, v(2, 3) =

17, v(1, 2, 3) = 30.
(b) Give an example of a coalitional game that is not monotonic, but is 0-monotonic.

16.27 Prove that a coalitional game (N ; v) is 0-monotonic if and only if v(S ∪ {i}) ≥
v(S) + v(i) for every coalition S and every player i �∈ S.

16.28 Let (N ; v) be a coalitional game. The superadditive cover of (N ; v) is the coalitional
game (N ; w) satisfying the properties:

� (N ; w) is a superadditive game.
� w(S) ≥ v(S) for every coalition S.
� Every game (N ; u) satisfying the previous two properties also satisfies u(S) ≥
w(S) for every coalition S.
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Find the superadditive cover of the following game, whose set of players is N =
{1, 2, 3}:

v(1) = 3, v(2) = 5, v(3) = 7, v(1, 2) = 6, v(1, 3) = 8,

v(2, 3) = 10, v(1, 2, 3) = 13.

16.29 Let (N ; v) be a coalitional game. The monotonic cover of (N ; v) is the coalitional
game (N ; w) satisfying the properties:

� (N ; w) is a monotonic game.
� w(S) ≥ v(S) for every coalition S.
� Every game (N ; u) satisfying the above two properties also satisfies u(S) ≥ w(S)

for every coalition S.

Prove that the monotonic cover (N ; w) of the game (N ; v) satisfies

w(S) = max
T⊆S

v(S). (16.31)

16.30 (a) How many different coalitional structures can there be in a three-player game?
Write down all of them.

(b) How many different coalitional structures can there be in a four-player game?
Write down all of them.

16.31 Prove that for every coalitional game (N ; v) and every coalitional structure B, the
set of imputations X(B; v) is convex and compact.

16.32 Prove that for every coalitional game (N ; v) there exists a coalitional structure B
for which the set of imputations X(B; v) is nonempty.

16.33 (a) Write down the set of imputations of the three-player game in which

v(1) = 3, v(2) = 5, v(3) = 7, v(1, 2) = 6, v(1, 3) = 12,

v(2, 3) = 15, v(1, 2, 3) = 10,

for all coalitional structures.
(b) Repeat part (a) when v(1, 2, 3) = 13.
(c) Repeat part (a) when v(1, 2, 3) = 34.

16.34 Let (N ; v) and (N ; w) be two coalitional games with the same set of players.
Let x ∈ X(B; v) and y ∈ X(B; w). Does x + y ∈ X(B; v + w) necessarily hold?
Does x − y ∈ X(B; v − w) necessarily hold? If you answer yes to either question,
provide a proof. If you answer no, present a counterexample.

16.35 Suppose that you are given an equilateral triangle, with x being a point in the
triangle. Denote by x1, x2, x3 the distance of the point x from each side of the
triangle, respectively (see accompanying figure).

(a) Prove that x1 + x2 + x3 = k, where k is the height of the triangle.
(b) Prove that this is true even if the point is located in the plane of the triangle, but

not necessarily in the triangle, where the distance from the point to the side of
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the triangle is negative if the line on which the side lies separates the triangle
from the point (in the accompanying diagram, y1 and y2 are positive and y3 is
negative).

(c) Describe a similar property in one-dimensional line segments.

1

32

x
x1

x2 x3
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Chapter summary
This chapter presents the core, which is the most important set solution concept for
coalitional games. The core consists of all coalitionally rational imputations: for every
imputation in the core and every coalition, the total amount that the members of the
coalition receive according to that imputation is at least the worth of the coalition.

The core of a coalitional game may be empty. A condition that characterizes
coalitional games with a nonempty core is provided in Section 17.3. A game satisfying
this condition is called a balanced game and the Bondareva–Shapley Theorem states that
the core of a coalitional game is nonempty if and only if the game is balanced. This
characterization is used in Section 17.4 to prove that every market game has a nonempty
core. A game is called totally balanced if the cores of all its subgames are nonempty. It is
proved that a game is totally balanced if and only if it is a market game. Similarly, a
game is totally balanced if and only if it is the minimum of finitely many additive
games.

In Section 17.6 it is proved that the core is a consistent solution concept with respect
to the Davis–Maschler definition of a reduced game; that is, for every imputation in the
core and every coalition, the restriction of the imputation to that coalition is in the core
of the Davis–Maschler reduced game to that coalition.

We introduce two families of coalitional games, spanning tree games and flow games,
and by identifying imputations in the core we prove that games in both families possess
a nonempty core.

Finally, in Section 17.10 the notion of the core is extended to any coalitional structure,
and we establish a relation between the core of the coalitional game for a coalition
structure and the core of the superadditive cover of the game.

Having previously defined what a solution concept in the context of coalitional games
means, we proceed by introducing the core, which is a central solution concept for this
class of games.

Suppose that the coalition formed by the players is the grand coalition N , and that the
players now need to decide how to divide among themselves the worth of the coalition,
v(N). As explained on page 674, it is reasonable to assume that this will lead to an
imputation in X(N ; v) = {x ∈ RN : x(N) = v(N), xi ≥ v(i) ∀i ∈ N}. In most cases,
there will be a continuum of alternative imputations, and it is natural to ask which
imputations are more likely to be implemented. If x is an imputation according to which

686
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the players divide up v(N), one reasonable assumption is that x(S) ≥ v(S) for every1

coalition S; in words, the total sum received by the players in S should be at least v(S).
If this inequality does not hold, the members of S have an incentive to form their own
separate coalition and attain v(S), which they can then divide among themselves in such a
way that every member i of S receives more than xi , for example, by dividing the excess
v(S) − x(S) equally among the members of the coalition. The concept of the core is based
on this idea: the core contains all the imputations x satisfying the property that for every
coalition S, the members of S collectively receive at least v(S).

17.1 Definition of the core
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 17.1 Let (N ; v) be a coalitional game. An imputation x ∈ X(N ; v) is coali-
tionally rational if for every coalition S ⊆ N

x(S) ≥ v(S). (17.1)

Definition 17.2 The core of a coalitional game (N ; v), denoted by C(N ; v), is the collec-
tion of all coalitionally rational imputations,

C(N ; v) := {x ∈ X(N ; v) : x(S) ≥ v(S), ∀S ⊆ N} . (17.2)

The case where the players do not form the grand coalition N but instead divide up into
several coalitions is dealt with in Section 17.10 (page 732).

When working with cost games, we reverse the inequalities in the definition of the core.

C(N ; c) := {x ∈ X(N ; c) : x(S) ≤ c(S), ∀S ⊆ N}, (17.3)

where X(N ; c) is the set of imputations in the game (N ; c),

X(N ; c) := {x ∈ RN : x(N) = c(N), xi ≤ c(i), ∀i ∈ N}. (17.4)

Some simple properties of the core are detailed in the next theorem.

Theorem 17.3 The core of a coalitional game is the intersection of a finite number of
half-spaces, and is therefore a convex set. In addition, the core is a compact set.

A compact set that is the intersection of a finite number of half-spaces is called
a polytope. It follows from Theorem 17.3 that the core of a coalitional game is a
polytope.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Recall that for x ∈ RN we defined x(S) := ∑
i∈S xi for every nonempty coalition S, and x(∅) := 0.
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Proof: For each coalition S the set {x ∈ RN : x(S) ≥ v(S)} is a closed half-space. The
core is the intersection of 2n − 1 half-spaces {x ∈ RN : x(S) ≥ v(S)}, for all ∅ �= S ⊆ N ,
and the half-spaces {x ∈ RN : x(N ) ≤ v(N)}.

Every half-space is convex, and the intersection of convex sets is convex. The core is
therefore a convex set. Every half-space is closed, and the intersection of closed sets is
closed. The core is therefore a closed set. Finally, since the core is a subset of X(N ; v), it
is bounded. A closed and bounded set is compact. �

Example 17.4 In this example we consider four coalitional games, each with the set of players N = {1, 2, 3},
that are distinguished from each other solely by the worth of coalition {1, 3}.

First game

v(1) = v(2) = v(3) = 0, v(1, 2) = v(2, 3) = 1, v(1, 3) = 2, v(1, 2, 3) = 3.

The set of imputations is the triangle whose vertices are (3, 0, 0), (0, 3, 0), and (0, 0, 3). An
imputation x = (x1, x2, x3) is in the core of this game if and only if

x1 + x2 + x3 = 3, (17.5)

x1 + x2 ≥ 1, (17.6)

x1 + x3 ≥ 2, (17.7)

x2 + x3 ≥ 1, (17.8)

x1, x2, x3 ≥ 0. (17.9)

The set of solutions to this system of equations, which forms a trapezoid, is depicted in Figure 17.1.
The plane in which the figure lies is given by x1 + x2 + x3 = 3 in R3, and the labels in the figure
refer to coordinates in R3.

(0, 0, 3)

(0, 3, 0)
(3, 0, 0)

x1 + x2 ≥ 1

x1 + x3 ≥ 2

x2 + x3 ≥ 1

x3 ≥ 0

x1 ≥ 0

x2 ≥ 0

Figure 17.1 First game: the core of the game, and the inequalities defining it

The condition x1 + x2 ≥ 1 is equivalent to the condition x3 ≤ 2, because x1 + x2 + x3 = 3 and
this corresponds to a line parallel to the side (3, 0, 0) − (0, 3, 0) of the triangle in Figure 17.1. The
rest of the inequalities can be treated similarly.



689 17.1 Definition of the core

Second game
If the worth of the coalition {1, 3} is changed to v(1, 3) = 1, the core becomes the hexagon appearing
in Figure 17.2.

(0, 0, 3)

(0, 3, 0)
(3, 0, 0)

x 1 + x 2 ≥ 1

x 1 + x 3 ≥ 1

x 2 + x 3 ≥ 1

x 3 ≥ 0

x 1 ≥ 0

x 2 ≥ 0

Figure 17.2 Second game: the core of the game, and the inequalities defining it

Third game
If the worth of the coalition {1, 3} is changed to v(1, 3) = 3, the core becomes the one-dimensional
line segment appearing in Figure 17.3.

(0, 0, 3)

(0, 3, 0)
(3, 0, 0)

x1 + x2 ≥ 1

x1 + x3 ≥ 3

x2 + x3 ≥ 1

x3 ≥ 0

x1 ≥ 0

x2 ≥ 0

Figure 17.3 Third game the core of the game, and the inequalities defining it

Fourth game
If the worth of the coalition {1, 3} is changed to v(1, 3) = 4, the core is the empty set.

The above examples do not exhaust all the geometric possibilities of the core. In the following
example we exhibit a coalitional game whose core includes a single point. The core of a three-player
game may also be a triangle, a parallelogram, or a pentagon (Exercise 17.2). �
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Example 17.5 The gloves game Consider a three-player game in which the coalitional function is defined

as follows.

v(1) = v(2) = v(3) = v(1, 2) = 0, v(1, 3) = v(2, 3) = v(1, 2, 3) = 1.

This game is called the “gloves game” because it corresponds to a situation in which Players 1
and 2 each have only a right-handed glove, Player 3 has only a left-handed glove, and the worth of
a coalition equals the number of complementary pairs of gloves that it can form.

In this game, the set of imputations is given by the triangle whose vertices are (1, 0, 0), (0, 1, 0),
and (0, 0, 1), and the core contains a single imputation, (0, 0, 1). To see this, if x = (x1, x2, x3) is
in the core, then in particular x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0. In addition, x2 + x3 ≥
v(2, 3) = 1, and using the efficiency condition x1 + x2 + x3 = 1, one deduces that x1 ≤ 0. This
implies that x1 = 0. Similarly, x2 = 0.

For an intuitive explanation of why the core contains only the imputation (0, 0, 1), note that there
is a surplus of right-handed gloves. This leads to a competition that greatly reduces their value:
if, for example, Player 3 and Player 1 form a coalition in which Player 1 receives α > 0 out of
the quantity of 1 that the coalition can attain, Player 2 receives nothing. Player 2 will therefore be
willing to form a coalition with Player 3 in return for a payoff that is less than α, say, α

2 . Knowing
this, Player 1 will express readiness to form a coalition with Player 3 for an even smaller payoff,
such as α

4 , and so on. �

Example 17.6 The simple majority game Consider a simple majority game with three players, where the

coalitional function is defined as follows (see Example 16.12 on page 673):

v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1.

In this game, again, the set of imputations is given by the triangle whose vertices are (1, 0, 0),
(0, 1, 0), and (0, 0, 1). In this case, the core is empty. To see this, for x to be in the core, it must
be the case that x1 + x2 ≥ 1, x1 + x3 ≥ 1, and x2 + x3 ≥ 1. Summing these three inequalities we
deduce that x1 + x2 + x3 ≥ 3

2 , which contradicts the efficiency requirement x1 + x2 + x3 = 1. �

Theorem 17.7 The core of a coalitional game is covariant under strategic equivalence,2

i.e., for every a > 0, and every b ∈ RN ,

C(N ; av + b) = aC(N ; v) + b. (17.10)

As a corollary of Theorem 17.7, we deduce the following corollary.

Corollary 17.8 The existence of a nonempty core is invariant under strategic equivalence.

Proof of Theorem 17.7: Let (N ; u) be a coalitional game that is strategically equivalent
to (N ; v): there exist a > 0 and b ∈ RN such that

u(S) = av(S) + b(S), ∀S ⊆ N. (17.11)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Recall that for every set C ⊆ RN , every a > 0 and every b ∈ RN , the sets aC and C + b are defined by aC :=
{ax : x ∈ C} and C + b := {x + b : x ∈ C}.
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Let x ∈ C(N ; v). We will show that ax + b ∈ C(N ; u). Since x ∈ C(N ; v),

x(S) ≥ v(S), ∀S ⊆ N, (17.12)

x(N) = v(N). (17.13)

Since a > 0,

ax(S) + b(S) ≥ av(S) + b(S) = u(S), ∀S ⊆ N, (17.14)

ax(N) + b(N) = av(N) + b(N) = u(N). (17.15)

In other words, ax + b ∈ C(N ; u), and we have therefore shown that C(N ; u) ⊆
aC(N ; v) + b.

To show the opposite inclusion, note that since the strategic equivalence relation is
symmetric, (N ; v) is strategically equivalent to (N ; u): indeed, v = 1

a
u − b

a
. From the

first part, C(N ; v) ⊆ 1
a
C(N ; u) − b

a
. By multiplying both sides of the equal sign by a and

adding b to both sides, we get aC(N ; v) + b ⊆ C(N ; u). �
Since the core may in some cases be empty, it is natural to ask whether it is possible to

characterize the games that have nonempty cores, or at least identify interesting families
of games whose core is nonempty. This question is answered in the following sections.

17.2 Balanced collections of coalitions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We begin by seeking a necessary condition for the existence of a nonempty core in three-
player games. Suppose (N ; v) is a coalitional game with three players, N = {1, 2, 3}. An
imputation x is in the core if and only if the following inequalities hold:

x1 + x2 + x3 = v(1, 2, 3), (17.16)

x1 + x2 ≥ v(1, 2), (17.17)

x1 + x3 ≥ v(1, 3), (17.18)

x2 + x3 ≥ v(2, 3), (17.19)

x1 ≥ v(1), (17.20)

x2 ≥ v(2), (17.21)

x3 ≥ v(3). (17.22)

We look for necessary conditions that the function v must meet for this system to have
a solution. Suppose, therefore, that the core is not empty; i.e., Equations (17.16)–(17.22)
have a solution. Combining the inequalities in Equations (17.20), (17.21), and (17.22) and
using Equation (17.16) yields the following necessary condition:

v(1, 2, 3) ≥ v(1) + v(2) + v(3). (17.23)

Combining the inequalities in Equations (17.17) and (17.22), and using Equation (17.16),
yields the following necessary condition:

v(1, 2, 3) ≥ v(1, 2) + v(3). (17.24)
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We similarly derive the following two inequalities:

v(1, 2, 3) ≥ v(1, 3) + v(2), (17.25)

v(1, 2, 3) ≥ v(2, 3) + v(1). (17.26)

Combining the inequalities in Equations (17.17), (17.18), and (17.19), and using Equation
(17.16), yields the following necessary condition:

v(1, 2, 3) ≥ 1
2v(1, 2) + 1

2v(1, 3) + 1
2v(2, 3). (17.27)

With a little effort (Exercise 17.19) we can prove that if Equations (17.23)–(17.27) hold
then there is a solution to the system of Equations (17.16)–(17.22), and therefore the core
is nonempty. In other words, these equations constitute necessary and sufficient conditions
for the core of a three-player game to be nonempty. Our goal now is to generalize this
result to any number of players. To this end, let us look closely at these inequalities.

The inequalities in Equations (17.23)–(17.27) impose the requirement that v(N) be
“sufficiently large.” The right-hand sides of these equations all contain collections of
coalitions multiplied by various coefficients. This is summarized in the following table:

Collection of coalitions Coefficients
Equation (17.23) {{1}, {2}, {3}} 1, 1, 1
Equation (17.24) {{1, 2}, {3}} 1, 1
Equation (17.25) {{1, 3}, {2}} 1, 1
Equation (17.26) {{2, 3}, {1}} 1, 1
Equation (17.27) {{1, 2}, {1, 3}, {2, 3}} 1

2 , 1
2 ,

1
2

The first four collections are partitions of the set of players {1, 2, 3}, that is, a collection of
disjoint coalitions whose union is {1, 2, 3}. The fifth collection, in contrast, does not satisfy
this condition; it corresponds Inequality (17.27), which at this stage in our exposition
does not yet have a clear interpretation. From the way that the first four inequalities in
Equations (17.23), (17.24), (17.25), and (17.26) are obtained here, we can perceive a
necessary condition for the nonemptiness of the core: for every partition {S1, S2, . . . , Sk}
of N , it must be the case that

v(N) ≥ v(S1) + v(S2) + · · · + v(Sk). (17.28)

Indeed, this inequality holds from the combination of the inequalities x(Si) ≥ v(Si) for
i = 1, . . . , k, and the use of the efficiency requirement x(N) = v(N). This is a form of
superadditivity, but it does not imply that (N ; v) is necessarily superadditive, because
the condition applies only to partitions of N . Focusing again on the five collections in
the above table, we will try to find a property common to all of them. To this end, we
define the following two concepts that will be used in the sequel.
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Coalition Incidence matrix Coefficients
{ }1
{ }2
{ }3

001
010
100

1
1
1

{1, 2}
{ }3

011
100

1
1

{1, 3}
{ }2

101
010

1
1

{2, 3}
{ } 1

110
001

1
1

{1, 2}
{1, 3}
{2, 3}

011
101
110

1
2
1
2
1
2

Equation

Equation (1274)

Equation (1275)

Equation (1276)

Equation (1277)

Equation (1278)

Figure 17.4 The incidence matrices for balanced collections of coalitions in
three-player games

Definition 17.9 For every coalition S, the incidence vector of the coalition is the vector
χS ∈ RN defined as follows:

χS
i =

{
1 if i ∈ S,

0 if i �∈ S.
(17.29)

Definition 17.10 Let D = {S1, S2, . . . , Sk} be a collection of nonempty coalitions.
The incidence matrix of D is the matrix with k rows (one for each coalition in the
collection) and n columns (one per player), such that the i-th row is the incidence vector
of coalition Si .

In words, the (i, j )-th entry of the incidence matrix contains 1 if player j is a member of
coalition Si , and 0 if he is not a member of the coalition.

The incidence matrices of the five collections of coalitions mentioned earlier appear
in Figure 17.4, with the corresponding coefficients appearing alongside each matrix. For
example, the second matrix, corresponding to Equation (17.24) and the collection of
coalitions {{1, 2}, {3}}, has two rows: the first is the vector (1, 1, 0), which is the incidence
vector of the coalition {1, 2}, and the second is the vector (0, 0, 1), which is the incidence
vector of the coalition {3}.

One can see that in each collection of coalitions, the inner product of each column of
the incidence matrix with the column of coefficients is 1. A collection of coalitions that
has a vector of positive coefficients satisfying this property is called a balanced collection.
The coefficients are then called balancing coefficients.

Definition 17.11 A collection of coalitions D is a balanced collection if there exists a
vector of positive numbers (δS)S∈D such that∑

{S∈D : i∈S}
δS = 1, ∀i ∈ N. (17.30)
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The vector (δS)S∈D is a vector of balancing weights of the collection. If all we require is
for the coefficients (δS)S∈D to be nonnegative, the corresponding collection of coalitions is
called weakly balanced, and the coefficients (δS)S∈D are called weakly balancing weights.

In vector notation, we can define a balanced collection of coalitions using the incidence
vectors, as follows: a collectionD of coalitions is balanced with balancing weights (δS)S∈D
if ∑

S∈D
δSχ

S = χN, and δS > 0 ∀S ∈ D. (17.31)

The collection is weakly balanced if δS > 0 is replaced by δS ≥ 0 in Equation (17.31).
By definition it follows that every balanced collection is weakly balanced, and therefore
a collection that is not weakly balanced is not balanced. Note that every partition of
N constitutes a balanced collection with weight 1 for every coalition in the partition.
This is because Equation (17.30) holds in this case, since every player i ∈ N appears in
one and only one coalition in the partition, and therefore the sum on the left-hand side
of the equation is 1 for every player i ∈ N . The other direction does not obtain: it is
not true that every balanced collection is a partition. For example, the fifth collection in
Figure 17.4, corresponding to Equation (17.27), is a balanced collection that is not a
partition.

The concept of a balanced collection, in fact, may be regarded as a generalization of
the concept of a partition: suppose that the players could divide their time among the
various coalitions; each player i can determine what part of his time he will devote to each
coalition to which he belongs. For example, a partition B corresponds to the situation in
which every player i belonging to a coalition S in B devotes all his time to this coalition.
The balanced collection D, with balancing coefficients (δS)S∈D, corresponds to a situation
in which every player i devotes δS of his time to the coalition S, for every coalition S in D
to which he belongs. The condition

∑
{S∈D : i∈S} δS = 1 guarantees that no player will be

idle (it will not be the case that
∑

{S∈D : i∈S} δS < 1), and that no player “puts in overtime
hours” (it will not be the case that

∑
{S∈D : i∈S} δS > 1). Every coalition S in the collection

will form for a time period δS (out of 1), which is the amount of time that each member
of the coalition devotes to the coalition.

Example 17.12 Balanced collections in three-player games Suppose that N = {1, 2, 3}. As we saw

above, the following collections are balanced collections, D1 = {{1}, {2}, {3}} with the balanc-
ing weights δ{1} = δ{2} = δ{3} = 1; D2 = {{1, 2}, {1, 3}, {2, 3}} with the balancing weights δ{1,2} =
δ{1,3} = δ{2,3} = 1

2 . We will show that the collection D = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, which
is the union of the collections D1 and D2, is also a balanced collection. In fact, this collection has
an infinite number of vectors of balancing weights,

δ{1} = δ{2} = δ{3} = λ, δ{1,2} = δ{1,3} = δ{2,3} = 1
2 (1 − λ), (17.32)

where 0 < λ < 1.
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This indicates a general way to construct a balanced collection out of two other balanced
collections: if D1 and D2 are two balanced collections, then their union D1 ∪D2 is also a balanced
collection. This follows because if (δ1

S)S∈D1 and (δ2
S)S∈D2 are vectors of balancing weights of the

two collections, then for every 0 < λ < 1, the vector of weights (δ∗S)S∈D1∪D2 defined by

δ∗S =
⎧⎨⎩

λδ1
S if S ∈ D1 \D2,

(1 − λ)δ2
S if S ∈ D2 \D1,

λδ1
S + (1 − λ)δ2

S if S ∈ D1 ∩D2,

(17.33)

is a vector of balancing weights for D1 ∪D2 (Exercise 17.20).
The collection D = {{1, 2}, {1, 3}} is neither balanced, nor weakly balanced. To see this, note

that if (δS )S∈D were a vector of weakly balancing weights for D, then by Equation (17.30), for
i = 1 one has δ{1,2} + δ{1,3} = 1 while for i = 2 one has δ{1,2} = 1, and for i = 3 one has δ{1,3} = 1.
There is no nonnegative solution for these three equations.

The collection D = {{1, 3}, {2, 3}, {1}} is not balanced, but it is weakly balanced. To see this,
note that if (δS )S∈D were a vector of balancing weights for D, then by Equation (17.30) applied
to i = 2 one has δ{2,3} = 1. From Equation (17.30) applied to i = 3 it then follows that one has
δ{1,3} = 0, but for a balanced collection, all the coefficients must be positive numbers. This collection
is, however, weakly balanced, with balancing weights δ{2,3} = δ{1} = 1, δ{1,3} = 0. �

Example 17.13 When N = {1, 2, 3, 4}, the collection {{1, 2}, {2, 3}, {1, 3, 4}, {4}} is a balanced collection,

with balancing weights

δ{1,2} = δ{1,3} = δ{1,3,4} = δ{4} = 1
2 . (17.34)

In contrast, the collection {{1, 2}, {1, 3}, {1, 3, 4}, {4}} is not weakly balanced (why?). �

As previously noted, every balanced collection is in particular weakly balanced. Given
a weakly balanced collection, one can obtain a balanced collection by removing every
coalition whose weight is 0. If (δS)S∈D is a vector of weakly balancing weights for the
collection D, then the collection T defined as follows is a balanced collection, with
balancing weights (δS)S∈T .

T = {S ∈ D : δS > 0} . (17.35)

17.3 The Bondareva–Shapley Theorem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Bondareva [1963] and Shapley [1967] independently proved the following theorem, which
provides a necessary and sufficient condition for the existence of a nonempty core.

Theorem 17.14 (Bondareva, Shapley) A necessary and sufficient condition for the core
of a coalitional game (N ; v) to be nonempty is for every balanced collection D of coali-
tions, and every vector of balancing weights (δS)S∈D for D, to satisfy

v(N) ≥
∑
S∈D

δSv(S). (17.36)
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This condition is called the Bondareva–Shapley condition, or the balancing condition.
A coalitional game satisfying the Bondareva–Shapley condition is called a balanced game,
and the Bondareva–Shapley Theorem can therefore be reformulated as stating that the core
of a coalitional game is nonempty if and only if the game is balanced.

Remark 17.15 The Bondareva–Shapley Theorem holds when the words “balanced col-
lection” are replaced by “weakly balanced collection” in its statement, because Inequality
(17.36) holds for every balanced collection if and only if it holds for every weakly balanced
collection (explain why). �

The Bondareva–Shapley Theorem is not very useful for checking whether the core of
a particular game is empty; it is usually more convenient to solve directly the inequalities
defining the core. The theorem is useful when one wishes to prove that all the games in a
particular class of games have nonempty cores. An example of such a class of games is
that of market games, which we will see in Section 17.4 (page 702).

The following claim will be useful for the proof.

Lemma 17.16 A collection of coalitions D is balanced with balancing weights (δS)S∈D
if and only if for every vector x ∈ RN

∑
S∈D

δSx(S) = x(N). (17.37)

Proof: Assume first that D is a balanced collection of coalitions with balanced weights
(δS)S∈D, and let x ∈ RN . Then

∑
S∈D

δSx(S) =
∑
S∈D

(
δS

∑
i∈S

xi

)
(17.38)

=
∑
i∈N

⎛⎝xi

∑
{S∈D : i∈S}

δS

⎞⎠ (17.39)

=
∑
i∈N

xi = x(N), (17.40)

where Equation (17.38) follows from the definition of x(S), Equation (17.39) follows
from changing the order of summation, and Equation (17.40) holds because (δS)S∈D is a
vector of balanced weights of D (Equation (17.30)).

Suppose now that there exists a vector of positive numbers (δS)S∈D such that Equation
(17.37) holds for every x ∈ RN . We will show that D is a balanced collection of coalitions
with balancing weights (δS)S∈D. To do so, we need to show that

∑
{S∈D : i∈S} δS = 1 for

every player i ∈ N . This equality holds by setting x = χ {i} in Equation (17.37). �

As we showed above, the property of having a nonempty core is invariant under strategic
equivalence (Corollary 17.8). The following theorem states that the balancing property is
also invariant under strategic equivalence.
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Theorem 17.17 Let (N ; v) and (N ; u) be two coalitional games with the same set of
players satisfying the condition that u = av + b, where a > 0 and b ∈ RN . The game
(N ; v) is balanced if and only if the game (N ; u) is balanced.

Proof: It suffices to prove that if the game (N ; v) is balanced then the game (N ; u) is also
balanced (why?). Suppose that (N ; v) is balanced, and let D be a balanced collection with
balancing weights (δS)S∈D . Then

v(N) ≥
∑
s∈D

δSv(S). (17.41)

Lemma 17.16 implies that
∑

S∈D δSb(S) = b(N). Since a > 0, for every balanced collec-
tion D with balancing weights (δS)S∈D one has∑

s∈D
δSu(S) =

∑
s∈D

δS(av(S) + b(S)) (17.42)

= a
∑
s∈D

δSv(S) +
∑
s∈D

δSb(S) (17.43)

≤ av(N) + b(N) = u(N). (17.44)

Since this inequality holds for every balanced collection of coalitions D with balancing
weights (δS)S∈D, it follows that the game (N ; u) is balanced. �

We will present two different proofs of the Bondareva–Shapley Theorem: one proof is
based on the Minmax Theorem, and the other proof is based on the Duality Theorem from
linear programming. Sections 17.3.1 and 17.3.2 are devoted to proving Theorem 17.14
using the Minmax Theorem. The other proof will be presented in Section 17.3.3.

17.3.1 The Bondareva–Shapley condition is a necessary condition for the
nonemptiness of the core
Let x ∈ C(N ; v) be an imputation in the core of the coalitional game (N ; v). In particular,
x(N) = v(N ) and x(S) ≥ v(S) for every coalition S ⊆ N .

Let D be a balanced collection of coalitions with balancing weights (δS)S∈D. We will
show that Equation (17.36) holds.

The balancing weights are nonnegative (they are, in fact, positive), and therefore one
has

δSv(S) ≤ δSx(S), ∀S ∈ D. (17.45)

Summing this equation over all S ∈ D and making use of Lemma 17.16 and the fact that
x(N) = v(N ) yields ∑

S∈D
δSv(S) ≤

∑
S∈D

δSx(S) = x(N) = v(N). (17.46)

This means that Equation (17.36) holds.
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17.3.2 The Bondareva–Shapley condition is a sufficient condition for the
nonemptiness of the core
The proof of the other direction of the Bondareva–Shapley Theorem is more complicated,
and relies on the Minmax Theorem. By Theorem 17.17, the balancing condition is invariant
under strategic equivalence, and by Theorem 17.7, the property of having a nonempty core
is also invariant under strategic equivalence. Since every game is strategically equivalent
to either a 0 − 1, 0 − 0, or 0 − (−1) normalized game (Theorem 16.7 on page 670), it
suffices to prove this direction of the theorem for each of these three cases. In each case,
the proof is by contradiction; we will assume that the game has an empty core, and prove
that it is not balanced.

The proof for 0–1 normalized games:
Step 1: Defining the auxiliary game.
We will define an auxiliary two-player zero-sum strategic-form game that will be used
throughout the proof of this case. The players in this game are denoted Player I
and Player II. The set of (pure) strategies of Player I is {1, 2, . . . , n}. We interpret
this as Player I choosing a player in the coalitional game (N ; v). The set of (pure)
strategies of Player II is {S ⊆ N : v(S) > 0}, the collection of coalitions of positive
worth in the coalitional game (N ; v). Since the game is 0 − 1 normalized, v(N) = 1,
and therefore there is at least one such coalition. The payoffs in the auxiliary game
are

u(i, S) =
{ 1

v(S) if i ∈ S,

0 if i �∈ S.
(17.47)

In words, Player II pays Player I the sum 1
v(S) if the player i chosen by Player I is in the

coalition S chosen by Player II; otherwise he pays him 0. �

Example 17.18 Suppose that N = {1, 2, 3}, and that the coalitional function is

v(1) = v(2) = v(3) = 0, v(1, 2) = 1
3 , v(1, 3) = v(2, 3) = 1

2 , v(1, 2, 3) = 1.

Then the payoff matrix in the auxiliary game is shown in Figure 17.5.

Player I

Player II

3

2

1

{1, 2} {1, 3} {2, 3} {1, 2, 3}

0

3

3

2

0

2

2

2

0

1

1

1

Figure 17.5 The payoff matrix for Example 17.18 �
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The game defined above is a zero-sum game, in which each player has a finite number
of pure strategies. It therefore follows from the Minmax Theorem (see Theorem 5.11 on
page 151), that the game has a value in mixed strategies. Denote this value by λ.

Step 2: Proving that the value λ of the auxiliary game is positive.
Since every column contains at least one positive entry, Player I’s mixed strategy
( 1
n
, 1

n
, . . . , 1

n
), in which he chooses every pure strategy with equal probability, guaran-

tees him a positive payoff that is at least 1
n

min
{

1
v(S) : v(S) > 0

}
. It follows that the value

of the game in mixed strategies is positive.

Step 3: Proving that the value λ of the auxiliary game is less than 1.
We will prove this by showing that Player I cannot guarantee himself an expected payoff
of 1. Let x = (x1, x2, . . . , xn) be a mixed strategy of Player I. Since the game (N ; v) is
0 − 1 normalized, the strategy x is also an imputation in this game. Because the core is
empty, x cannot be contained in the core, and therefore there exists a coalition S such that
v(S) > x(S) ≥ 0 (the inequality x(S) ≥ 0 holds because x is a probability distribution,
and therefore every coordinate of x is nonnegative).

Since v(S) > 0, it follows that S is a pure strategy for Player II in the auxiliary game
that we have constructed. The expected payoff, when Player I plays the mixed strategy x

and Player II plays the pure strategy S, is

u(x, S) =
∑
i∈S

xiu(i, S) =
∑
i∈S

xi

v(S)
= x(S)

v(S)
< 1. (17.48)

We deduce from this that for every mixed strategy of Player I, there is a pure strategy of
Player II guaranteeing that the payoff will be less than 1. By Equation (5.25) (page 151)
it then follows that λ < 1, as claimed.

Step 4: The coalitional game (N ; v) is not balanced. That is, there exists a balanced
collection D, with balancing weights (δS)S∈D, satisfying

v(N) <
∑
S∈D

δSv(S). (17.49)

A mixed strategy of Player II in the auxiliary game is a probability distribution over
coalitions with positive worth. Let y = (yS){S : v(S)>0} be an optimal strategy of Player II
in the auxiliary game. Such a strategy guarantees that the expected payoff will be at most
λ, for every mixed strategy of Player I.

Consider the following collection of coalitions,

D = {S ⊆ N : v(S) > 0} ∪ {{1}, {2}, . . . , {n}}, (17.50)

with weights

δS = yS

λv(S)
, v(S) > 0, (17.51)

δ{i} = 1 −
∑

{S⊆N : i∈S,v(S)>0}
δS, ∀i ∈ N. (17.52)

Since the game is 0 − 1 normalized, v(i) = 0, and therefore no coalition appears more
than once in D.
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We next show that D is a weakly balanced collection with balancing weights (δS)S∈D
defined by Equations (17.51)–(17.52). To do so, we need to show that the sum of the
weights of the coalitions containing each player i equals 1, and that the weights are
nonnegative.

The definition of δS implies that for every player i ∈ N∑
{S⊆N : i∈S,v(S)>0}

δS + δ{i} = 1, (17.53)

and the first property therefore obtains. We next show that the weights are nonnegative. By
Equation (17.51), for every coalition S such that v(S) > 0, the weight δS is the quotient of
the nonnegative number yS and the positive number λv(S), and is therefore nonnegative.
As for the weights (δ{i})i∈N ,∑

{S⊆N : i∈S,v(S)>0}
δS = 1

λ

∑
{S⊆N : i∈S,v(S)>0}

yS

v(S)
= 1

λ
u(i, y) ≤ λ

λ
= 1, (17.54)

where the inequality follows from the fact that y is an optimal strategy for Player II in the
auxiliary game whose value is λ. By definition of δ{i} (see Equation (17.52)), we deduce
that δ{i} ≥ 0, which is what we wanted to show.

We next show that the Bondareva–Shapley condition is not satisfied by the weakly
balanced collection D and by the weights (δS)S∈D. Indeed,∑

S∈D
δSv(S) =

∑
j∈N

δ{j}v(j ) +
∑

{S⊆N : v(S)>0}
δSv(S) (17.55)

= 0 +
∑

{S⊆N : v(S)>0}

yS

λv(S)
v(S) (17.56)

= 1

λ

∑
{S⊆N : v(S)>0}

yS = 1

λ
· 1 > 1 = v(N). (17.57)

In other words, v(N) <
∑

S∈D δSv(S). Removing from D all the coalitions whose weight
is 0, we are left with a balanced collection that does not satisfy the Bondareva–Shapley
condition. We have shown that if the core is empty, the game is not balanced, and this
completes the proof that the Bondareva–Shapley condition is a necessary condition for
the nonemptiness of the core, in the case of 0 − 1 normalized games.

The proof for 0–0 normalized games: We will now show that if a coalitional game (N ; v) is
0 − 0 normalized and has an empty core, then it is not balanced. When a coalitional game
is 0 − 0 normalized, the only imputation is x = (0, 0, . . . , 0). It therefore follows that if the
core is empty, there exists a coalition S satisfying v(S) > 0. Denote by {i1, i2, . . . , in−|S|}
the set of players who are not in S, i.e., N = S ∪ {i1, i2, . . . , in−|S|}. Define the collection
of coalitions

D = {S, {i1}, {i2}, . . . , {in−|S|}}. (17.58)

This is a partition of N , and the collection is therefore balanced with balancing weights

δR = 1, ∀R ∈ D. (17.59)
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But ∑
R∈D

δRv(R) = v(S) +
∑
i �∈S

v(i) = v(S) > 0 = v(N), (17.60)

and the game is therefore not balanced.

The proof for 0 − (−1) normalized games
The core of a 0 − (−1) normalized game is empty, because there is no vector x ∈ RN sat-
isfying xi ≥ v(i) = 0 and

∑
i∈N xi = v(N) = −1. It follows that to prove the sufficiency

of the Bondareva–Shapley condition in this case, we need to show that every 0 − (−1) nor-
malized game is not balanced. Indeed, consider the balanced collection {{1}, {2}, . . . , {n}},
with balancing weights δ{i} = 1 for every i ∈ N . Since

∑
i∈N δ{i}v(i) = 0 > −1 = v(N),

the game is not balanced. We have shown that the Bondareva–Shapley Theorem holds for
0 − 0 normalized games, 0 − 1 normalized games, and 0 − (−1) normalized games, thus
concluding the proof of the theorem. �

17.3.3 A proof of the Bondareva–Shapley Theorem using
linear programming
The Bondareva–Shapley Theorem (Theorem 17.14) can be proved using the Duality
Theorem of linear programming. A brief review of linear programming appears in
Section 23.3 (page 945).

Denote by P(N) := {S ⊆ N, S �= ∅} the collection of nonempty coalitions. Denote by
P the collection of all weights weakly balancing P(N),

P :=
⎧⎨⎩δ = (δS)S∈P(N) : δS ≥ 0 ∀S ∈ P(N),

∑
S∈P(N)

δSχ
S = χN

⎫⎬⎭ . (17.61)

This set is a polytope in the space R2n−1, and is nonempty: it contains, for example, the
vector δ in which δ{i} = 1 for every i ∈ N , and δS = 0 for every S containing at least two
players.

The following theorem is equivalent to Theorem 17.14 (Exercise 17.28).

Theorem 17.19 (Bondareva, Shapley, second formulation) A necessary and sufficient
condition for the nonemptiness of the core of a coalitional game (N ; v) is that

v(N) ≥
∑

S∈P(N)

δSv(S), ∀δ = (δS)S∈P(N) ∈ P. (17.62)

Proof of Theorem 17.19 using linear programming: The proof is conducted in steps. We
will define a linear program and show that its set of feasible solutions is bounded and
nonempty. By the Duality Theorem of linear programming we will deduce that the value
of the linear program, ZP , is equal to the value of its dual program, ZD . We will prove that
the core is nonempty if and only if ZD ≤ v(N), and conclude by proving that ZP ≤ v(N)
if and only if Equation (17.62) holds.
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Step 1: Defining a linear program.
Consider the following linear program with the variables (δS)S∈P(N).

Compute: ZP := max
∑

S∈P(N) δSv(S),
subject to:

∑
{S : i∈S} δS = 1, ∀i ∈ N,

δS ≥ 0, ∀S ∈ P(N).

The set of feasible solutions of this linear program is the set P defined in Equation (17.61).
As previously noted, this set is compact and nonempty; hence ZP is finite.

Step 2: The dual problem.
The dual problem is the following problem with the variables (xi)i∈N (verify!).

Compute: ZD := min x(N),
subject to: x(S) ≥ v(S), ∀S ∈ P(N).

As already shown ZP is finite, and therefore the Duality Theorem of linear programming
(Theorem 23.46 on page 950) implies that ZD is also finite, and equals ZP .

Step 3: If the core is not empty then ZD ≤ v(N).
Let x be a vector in the core. Then x(S) ≥ v(S) for every coalition S, and therefore x

satisfies all the constraints of the dual problem. The value of the objective function at x is
x(N) = v(N ); hence ZD ≤ v(N ).

Step 4: If ZD ≤ v(N ) then the core is not empty.
Let x be a feasible solution of the dual problem at which the minimum is attained, i.e.,
x(N) = ZD . Since x satisfies the constraints of the dual problem, it is coalitionally rational.
We show that x(N ) = v(N). Since ZD ≤ v(N), it follows that x(N) = ∑

i∈N xi = ZD ≤
v(N). For S = N , the constraint x(S) ≥ v(S) is x(N) ≥ v(N), so that we deduce that
x(N) = v(N ). It follows that x is in the core, and therefore the core is not empty.

Step 5: ZP ≤ v(N ) if and only if Equation (17.62) holds.
ZP ≤ v(N ) if and only if

∑
{S∈P(N) : i∈S} δSv(S) ≤ v(N) for every feasible solution

δ = (δS)S∈P(N), i.e., if and only if Equation (17.62) holds. �

17.4 Market games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we will concentrate on coalitional games that naturally arise in the study
of economics and apply the Bondareva–Shapley Theorem to prove the nonemptiness of
the core of these games. The economic model we will study is the model of a market with
a set of producers N = {1, 2, . . . , n} who trade l commodities. The set of commodities is
denoted by L = {1, 2, . . . , l}. The goods produced can be of different types: metals, water,
human resources, consultation hours, etc. We will assume that the final goods that the
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producers offer have fixed prices in the market, and it is therefore convenient to analyze
production as if it involves the production of money.

Denote the nonnegative real numbers by R+ := [0,∞). A vector of commodities is
denoted by x = (xj )Lj=1 ∈ RL

+; i.e., we assume that the quantity of each commodity is
nonnegative. Such a vector x is called a bundle. The bundle of producer i will be denoted
by xi , and the quantity of commodity j in this bundle will be denoted by xi,j .

Each producer has at his disposal a “production technology” represented by a production
function ui : RL

+ → R: if xi ∈ RL
+ is the bundle of commodities owned by producer i, then

that producer can produce the sum of money ui(xi). Since the production technologies
may differ from one producer to another, their production functions may also differ. We
also assume that every producer i has an initial endowment that is a bundle ai ∈ RL

+ of
goods, and the producers can trade goods between each other.

If coalition S is formed, the members of S trade commodities among themselves, with
the goal of maximizing the money that they can produce. In other words, if the coalition S

is formed, the total bundle of goods available to the coalition is a(S) := ∑
i∈S ai ∈ RL

+. The
coalition can allocate to each of its members a bundle xi ∈ RL

+, subject to the constraint

x(S) =
∑
i∈S

xi =
∑
i∈S

ai = a(S). (17.63)

Hence, by this reallocation of commodities, the members of the coalition can together
produce an amount of money equal to

∑
i∈S ui(xi).

Formally, a market is defined as follows.

Definition 17.20 A market is given by a vector (N, L, (ai, ui)i∈N ) where:

� N = {1, 2, . . . , n} is the set of producers.
� L = {1, 2, . . . , l} is the set of commodities.
� For every i ∈ N , ai ∈ RL

+ is the initial endowment of producer i.
� For every i ∈ N , ui : RL

+ → R is the production function of producer i.

The assumption that ai ∈ RL
+ for every i ∈ N implies that there is a finite amount of each

commodity in the market.

Definition 17.21 An allocation for a coalition S is a collection of bundles of commodities
(xi)i∈S , where xi ∈ RL

+ for every producer i ∈ N , satisfying x(S) = a(S).

In words, an allocation is a redistribution of the commodities available to the members
of S in their initial endowments. Denote by XS the set of allocations for coalition S:

XS := {(xi)i∈S : xi ∈ RL
+ ∀i ∈ S, x(S) = a(S)} ⊆ RS×L

+ . (17.64)

Theorem 17.22 For every coalition S, the set XS is compact.

Proof: We need to show that XS is a closed and bounded set. The set XS is bounded
because the total quantity of commodities in the market is bounded: if x ∈ XS , then

0 ≤ xi,j ≤
∑
i∈N

ai,j , ∀i ∈ N, ∀j ∈ L. (17.65)
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To show that XS is a closed set, note that every half-space is closed. The set XS defined
by Equation (17.64) is the intersection of half-spaces and therefore closed. �

Every market can be associated with a coalitional game, in which the set of players is
the set of producers N = {1, 2, . . . , n}, and the worth of each nonempty coalition S ⊆ N

is

v(S) = max

{∑
i∈S

ui(xi) : x = (xi)i∈S ∈ XS

}
. (17.66)

In words, the worth of coalition S is the maximal sum of money that its members can
produce if they trade commodities among themselves (without involving the players who
are not in S). The coalitional game (N ; v) so defined is the market game derived from the
market (N, L, (ai, ui)i∈N ).

The first question to answer is whether v(S) is well defined, i.e., whether the maximum
in Equation (17.66) is attained.

Theorem 17.23 If for every i ∈ N the production function ui is continuous, the maximum
at Equation (17.66) is attained for every coalition S.

Proof: Since all production functions (ui)i∈N are continuous, the function
∑

i∈S ui , as the
sum of a finite number of continuous functions, is also a continuous function. Since the
maximum of a continuous function over a compact set is always attained, and since the
set XS is compact (Theorem 17.22), we deduce that the maximum at Equation (17.66) is
attained. �

Example 17.24 Consider the following market:

� N = {1, 2, 3}; the market contains three producers.
� L = {1, 2}; there are two commodities.
� The initial endowments of the producers are

a1 = (1, 0), a2 = (0, 1), a3 = (2, 2).

� The production functions of the producers are

u1(x1) = x1,1 + x1,2, u2(x2) = x2,1 + 2x2,2, u3(x3) = √
x3,1 +√

x3,2.

The game derived from this market is given as follows. If a coalition contains only one producer,
S = {i}, then the only bundle in XS is ai , the initial endowment of producer i. Therefore,

v(1) = 1, v(2) = 2, v(3) = 2
√

2.

We will compute v(1, 2, 3), and leave the computations of v(1, 2), v(1, 3), and v(2, 3) to the reader
(Exercise 17.36). Note that a1 + a2 + a3 = (3, 3). Every unit of commodity 1 contributes equally
to the production functions of producers 1 and 2, and every unit of commodity 2 contributes to the
production function of producer 2 twice as much as it contributes to producer 1. No production
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loss therefore occurs if nothing is given to producer 1; every quantity of commodities we give him
can be given instead to producer 2 without lessening total production at all. If we therefore set the
bundle of producer 1 as x1 = (0, 0), and denote by x2 = (x2,1, x2,2) the bundle to producer 2, and
by x3 = (3 − x2,1, 3 − x2,2) the bundle to producer 3, then

v(1, 2, 3)

= max
{
x2,1 + 2x2,2 +

√
3 − x2,1 +

√
3 − x2,2 : 0 ≤ x2,1 ≤ 3, 0 ≤ x2,2 ≤ 3

}
.

By differentiating the function x2,1 + 2x2,2 +
√

3 − x2,1 +
√

3 − x2,2 and equating its directional
derivatives to 0, we deduce that the optimal allocation is

x1 = (0, 0), x2 = (
2 3

4 , 2 15
16

)
, x3 = (

1
4 , 1

4

)
,

and that the worth of the grand coalition {1, 2, 3} is the value of the maximum, which is v(1, 2, 3) =
9 5

8 . It can be shown (Exercise 17.36) that the coalitional function of the market game derived from
the market in this example is

v(1) = 1, v(2) = 2, v(3) = 2
√

2, v(1, 2) = 3, v(1, 3) = 5 1
2 ,

v(2, 3) = 8 3
8 , v(1, 2, 3) = 9 5

8 . �

Definition 17.25 A coalitional game (N ; v) is a market game if there exist a positive
number l, and for every player i ∈ N an initial endowment ai ∈ RL

+, and a continuous and
concave production function ui : RL

+ → R, where L = {1, 2, . . . , l}, such that Equation
(17.66) is satisfied3 for every coalition S ∈ P(N).

In other words, a market game is a coalitional game derived from a market in which the
production functions are continuous and concave. The assumption that the production
functions are continuous and concave is part of the definition of a market game. The proof
of the following theorem is left to the reader (Exercise 17.38).

Theorem 17.26 If (N ; v) is a market game, then every coalitional game that is strategi-
cally equivalent to (N ; v) is also a market game.

Theorem 17.27 (Shapley and Shubik [1969]) The core of a market game is nonempty.

Proof: The proof of this theorem relies on the Bondareva–Shapley Theorem; we will
prove that every market game is a balanced game. For every coalition S, choose an
imputation xS = (xS

i )i∈S ∈ RS×L
+ at which the maximum in Equation (17.66) is attained.

This is possible due to Theorem 17.23. Then:

� xS
i ∈ RL

+ for every player i,
� xS(S) = ∑

i∈S xS
i = a(S),

� and
∑

i∈S ui(xS
i ) = v(S).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Recall that P(N ) = {S ⊆ N : S �= ∅} is the collection of all the nonempty coalitions in N .
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Let δ = (δS)S∈P(N) ∈ P be a vector4 that weakly balances P(N). We need to show that

v(N) ≥
∑

S∈P(N)

δSv(S). (17.67)

For every i ∈ N denote

zi :=
∑

{S∈P(N) : i∈S}
δSx

S
i ∈ RL

+. (17.68)

Equation (17.68) is a weighted average with weights (δS){S∈P(N) : i∈S} of the bundles
(xS

i ){S∈P(N) : i∈S} allocated to producer i in each coalition S in which he participates. We
first show that z = (zi)i∈N is a feasible bundle, i.e., that z(N) = a(N). Note that by the
definition of zi ,

z(N ) =
∑
i∈N

zi =
∑
i∈N

∑
{S∈P(N) : i∈S}

δSx
S
i . (17.69)

By changing the order of summation,

z(N ) =
∑

S∈P(N)

∑
i∈S

δSx
S
i =

∑
S∈P(N)

(
δS

∑
i∈S

xS
i

)
=

∑
S∈P(N)

δSx
S(S). (17.70)

Since xS(S) = a(S), by changing the order of summation, one has

z(N ) =
∑

S∈P(N)

δSa(S) =
∑

S∈P(N)

(
δS

∑
i∈S

ai

)
=

∑
i∈N

⎛⎝ai

∑
{S∈P(N) : i∈S}

δS

⎞⎠ . (17.71)

Since δ is a vector of balancing weights,
∑

{S∈P(N) : i∈S} δS = 1 for every player i ∈ N ,
and therefore

z(N ) =
∑
i∈N

ai = a(N); (17.72)

that is, z is indeed a feasible bundle. By this, and from the definition of the function v

(Equation (17.66)) we deduce that

v(N) ≥
∑
i∈N

ui(zi). (17.73)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 Recall that P is the set of all vectors that weakly balance P(N ) (see Equation (17.61) on page 701).
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Next, based on Equation (17.68),

v(N) ≥
∑
i∈N

ui(zi) (17.74)

=
∑
i∈N

ui

⎛⎝ ∑
{S∈P(N) : i∈S}

δSx
S
i

⎞⎠ (17.75)

≥
∑
i∈N

∑
{S∈P(N) : i∈S}

δSui

(
xS

i

)
(17.76)

=
∑

S∈P(N)

∑
i∈S

δSui

(
xS

i

)
(17.77)

=
∑

S∈P(N)

(
δS

∑
i∈S

ui

(
xS

i

))
(17.78)

=
∑

S∈P(N)

δSv(S), (17.79)

where Equation (17.76) follows from the concavity of the functions (ui)i∈N , Equation
(17.78) follows from changing the order of summation, and Equation (17.79) holds
because v(S) = ∑

i∈N ui(xS
i ). It follows that the game is balanced, and therefore the

core is nonempty, which is what we wanted to show. �

Let (N, L, (ai, ui)i∈N ) be a market, and let (N ; v) be the market game derived from it.
Suppose that some of the producers leave the market, and that the only producers left are
the members of the coalition S. This yields a new market, (S, L, (ai, ui)i∈S). What is the
market game derived from this market? If we denote this game by (S; ṽ), then for every
coalition T ⊆ S one has

ṽ(T ) = max

{∑
i∈T

ui(xi) : xi ∈ RL
+ ∀i ∈ T , x(T ) = a(T )

}
= v(T ). (17.80)

In other words, ṽ is the function v restricted to the members of S. This distinction motivates
the following definition.

Definition 17.28 Let (N ; v) be a coalitional game, and let S ⊆ N be a nonempty set of
players. The subgame (S; v) is the coalitional game where:

� The set of players is S.
� The coalitional function is the function v restricted to the coalitions contained in S.

The game (S; v) is also called the game (N ; v) restricted to S.

An immediate corollary of the above discussion and Theorem 17.27 is:

Corollary 17.29 If (N ; v) is a market game, then every subgame (S; v) of (N ; v) is a
market game, and in particular its core is nonempty.
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Indeed, if (N, L, (ai, ui)i∈N ) is a market from which the coalitional game (N ; v)
is derived, then the same market restricted to the members of S, that is, the market
(S, L, (ai, ui)i∈S), is a market from which the game (S; v) is derived.

Definition 17.30 A coalitional game (N ; v) is totally balanced if the core of every sub-
game of (N ; v) is nonempty.

We can reformulate Corollary 17.29 as follows.

Theorem 17.31 (Shapley and Shubik [1969]) Every market game is totally balanced.

Example 17.32 Let (N ; v) be a coalitional game, where N = {1, 2, 3} and the coalitional function v is given

by

v(1) = v(2) = v(3) = 10, v(1, 2) = v(1, 3) = v(2, 3) = 15, v(1, 2, 3) = 90.

This game has a nonempty core. To see this, note, for example, that the vector x = (30, 30, 30) is
in the core of the game. On the other hand, the game restricted to the coalition {1, 2} is the game
({1, 2}, ṽ) where

ṽ(1) = ṽ(2) = 10, ṽ(1, 2) = 15,

and the core of this game is empty. If follows therefore that the game (N ; v) is balanced, but not
totally balanced. By Corollary 17.29, we deduce that (N ; v) is not a market game: there is no market
from which this game can be derived. �

17.4.1 The balanced cover of a coalitional game
Let (N ; v) be a coalitional game. The inequalities in the Bondareva–Shapley condition
indicate that if v(N) is sufficiently large, the core of the game is not empty. It follows that
when the core is empty, by enlarging v(N) we may obtain a new game whose core is not
empty, and differs from (N ; v) only in the worth of the grand coalition N . How large must
the worth of the grand coalition N be for the core of the new game to be nonempty? By
the Bondareva–Shapley Theorem (Theorem 17.19 on page 701), it suffices to increase to
be at least max{∑S∈P(N) δSv(S) : δ ∈ P }.
Definition 17.33 The balanced cover of a coalitional game (N ; v) is the coalitional game
(N ; ṽ) defined by

ṽ(S) :=
{

v(S) if S �= N,

max
{∑

S∈P(N) δSv(S) : δ ∈ P
}

if S = N.
(17.81)

Theorem 17.34 The coalitional game (N ; v) has a nonempty core if and only if ṽ(N) =
v(N), where (N ; ṽ) is the balanced cover of (N ; v).

Proof: We first show that ṽ(N ) ≥ v(N), whether or not the core is empty: {N} is a
balanced collection with the balancing weight δN = 1; hence ṽ(N) ≥ 1 · v(N) = v(N).

To complete the proof, we will show that v(N) ≥ ṽ(N) if and only if the core is not
empty. By the Bondareva–Shapley Theorem (see Theorem 17.14) the core of a coalitional
game is nonempty if and only if v(N) ≥ ∑

S∈P(N) δSv(S) for every δ ∈ P , i.e., if and only
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if

v(N) ≥ max

⎧⎨⎩ ∑
S∈P(N)

δSv(S) : δ ∈ P

⎫⎬⎭ = ṽ(N), (17.82)

which is what we wanted to show. �

Example 17.32 shows that a balanced game need not be totally balanced. To obtain a
totally balanced game, one needs to guarantee that for every coalition S the worth v(S) is
sufficiently large so that the game restricted to S is balanced. How much must the worth of
each coalition be increased for the resulting game to be totally balanced, or equivalently
for the core of every subgame to be nonempty? Applying the same reasoning we applied to
the coalition N to every nonempty coalition S, we deduce that the worth of every coalition
S must be at least

max

⎧⎨⎩ ∑
{R⊆S,R �=∅}

δRv(R) :
∑

{R⊆S,R �=∅}
δRχR = χS, δR ≥ 0 ∀R ⊆ S

⎫⎬⎭ . (17.83)

Definition 17.35 The totally balanced cover of a coalitional game (N ; v) is the coalitional
game (N ; v̂) defined as follows. For every nonempty coalition S ⊆ N ,

v̂(S) := max

⎧⎨⎩ ∑
{R⊆S,R �=∅}

δRv(R) :
∑

{R⊆S,R �=∅}
δRχR = χS, δR ≥ 0 ∀R ⊆ S

⎫⎬⎭ (17.84)

and v̂(∅) := 0.

We can now characterize when a coalitional game is totally balanced.

Theorem 17.36 A coalitional game (N ; v) is totally balanced if and only if v̂(S) = v(S)
for every coalition S ⊆ N , where the function v̂ is defined by Equation (17.84).

Proof: The game (N ; v) is totally balanced if and only if for every nonempty coalition S ⊆
N the coalitional game (S; v) is balanced. Suppose that S ⊆ N is a nonempty coalition.
Theorem 17.34 implies that the game (S; v) is balanced if and only if

v(S) = max

⎧⎨⎩ ∑
R∈P(N)

δRv(R) : δ ∈ P

⎫⎬⎭ = v̂(S). (17.85)

Since v(∅) = 0 = v̂(∅), if follows that the game (N ; v) is totally balanced if and only if
v(S) = v̂(S) for every coalition S ⊆ N , as claimed. �

17.4.2 Every totally balanced game is a market game
Corollary 17.29 states that the core of every subgame of a market game is nonempty. As
Example 17.32 shows, there are games with nonempty cores that are not market games.
We can now prove the following theorem, which is the converse to Corollary 17.29.

Theorem 17.37 Every totally balanced game is a market game.
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Proof: Let (N ; v) be a totally balanced game. We need to show that (N ; v) is a market
game. To do so, we will define a market and show that (N ; v) is the market game derived
from this market.

If (N ; v) is a totally balanced game, then every coalitional game strategically equivalent
to (N ; v) is also totally balanced. It therefore suffices to prove the theorem for 0-normalized
games. Recall that a coalitional game (N ; v) is 0-normalized if v(i) = 0 for every player
i ∈ N .

Step 1: Defining the market.
Let (N ; v) be a totally balanced and 0-normalized game. We will construct a market in
which both the set of producers and the set of commodities are the set of players N ;
i.e., N = L = {1, 2, . . . , n}. The space of bundles is therefore RN

+ , with every coordinate
associated with the name of a player. The initial endowment of player i is one unit of the
commodity “associated with him,” that is,

ai := χ {i}, ∀i ∈ N. (17.86)

If we interpret the commodities as the labor time of the various players (over a certain
time period), then the initial endowment of player i is the amount of labor time that he
can give, namely one unit. In particular, we deduce that the sum total of commodities that
the members of each coalition S have is

a(S) = χS, ∀S ⊆ N. (17.87)

Define a production function u : RN
+ → R, as follows:

u(x) := max

⎧⎨⎩ ∑
S∈P(N)

δSv(S) :
∑

S∈P(N)

δSχ
S = x, δS ≥ 0 ∀S ⊆ N

⎫⎬⎭ . (17.88)

We can interpret this production function as follows. For every coalition S, there exists an
economic activity yielding the income v(S) for every unit of time that the members of S

(all together) give to that activity. If every player i ∈ S gives δS of his time to the economic
activity of coalition S, the coalition S is active δS of the time, and produces δSv(S). In this
case, all the coalitions together can produce the total profit of

∑
S∈P(N) δSv(S). If the vector

x = (xi)i∈N represents the amount of time that each player has, then the constraint on the
amount of time that the players of the different coalitions have is

∑
S∈P(N) δSχ

S = x.
Under this interpretation, u(x) is the maximum that the players can produce together
when the amount of time available to each player i is xi .

Note that the function u is well defined: the set⎧⎨⎩ ∑
S∈P(N)

δSχ
S = x, δS ≥ 0 ∀S ⊆ N

⎫⎬⎭
is not empty since it contains the vector (δS)S∈P(N) that is defined by

δS :=
{

xi S = {i},
0 |S| ≥ 2.

(17.89)
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The function u is defined to be the production function of every player:

ui(x) := u(x), ∀i ∈ N. (17.90)

A useful property of the function u is:

Lemma 17.38 u(x + y) ≥ u(x) + u(y) for every x, y ∈ RN
+ .

Proof: Denote by α = (αT )T ∈P(N) the weight vector at which the maximum is attained in
the definition of u(x),

u(x) =
∑
T⊆N

αT v(T ), αT ≥ 0 ∀T ⊆ N,
∑
T⊆N

αT χT = x,

and by β = (βT )T ∈P(N) the weight vector at which the maximum is attained in the definition
of u(y),

u(y) =
∑
T⊆N

βT v(T ), βT ≥ 0 ∀T ⊆ N,
∑
T⊆N

βT χT = y.

Denote

γT := αT + βT .

Since for every coalition T , αT , βT ≥ 0, it follows that γT ≥ 0. Moreover,∑
T⊆N

γT v(T ) =
∑
T⊆N

αT v(T ) +
∑
T⊆N

βT v(T ) = x + y.

We therefore have that γ = (γT )T⊆N is one of the elements in the maximization in the
definition of u(x + y), and therefore

u(x + y) ≥
∑
T⊆N

γT v(T ) =
∑
T⊆N

αT v(T ) +
∑
T⊆N

βT v(T )

= u(x) + u(y), (17.91)

which is what we wanted to show. �
The production function u is a homogeneous function: for all α > 0 and all x ∈ RN

+ ,

u(αx) = αu(x) (17.92)

(check that this is true). Using this fact and Lemma 17.38 we deduce the following
corollary.

Corollary 17.39 The production function u defined in Equation (17.88) is a concave
function.

The market we have constructed is therefore the market in which:

� The set of players is N .
� The set of commodities is N .
� The initial endowment of player i is ai = χ {i}.
� The production function ui(x) is the same for all players i ∈ N , and is given by

Equation (17.88).
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This market is called the direct market corresponding to the coalitional game (N ; v).
The definition of a market game requires the production function to be continuous and
concave. The concavity of the function u follows from Corollary 17.39 while the proof of
its continuity is left to the reader (Exercise 17.40).

Step 2: u(χS) = v(S) for every coalition S.
For x = χS , Equation (17.88) is equivalent to the definition of v̂(S) (see Equation (17.84)),
i.e., u(χS) = v̂(S). We have assumed that (N ; v) is a totally balanced game, and therefore
by Theorem 17.36, v̂ = v. It follows that u(χS) = v(S) for every coalition S.

Step 3: Deriving the market game corresponding to the market we have defined.
Having defined the market, we need to prove that the market game derived from it, denoted
by (N ; w), is the coalitional game (N ; v) we started with. In other words, we need to prove
that w(S) = v(S) for every S ⊆ N , where w(S) is given by

w(S) := max

{∑
i∈S

u(xi) : x(S) = a(S) = χS, xi ∈ RN
+

}
. (17.93)

We will show that w(S) ≥ v(S) and w(S) ≤ v(S) for every coalition S.
One possible allocation of a(S) among the members of S is to give the entire set of

commodities to one of the players, i.e., x̂ = (̂xi)i∈S , where x̂i0 = χS for some player i0 ∈ S

and x̂i = �0 for every i ∈ S \ {i0}, where �0 is the vector in RL
+ all of whose coordinates are

0. By Step 2 this leads to

w(S) ≥
∑
i∈S

u(̂xi) = u(χS) = v(S). (17.94)

To prove that w(S) ≤ v(S), let x∗ = (x∗
i )i∈S be an allocation under which the maximum

in the definition of w(S) is attained. By Lemma 17.38 (generalized to any finite number
of sums), and by Step 2,

w(S) =
∑
i∈S

u(x∗
i ) ≤ u

(∑
i∈S

x∗
i

)
= u(χS) = v(S). (17.95)

This completes the proof of Theorem 17.37. �

Theorems 17.31 and 17.37 imply the following theorem.

Theorem 17.40 A coalitional game (N ; v) is a market game if and only if it is totally
balanced.

17.5 Additive games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we study a family of coalitional games called additive games (also called
inessential games), and show how they are related to totally balanced games.

Definition 17.41 A coalitional game (N ; v) is additive if

v(S) =
∑
i∈S

v(i) (17.96)

for every nonempty coalition S.
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Theorem 17.42 Every additive game is totally balanced.

Proof: We will show that for every coalition S, the vector x = (xi)i∈S defined by xi = v(i)
is in the core of the subgame (S; v), and therefore the core of every subgame is nonempty;
hence the game is totally balanced.

For every coalition R ⊆ S,

x(R) =
∑
i∈R

xi = v(R), (17.97)

and therefore the vector x is coalitionally rational. By plugging R = S into Equation
(17.97), we deduce that it is also an efficient vector in the game (S; v). This implies that
x is indeed in the core of the game (S; v). �

Theorem 17.43 Let (N ; v) and (N ; u) be totally balanced games over the same set of
players. Define a coalitional game (N ; w) by

w(S) = min{v(S), u(S)}, ∀S ⊆ N. (17.98)

Then (N ; w) is also a totally balanced game.

Proof: Let S ⊆ N be a nonempty coalition. We will prove that the core of the game
(S; w) is nonempty. Suppose without loss of generality that u(S) ≤ v(S), and therefore
w(S) = u(S). Since the game (N ; u) is totally balanced, the core of the subgame (S; u) is
nonempty. Let x ∈ C(S; u) be an imputation in the core of this game. We will show that
x ∈ C(S; w). Since x is an imputation in (S; u),

x(S) = u(S) = w(S). (17.99)

Since x is a coalitionally rational imputation in the game (S; u), for every R ⊆ S,

x(R) ≥ u(R) ≥ w(R). (17.100)

Hence x is coalitionally rational in (S; w), and therefore x ∈ C(S; w); the core of the game
(S; w) is nonempty, which is what we wanted to show. �

Theorem 17.44 A coalitional game (N ; v) is totally balanced if and only if it is the
minimum of a finite number of additive games.

Proof:
Step 1: The minimum of a finite number of additive games is a totally balanced game.
By Theorem 17.42 every additive game is totally balanced, and using Theorem 17.43,
one obtains by induction over k that the minimum of k totally balanced games is totally
balanced.

We now show that every totally balanced game is the minimum of a finite number
of additive games. Let (N ; v) be a totally balanced game. We will define, for every
coalition S ⊆ N , a corresponding additive game (N ; vS), and we we will show that
v = minS⊆N vS .
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Step 2: The definition of the games (N ; vS) for S ⊆ N .
Since (N ; v) is a totally balanced game, for every coalition S, the core of (S; v) is nonempty.
Choose an imputation xS = (xS

i )i∈S ∈ C(S; v). In particular,

xS
i ≥ v(i), ∀i ∈ S, (17.101)

and ∑
i∈S

xS
i = v(S). (17.102)

Denote M = 2 max{|v(S)|, S ⊆ N}. For every coalition S ⊆ N , expand the vector xS to
a vector in RN by defining

xS
i = M, ∀i �∈ S. (17.103)

Note that for S = ∅, one has x∅
i = M , for every player i ∈ N .

For every coalition S ⊆ N , construct an additive game (N ; vS) using the vector xS , as
follows:

vS(R) :=
∑
i∈R

xS
i , R ⊆ N, R �= ∅, (17.104)

vS(∅) := 0. (17.105)

By its definition, the game (N ; vS) is additive.

Step 3: vS(R) ≥ v(R) for every pair of coalitions S and R in N .
Consider the following chain of equalities and inequalities:

vS(R) =
∑
i∈R

xS
i (17.106)

=
∑

i∈R∩S

xS
i +

∑
i∈R\S

xS
i (17.107)

≥ v(R ∩ S) +
∑

i∈R\S
xS

i (17.108)

= v(R ∩ S) + |R \ S|M. (17.109)

Inequality (17.108) follows from the fact that xS is in the core of the subgame (S; v), and
Equation (17.109) follows from the fact that xS

i = M for every i �∈ S.
If R ⊆ S, then R ∩ S = R and |R \ S| = 0, and it follows from Equations (17.106)–

(17.109) that vS(R) ≥ v(R). If R �⊆ S then |R \ S| ≥ 1. By the choice of M , one has
M ≥ v(R) − v(R ∩ S), and, therefore,

vS(R) ≥ v(R ∩ S) + |R \ S|M ≥ v(R ∩ S) + M ≥ v(R). (17.110)

Step 4: minS⊆N vS(R) = v(R) for every coalition R ⊆ N .
From Step 3 we know that minS⊆N vS(R) ≥ v(R), and by Equations (17.104) and (17.102),

vR(R) =
∑
i∈R

xR
i = v(R). (17.111)
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Therefore, we also have that minS⊆N vS(R) ≤ vR(R) = v(R). We deduce that
minS⊆N vS(R) = v(R), which completes the proof. �

By Theorems 17.40 and 17.44, we deduce the following corollary.

Corollary 17.45 A coalitional game (N ; v) is a market game if and only if it is the
minimum of a finite number of additive games.

17.6 The consistency property of the core
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Consider the three-player coalitional game appearing in Example 17.4:

v(1) = v(2) = v(3) = 0, v(1, 2) = v(2, 3) = 1, v(1, 3) = 2, v(1, 2, 3) = 3.

As we saw in Figure 17.1, the imputation (2, 1
2 , 1

2 ) is in the core of this game. Suppose
that the players decide to divide the worth of the grand coalition, 3, on the basis of this
vector. Suppose now that Player 3 leaves with his share, 1

2 . Can the issue of dividing the
total share of 2 1

2 by Players 1 and 2 be open to rediscussion? To answer this question, we
will attempt to describe the new situation between players {1, 2} as a new game. What is
this new game? What is its core? Is (2, 1

2 ) in it?
One way to define the new game is as follows.

Definition 17.46 Let (N ; v) be a coalitional game, let S be a nonempty coalition, and let
x be an efficient vector in RN (so that x(N) = v(N)). The Davis–Maschler reduced game
to S relative to x, denoted by (S; wx

S), is the coalitional game with the set of players S and
a coalitional function

wx
S(R) =

⎧⎨⎩
maxQ⊆N\S(v(R ∪ Q) − x(Q)) ∅ �= R ⊂ S,

x(S) R = S,

0 R = ∅.

(17.112)

The idea behind this definition is the following. wx
S(S), the sum that the players in

S divide among themselves, should equal x(S), which is the total sum that they receive
according to x. Since we are defining a coalitional game, we must require that wx

S(∅) = 0.
For each coalition R, ∅ �= R ⊂ S, when the members of R come to assess what their
coalition is worth, they may add partners outside S, as long as they give these partners
what they are allocated according to the original vector x. If they choose the set of partners
Q, they will generate a worth v(R ∪ Q), will pay the members of Q the amount x(Q),
and hence be left with v(R ∪ Q) − x(Q). The definition assumes that the members of R

will choose those partners so as to maximize this amount.
The amount wx

S(R) is a virtual worth associated with each coalition separately: if two
coalitions R1 and R2 try to realize their worths under wx

S and choose as partners Q1 and
Q2, they may discover that Q1 and Q2 are not disjoint sets, which would mean that at least
one of the coalitions will be unable to realize its worth. For this reason, it is important in
every application to consider carefully the details of the reduced game, and check whether
it fits the intended application.
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Definition 17.47 A set solution concept ϕ satisfies the Davis–Maschler reduced game
property if for every coalitional game (N ; v), for every nonempty coalition S ⊆ N , and
for every vector x ∈ ϕ(N ; v),

(xi)i∈S ∈ ϕ
(
S; wx

S

)
. (17.113)

The reduced game property is a consistency property: if the players believe in the
solution concept ϕ, then every set of players S considering redistributing

∑
i∈S xi among

its members will refrain from doing so, because the vector (xi)i∈S is in the solution ϕ of
the game reduced to S.

Theorem 17.48 The core satisfies the Davis–Maschler reduced game property.

Proof: Let x be a point in the core of the coalitional game (N ; v), and let S be a nonempty
coalition. We will show that (xi)i∈S is in the core of (S; wx

S). To do so, we need to show
that x(R) ≥ wx

S(R) for every ∅ �= R ⊂ S, and that wx
S(S) = x(S).

The second requirement is satisfied by the definition of the Davis–Maschler reduced
game. To prove the first requirement, let R ⊂ S be a nonempty coalition. We want to show
that x(R) ≥ wx

S(R). By the definition of wx
S(R), there exists a coalition Q ⊆ N \ S such

that wx
S(R) = v(R ∪ Q) − x(Q). Then we have

wx
S(R) = v(R ∪ Q) − x(Q) = v(R ∪ Q) − x(R ∪ Q) + x(R). (17.114)

The vector x is in the core of (N ; v), hence x(R ∪ Q) ≥ v(R ∪ Q), and therefore

x(R) ≥ wx
S(R), (17.115)

which is what we wanted to prove. �

Given a solution concept ϕ, we can ask the converse question: let x ∈ RN be an efficient
vector in the game (N ; v). If it is known that (xi, xj ) ∈ ϕ({i, j}, wx

{i,j}) for every pair of
players i �= j , does it follow that x ∈ ϕ(N ; v). If the answer to this question is always
affirmative, the solution concept ϕ is said to satisfy the converse reduced game property.

Definition 17.49 A set-valued solution concept ϕ satisfies the Davis–Maschler con-
verse reduced game property if for every coalitional game (N ; v), every preimputation
x ∈ X0(N ; v) that satisfies

(xi, xj ) ∈ ϕ
({i, j}; wx

{i,j}
)
, ∀i, j ∈ N, i �= j (17.116)

also satisfies x ∈ ϕ(N ; v).

Having this property satisfied is useful in many cases, when one is seeking to calculate
the solution ϕ to some game by considering two-player games (which are simpler than
games involving more than two players).

Theorem 17.50 The core satisfies the Davis–Maschler converse reduced game property.

Proof: Let (N ; v) be a coalitional game, and let x ∈ X0(N ; v) be a preimputation satisfy-
ing, for every pair of players i �= j ,

(xi, xj ) ∈ C
({i, j}, wx

{i,j}
)
. (17.117)
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To show that x is in the core of the game (N ; v) we need to prove that x(S) ≥ v(S) for every
coalition S ⊆ N . Note that x(∅) = 0 = v(∅). Since x is a preimputation, x(N) = v(N).
Let S ⊂ N be a nonempty coalition. Let i ∈ S and j �∈ S. Since (xi, xj ) is in the core of
({i, j}, wx

{i,j}),

xi ≥ wx
{i,j}(i). (17.118)

By the definition of wx
{i,j},

xi ≥ wx
{i,j}(i) = max

Q⊆N\{i,j}
(v({i} ∪ Q) − x(Q)). (17.119)

Set Q = S \ {i}. Then Q contains neither i nor j , and it is therefore one of the elements
of the maximization in Equation (17.119). This further yields

xi ≥ v({i} ∪ Q) − x(Q) = v(S) − x(S \ {i}). (17.120)

We deduce from this that

x(S) = xi + x(S \ {i}) ≥ v(S), (17.121)

which is what we needed to show. �

17.7 Convex games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The class of convex games was first defined in Shapley [1971].

Definition 17.51 A coalitional game (N ; v) is convex if for every pair of coalitions S and
T the following holds:

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (17.122)

Recall that a superadditive game (Definition 16.8 on page 671) is a coalitional game
in which Equation (17.122) holds for every pair of disjoint coalitions S and T , while in a
convex game this equation holds for every pair of coalitions S and T . It follows that every
convex game is superadditive. This means that the set of convex games is a subset of the
set of superadditive games. In fact, it is a proper subset of the set of superadditive games
(Exercise 17.45).

The corresponding definition for cost games is the following.

Definition 17.52 A cost game (N ; c) is convex if for every pair of coalitions S and T the
following holds:

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ). (17.123)

Remark 17.53 If (N ; v) is a convex game then for every coalition S ⊆ N , the subgame
(S; v) restricted to the players in S is also a convex game (Exercise 17.46). �

Convex games are characterized by the property that players have an incentive to join
large coalitions. The mathematical formulation of this idea is expressed in the following
theorem.

Theorem 17.54 For any coalitional game (N ; v) the following conditions are equivalent:
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C

S T

A

Figure 17.6 The sets S and T in the proof of Theorem 17.54

1. (N ; v) is a convex game.
2. For every S ⊆ T ⊆ N and every R ⊆ N \ T ,

v(S ∪ R) − v(S) ≤ v(T ∪ R) − v(T ). (17.124)

3. For every S ⊆ T ⊆ N and every i ∈ N \ T ,

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ). (17.125)

In words, the theorem states that a coalitional game is convex if and only if the marginal
contribution of any fixed player i, or of any fixed set of players R, to coalition S rises as
more players join S.

Proof: We first prove that Condition 1 implies Condition 2. Suppose that (N ; v) is a
convex game, that S and T are two coalitions satisfying S ⊆ T ⊆ N , and that R ⊆ N \ T .
By Condition 1 the game is convex, and therefore

v(S ∪ R) + v(T ) ≤ v(S ∪ T ∪ R) + v((S ∪ R) ∩ T ). (17.126)

Since S ∪ R ∪ T = T ∪ R and (S ∪ R) ∩ T = S we have

v(S ∪ R) + v(T ) ≤ v(T ∪ R) + v(S), (17.127)

and hence

v(S ∪ R) − v(S) ≤ v(T ∪ R) − v(T ), (17.128)

which is what we needed to show.
That Condition 2 implies Condition 3 is clear: set R = {i}.
Finally, we show that Condition 3 implies Condition 1. Let S and T be two coalitions.

If S ⊆ T , then Equation (17.122) holds with equality (explain why). Suppose now that S

is not contained in T . Define A := S ∩ T and C := S \ T (see Figure 17.6). Since S is
not contained in T , the set C is nonempty. Let C = {i1, i2, . . . , ik}.

Since T ⊇ A, T ∪ {i1, . . . , il} ⊇ A ∪ {i1, . . . , il} for every l = 0, 1, . . . , k − 1. More-
over, il+1 �∈ T ∪ {i1, . . . , il}. By Condition 3, for every l = 0, 1, . . . , k − 1,

v(T ∪ {i1, . . . , il, il+1}) − v(T ∪ {i1, . . . , il}) ≥ v(A ∪ {i1, . . . , il, il+1})
− v(A ∪ {i1, . . . , il}).

Summing this equation for l = 0, 1, . . . , k − 1 yields

v(T ∪ C) − v(T ) ≥ v(A ∪ C) − v(A). (17.129)
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Since T ∪ C = T ∪ S, A ∪ C = S, and A = S ∩ T , we obtain

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ). (17.130)

Since this inequality holds for every two coalitions S and T , the game is convex. This
concludes the proof of Theorem 17.54. �

We next show that the core of a convex game is nonempty. We will show this by
identifying a particular imputation that is in the core (actually, we will identify several
imputations in the core).

Theorem 17.55 Let (N ; v) be a convex game, and let x be the imputation:

x1 = v(1), (17.131)

x2 = v(1, 2) − v(1) (17.132)

. . .

xn = v(1, 2, . . . , n) − v(1, 2, . . . , n − 1). (17.133)

Then the vector x is in the core of (N ; v).

Proof: First, note that x is an efficient vector:∑
i∈N

xi = v(1) + (v(1, 2) − v(1)) + (v(1, 2, 3) − v(1, 2)) + · · · + (v(1, 2, . . . , n)

− v(1, 2, . . . , n − 1))

= v(1, 2, . . . , n) = v(N).

We next show that x(S) ≥ v(S) for every coalition S ⊆ N . Let S = {i1, i2, . . . , ik} be a
coalition and suppose that i1 < i2 < · · · < ik . Then {i1, i2, . . . , ij−1} ⊆ {1, 2, . . . , ij − 1}
for every j ∈ {1, 2, . . . , k}. Theorem 17.54 implies that

v(1, 2, . . . , ij ) − v(1, 2, . . . , ij − 1) ≥ v(i1, i2, . . . , ij ) − v(i1, i2, . . . , ij−1).

Hence

x(S) =
k∑

j=1

xij (17.134)

= (v(1, 2, . . . , i1) − v(1, 2, . . . , i1 − 1)) + (v(1, 2, . . . , i2)

− v(1, 2, . . . , i2 − 1)) + · · · + (v(1, 2, . . . , ik) − v(1, 2, . . . , ik − 1)) (17.135)

≥ (v(i1) − v(∅)) + (v(i1, i2) − v(i1)) + · · · + (v(i1, i2, . . . , ik)

− v(i1, i2, . . . , ik−1)) (17.136)

= v(i1, i2, . . . , ik) = v(S), (17.137)

as claimed. �

Remark 17.56 In the proof of Theorem 17.55, we proved that

(v(1), v(1, 2) − v(1), . . . , v(1, 2, . . . , n) − v(1, 2, . . . , n − 1))
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is an imputation in the core of the coalitional game (N ; v). In that case, we considered
the players according to the ordering 1, 2, . . . , n. But the same result obtains under any
ordering of the players. In other words, given any ordering π = (i1, i2, . . . , in) of the
players, the following is an imputation in the core of the game (N ; v):

wπ := (v(i1), v(i1, i2) − v(i1), v(i1, i2, i3) − v(i1, i2), . . . , v(N) − v(N \ {in})).
(17.138)

This imputation corresponds to the following description: the players enter a room
one after the other, according to the ordering π . Each player receives the marginal
contribution that he provides to the coalition of players who have entered the room before
him. The imputation that is arrived at through this process is wπ , and it is in the core of the
game. �

Definition 17.57 The convex hull of the imputations {wπ : π is a permutation of N} is
called the Weber set of the coalitional game (N ; v).

Since the core is a convex set, Theorem 17.55 and Remark 17.56 imply the following
theorem.

Theorem 17.58 In a convex game, the core contains the Weber set.

Remark 17.59 Using the Separating Hyperplane Theorem (Theorem 23.39 on page 944),
one can prove that the Weber set always contains the core (see Weber [1988] and Derks
[1992]). It therefore follows that in a convex game the core coincides with the Weber
set. �

The Weber set is a polytope in which there are at most n! vertices, equal to the number
of permutations of n players. When wπ1 = wπ2 for two different permutations, the number
of vertices in this polytope less than n!.

Theorem 17.55 has implications for the geometry of the core in convex games. The core
is defined as the intersection of the half-spaces {x ∈ RN : x(S) ≥ v(S)} for each coalition
S, and the hyperplane {x ∈ RN : x(N) = v(N)}. There are games in which the core does
not touch some of the hyperplanes {x ∈ RN : x(S) = v(S)} defining the half-spaces (see,
for example, Figure 17.3, in which the core does not touch the hyperplane x1 = 0). As the
next theorem shows, this cannot happen in convex games.

Theorem 17.60 Let (N ; v) be a convex game. Then for every coalition S there exists an
imputation x ∈ C(N ; v) satisfying x(S) = v(S).

Proof: Order the players such that the elements of S appear first. In other words, denote
S = {i1, i2, . . . , ik} and consider the following ordering, in which the players in S appear
before the players not in S:

π = (i1, i2, . . . , is, is+1, . . . , in). (17.139)

The imputation wπ is given by

wπ = (v(i1), v(i1, i2) − v(i1), · · · , v(N) − v(N \ {in}))
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and it satisfies

wπ (S) = v(S). (17.140)

As argued in Remark 17.56, wπ is in the core, thus completing the proof. �

We have so far presented two families of games in which the core is nonempty. Using
the Bondareva–Shapley Theorem we proved that the core of a market game is never empty.
In convex games we explicitly find points that are in the core. The next section deals with
another family of games with a nonempty core, and we will again explicitly find points in
the core.

17.8 Spanning tree games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Spanning tree games were introduced in Section 16.1.7 (page 666). Denote by R++ :=
(0,∞) the set of positive real numbers.

Definition 17.61 A spanning tree system is a vector (N, V, E, v0, a), where:

� N = {1, 2, . . . , n} is the set of players.
� (V, E) is a finite connected (undirected) graph5 where the set of vertices is V = N ∪ {v0}

and the set of edges is E. The vertex v0 is called the initial vertex or the source.
� a : E → R++ is a function associating each edge e ∈ E with a cost a(e) that is greater

than 0.

Example 17.62 Figure 17.7 depicts a spanning tree system with four players, Detroit, Lansing, Grand Rapids,

and Ann Arbor. The graph has five vertices and five edges. The cost associated with each edge is
indicated near that edge, and the player associated with each vertex is similarly indicated near the
vertex.

v0 Source

Ann ArborGrand RapidsLansingDetroit
111

e2 e3 e4

e1 e5

1.5 1

Figure 17.7 The spanning tree system in Example 17.62 �

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 Directed graphs were defined in Definition 3.2 (page 41). An undirected graph is a pair (V,E) where V is a finite
set of vertices and E is a set of undirected edges; each edge is a subset of V of size 2.
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A spanning tree system can describe various networks, such as a road network sys-
tem connecting towns, or a computer network system. Under this interpretation, every
player is either a town or a computer that needs to be connected to a source, which is
a central city or a central computer connected to the Internet. The cost associated with
each edge is the cost of constructing or maintaining the corresponding connection in the
network.

Every spanning tree system can be associated with a spanning tree game (N ; c), in
which the set of players is N and c(S) is the minimal cost of connecting all the members
of S to the source v0, defined as follows. For each coalition S, a spanning graph for S

is a collection of edges that contains, for each i in S, a path leading from vertex i to the
source v0. The total cost of this collection is the sum of costs of the edges in the collection.
From among all the spanning graphs for S we choose a spanning graph whose cost is
minimal (there may be several such collections). This graph must be a tree, i.e., an acyclic
graph (why?). We will denote this spanning tree by (V S, ES) and call it the minimal-cost
spanning tree of coalition S. The total cost of this collection is the cost c(S) of coalition
S in the game (N ; c).

Example 17.62 (Continued) The following table (Figure 17.8) depicts several coalitions, the minimal-cost

spanning tree corresponding to each coalition, and the cost of constructing the tree.

Coalition Minimal-cost tree Total cost
{Detroit} e1 1.5
{Grand Rapids} e4 , e5 2
{Detroit, Lansing} e1 , e2 2.5
{Detroit, Ann Arbor} e1 , e5 2.5
{Detroit, Grand Rapids} e1 , e2 , e3 3.5
{Detroit, Grand Rapids} e1 , e4 , e5 3.5
{Detroit, Grand Rapids, Lansing, Ann Arbor} e2 , e3 , e4 , e5 4

Figure 17.8 The minimal-cost tree and its total cost for several coalitions in Example 17.62

The minimal-cost spanning tree for the coalition {Grand Rapids} contains Ann Arbor; Ann Arbor
is therefore a “free rider” i.e., it gains connection to the source despite not being a member of the
coalition. As the case of the coalition {Detroit} shows, the set of edges in the graph (V S,ES ) may
be disjoint from the set of edges in the graph (V N,EN ). �

A connected graph over a set V of n + 1 vertices is a tree (i.e., an acyclic graph)
if and only if it contains n edges (Exercise 17.56). The minimal-cost tree (V N, EN )
therefore contains n edges. Such a tree contains a path from each vertex i to the source.
Denote by e(i) the first edge in the path from vertex i to the source. Then e(i) �= e(j )
for every pair of distinct vertices i and j , and hence EN = {e(i), i ∈ N} and V N = N ∪
{v0}. In Example 17.62, e(Detroit) = e2, e(Lansing) = e3, e(Grand Rapids) = e4, and
e(Ann Arbor) = e5.
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Coalition S E S {e(i) : i S } E ∗

{Detroit} e1 e3 , e4 , e5 {e1 , e3 , e4 , e5}
{Grand Rapids} e4 , e5 e2 , e3 , e5 {e2 , e3 , e4 , e5}

{Detroit, Lansing} e1 , e2 e4 , e5 {e1 , e2 , e4 , e5}
{Detroit, Ann Arbor} e1 , e5 e3 , e4 {e1 , e3 , e4 , e5}

{Detroit, Grand Rapids} e1 , e2 , e3 e3 , e5 {e1 , e2 , e3 , e5}
{Detroit, Grand Rapids,

Lansing, Ann Arbor} e2 , e3 , e4 , e5 � {e2 , e3 , e4 , e5}

Figure 17.9 The set of edges E∗ for several coalitions in Example 17.62

Theorem 17.63 Let (N, V, E, v0, a) be a spanning tree system. Then the core of the
corresponding spanning tree game is nonempty. Moreover, the imputation x defined by

xi := a(e(i)), ∀i ∈ N (17.141)

is in the core of the game, where for each player i ∈ N , e(i) is the first edge on the path
from vertex i to the source in the minimal6 cost spanning tree-for the coalition N .

Proof: We will show that x is efficient and coalitionally rational. Since EN = {e(i)}i∈N ,
one has c(N) = ∑

i∈N a(e(i)) = x(N), and therefore x is an efficient imputation. We next
show that x(S) ≤ c(S) for every coalition S. Let S be a coalition. Consider the set of edges

E∗ = ES ∪ {e(i) : i ∈ N \ S}. (17.142)

This set contains all the edges of the minimal-cost spanning tree of coalition S, and for
every player who is not in S, it contains the edge emanating from him in the direction of
the source in the minimal-cost spanning tree of the coalition N .

The table in Figure 17.9 illustrates the set E∗ in the spanning tree system depicted in
Figure 17.6 for various coalitions.

The coalition {Detroit, Grand Rapids} has two minimal-cost spanning trees. We have
chosen one of them arbitrarily.

We will show that (V, E∗) is a spanning graph; in such a graph, every vertex is connected
to the source.7 Indeed, since the collection of edges E∗ contains all the edges of ES , and
since (V S, ES) is the minimal-cost spanning tree for S, every vertex in S is connected to
the source by a path in ES (and therefore by a path in E∗). Let v1 be a player in N \ S.
The edge e(v1) is in E∗, and connects v1 to another vertex in the graph, v2. If v2 = v0 is
the source, v1 is connected to the source by an edge in E∗. If v2 is a player in S, then since
every vertex in S is connected to the source by a path in E∗, v1 is also connected to the
source by a path in E∗. If not, then neither of these possibilities holds, the edge e(v2) is in
E∗, and it connects v2 to vertex v3. Continue the process with v3. In the k-th stage of the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Since the definition of {e(i)}i∈N depends on the minimal-cost spanning tree, when there are several minimal-cost
spanning trees, one particular minimal-cost spanning tree needs to be chosen, and with respect to that tree one
defines {e(i)}i∈N . The theorem holds true for any choice of a minimal-cost spanning tree.

7 In fact, (V ; E∗) is a spanning tree, because it is a connected graph containing n edges and n + 1 vertices, and hence
a tree (Exercise 17.56).
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process, a sequence of vertices v1, v2, v3, . . . , vk , which are players in N \ S, is obtained
such that the edge e(vl) is in E∗ and connects vl with vl+1 for every l = 1, 2, . . . , k − 1.
If vk is the source, or is contained in S, then v1 is connected to the source via edges in
E∗. Otherwise, the sequence can be extended by adding the vertex vk+1 that e(vk) leads
to from vk.

Since the graph has a finite number of vertices, either this process has an end, or is
cyclical. If the process is cyclical, there exist positive integers l and k, l < k, such that
vk = vl . Then the set of edges {e(vl), e(vl+1), . . . , e(vk−1)} contained in EN is a cycle, in
contradiction to EN being a tree. The process must therefore end, meaning that for some
k the vertex vk is either the source or is in S. Since every vertex in S is connected to the
source by edges in E∗, it follows that the vertex v1 is connected to the source by edges
in E∗.

Since the graph (V, E∗) is a spanning tree for the coalition N , its cost is greater than
or equal to c(N). The cost of the edges of this graph equal c(S) +∑

i �∈S a(e(i)), and,
therefore,

x(N ) = c(N) ≤ c(S) +
∑
i �∈S

a(e(i)) = c(S) +
∑
i �∈S

xi . (17.143)

This implies,

x(S) =
∑
i∈S

xi ≤ c(S), (17.144)

which is what we needed to show. �

17.9 Flow games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the previous section we studied spanning tree games in which the worth of each coalition
is given by the cost of the minimal-cost spanning tree connecting all the members of the
coalition to the source. Another class of games derived from graphs is the class of flow
games. A flow game is given by a directed graph in which every edge has a maximal
capacity and is controlled by one of the players. The graph contains two distinguished
vertices, a source and a sink, and the goal of the players is to direct as great a flow as
possible from the source to the sink.

Definition 17.64 A flow problem is described by a vector F = (V, E, v0, v1, c, N, I )
where:

� (V, E) is a directed graph: V is a set of vertices, and E is a set of directed edges, i.e., a
set of pairs of vertices (v, v′) ∈ V × V .

� v0, v1 ∈ V are two distinguished vertices. v0 is called the source and v1 is called the
sink.

� c : E → R++ is a function associating each edge with a positive number, which repre-
sents the maximal capacity of the edge.

� N is the set of players.
� I : E → N is a function associating each edge with a player who controls it.
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A flow problem can be thought of as follows. The directed graph describes a toll road
system (consisting of one-way roads) leading from one point (a residential area) to another
point (a commercial district). Each road has a maximal capacity, and different roads are
controlled by different operators.

Example 17.65 Figure 17.10 depicts a flow problem. In this problem, the set of players is N = {1, 2, 3},
and each edge is labeled (in an adjacent circle) with the player who controls that edge, along with
its maximal capacity.
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v0 v1

Figure 17.10 The flow problem in Example 17.65 �

Definition 17.66 Let F = (V, E, v0, v1, c, N, I ) be a flow problem. A flow is a function
f : E → R+ associating each edge in the graph with a positive nonnegative real number
and satisfying the following conditions:

1. f (e) ≤ c(e) for every edge f ∈ E: the flow in each edge is not greater than the maximal
capacity of the edge.

2.
∑

{u∈V \{v} : (u,v)∈E} f (u, v) = ∑
{u∈V \{v} : (v,u)∈E} f (v, u) for every vertex v ∈ V \

{v0, v1}.
The magnitude8 of a flow f , denoted by M(f ), is the total flow arriving at the sink:

M(f ) :=
∑

{u∈V \{v1} : (u,v1)∈E}
f (u, v1). (17.145)

Since the capacity of each edge is finite, and because one cannot push more flow
through an edge than its maximal capacity, the magnitude of the flow is bounded by∑

(u,v1)∈E c(u, v1). The flow whose magnitude is maximal (among all possible flows) is
called the maximal flow.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 We use the term “magnitude of a flow” instead of the term “value of a flow” because the term “value” has several
other meanings in the game theory literature.
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Every flow problem may be described as a coalitional game in which the worth of a
coalition S is the maximal amount of flow that the members of S can carry from source
to sink without the assistance of players who are not members of S, i.e., the maximal
magnitude in the flow problem F|S = (V, E|S, v0, v1, c, S, I ), where the set of players is
S and the set of edges E|S consists of the edges in E controlled by the members of S, that
is, E|S = I−1(S).

Definition 17.67 The coalitional game (N ; v) corresponding to the flow problem F =
(V, E, v0, v1, c, N, I ) is the game in which the worth v(S) of a coalition S is the magnitude
of the maximal flow of the flow problem F|S . A coalitional game (N ; v) corresponding to
some flow problem is called a flow game.

Returning to our interpretation of a flow problem as a system of toll roads, and of the
capacity as the maximal number of cars that can pass through a road per hour, the flow
that the members of S can carry is equal to the maximal number of cars that can pass from
v0 to v1 per hour by using only roads controlled by the members of S.

Example 17.65 (Continued) The flow game corresponding to the flow problem is the following game (N ; u)

(verify!):

u(1) = 0, u(2) = 0, u(3) = 0,

u(1, 2) = 2, u(1, 3) = 2, u(2, 3) = 0, u(1, 2, 3) = 4. �

The next theorem states that if (N ; v) is a flow game corresponding to a flow problem
F , then (S; v), the game restricted to coalition S, is the flow game corresponding to the
flow problem F|S . The proof of the theorem is left to the reader (Exercise 17.63).

Theorem 17.68 Let F = (V, E, v0, v1, c, N, I ) be a flow problem, let (N ; v) be the cor-
responding flow game, and let S be a coalition. Then the flow game corresponding to F|S
is (S; v).

In particular, it follows from this theorem that the subgame of a flow game is a flow game.
The next theorem is the main result of this section.

Theorem 17.69 A coalitional game is totally balanced if and only if it is a flow game.

The theorem is proved in several steps. To prove that every totally balanced game is a
flow game, we will prove that every additive game is a flow game (Theorem 17.70), and
that the minimum of every two flow games is a flow game (Theorem 17.71). Since every
totally balanced game is the minimum of additive games (Theorem 17.44), it follows
that every totally balanced game is a flow game (Corollary 17.72). To prove the converse
direction, which states that every flow game is a totally balanced game, we will make use
of the Ford–Fulkerson Theorem from graph theory (Theorem 17.74).

Theorem 17.70 Every additive game is a flow game.
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v0 v1

a1 1

an n

a2 2

a3 3

an − 1 n − 1

Figure 17.11 The flow problem corresponding to an additive game

Proof: Let a = (ai)i∈N ∈ RN , and let (N ; v) be the additive game corresponding to a,
i.e., v(S) = ∑

i∈S ai for every nonempty coalition S. Then (N ; v) is the flow game corre-
sponding to the flow problem depicted in Figure 17.11.

This flow problem has two nodes, the source v0 and the sink v1, and n edges, with each
edge corresponding to one player, and the capacity of the edge corresponding to player
i is equal to ai . The magnitude of the maximal flow from v0 to v1 that use only edges
controlled by coalition S is ∑

i∈S

ai = v(S), (17.146)

and therefore (N ; v) is indeed the game corresponding to this flow problem. �
Theorem 17.71 The minimum of two flow games over the same set of players is a flow
game.

Proof: Let (N ; v) and (N ; v̂) be two flow games, and consider two flow prob-
lems corresponding to these flow games: F = (V, E, v0, v1, c, N, I ) and F̂ =
(V̂ , Ê, v̂0, v̂1, ĉ, N, Î ). Construct a new flow problem by connecting in series these two
flow problems (and identifying v1 with v̂0).

If, e.g., F is the flow problem depicted in Figure 17.11 (for n = 3) and F̂ is the
flow problem depicted in Figure 17.10, the resulting new flow problem is depicted in
Figure 17.12.

Since v(S) is the magnitude of the maximal flow from v0 to v1 that uses only the edges
controlled by members of coalition S, and v̂(S) is the magnitude of the maximal flow from
v̂0 to v̂1 that uses only the edges controlled by members of this coalition, it follows that
the magnitude of the maximal flow from v0 to v̂1 that uses only the edges controlled by
members of S is min{v(S), v̂(S)}. We deduce that the flow game corresponding to this flow
problem is (N ; u), in which u(S) = min{v(S), v̂(S)} for every coalition S ⊆ N , which is
what we wanted to show. �
Corollary 17.72 Every totally balanced game is a flow game.
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Figure 17.12 The flow problem in Figures 17.11 (with n = 3) and 17.10 connected
in series

Proof: By Theorem 17.44, every totally balanced game is the minimum of a finite number
of additive games. By Theorems 17.70 and 17.71 (using induction over the number of
players) the minimum of a finite number of additive games is a flow game. It follows that
every totally balanced game is a flow game. �

To complete the proof of Theorem 17.69, we need to prove the converse, i.e., to show
that every flow game is totally balanced. This is accomplished using a new definition, and
two more theorems.

Definition 17.73 Let F = (V, E, v0, v1, c, N, I ) be a flow problem. A cut is a set of edges
whose removal from the graph will prevent a flow with positive magnitude between v0 and
v1. The capacity of a cut is the sum of the capacities of the edges in the cut.

In other words, a subset A of E is a cut if the maximal magnitude in the flow problem
F = (V, E \ A, v0, v1, c, N, I ) is 0. The capacity of a cut A will be denoted by C(A) :=∑

(u,v)∈A c(u, v).
If A ⊆ E is a set of edges, and if there exists a path from v0 to v1 that does not contain

any edge in A, then A is not a cut. It follows that if a set of edges A is a cut, then every
path from v0 to v1 contains at least one edge of A.

Theorem 17.74 (Ford and Fulkerson [1956]) Let (V, E, v0, v1, c, N, I ) be a flow prob-
lem. The capacity of any cut is greater than or equal to the magnitude of the maximal flow
of the flow problem. Moreover, there exists a cut whose capacity equals the magnitude of
the maximal flow of the flow problem.

Proof: For every flow f and every two sets of vertices X, Y ⊆ V define

f (X, Y ) =
∑

{f (u, v) : (u, v) ∈ E, u ∈ X, v ∈ Y }
−
∑

{f (u, v) : (u, v) ∈ E, u ∈ Y, v ∈ X}. (17.147)
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This is the difference between the total flow in the edges connecting the vertices in X to
the vertices Y to the total flow in the edges connecting the vertices in Y to the vertices in
X. This function has several useful properties:

1. f (X, X) = 0 for every set of vertices X ⊆ V .
2. f (X1 ∪ X2, Y ) = f (X1, Y ) + f (X2, Y ) for all Y ⊆ V and every pair of disjoint sets

X1, X2 ⊆ V .
3. f (V, {v1}) = M(f ).
4. f (V, {v}) = 0 for every vertex v ∈ V \ {v0, v1}.

The first two properties follow from the definition of f (·, ·) and the last two properties
follow from the definition of a flow. Recall that for every set X ⊆ V , the complement of
X is Xc := V \ X.

We next prove that for every flow f and every set X satisfying v0 ∈ X and v1 �∈ X,

M(f ) = f (X, Xc). (17.148)

Indeed, from Property (2) of f (·, ·),
f (X, Xc) = f (V, Xc) − f (Xc, Xc) (17.149)

=
∑

v∈Xc\{v1}
f (V, {v}) + f (V, {v1}) − f (Xc, Xc) (17.150)

= M(f ). (17.151)

To obtain Equation (17.151) note that f (Xc, Xc) equals 0 by Property (1) of f (·, ·),
and

∑
v∈Xc\{v1} f (V, {v}) equals 0 by Properties (4) and (2) of f (·, ·), since Xc \ {v1} ⊆

V \ {v0, v1}.
For any cut A let X(A) be the set of vertices containing the source v0 and every vertex

v ∈ V such that there exists a path from v0 to v that does not contain any edge in A. By
the definition of a cut, we deduce that v1 �∈ X(A).

Note that if u ∈ X(A), v �∈ X(A), and (u, v) ∈ E, then (u, v) ∈ A. Indeed, since u ∈
X(A) there exists a path from the source v0 to u that does not contain any edge in A. If
the edge (u, v) were not in A, there would be a path from v0 to v that does not contain
any edge in A, but this contradicts the fact that v �∈ X(A). In particular,

{(u, v) ∈ E : u ∈ X(A), v �∈ X(A)} ⊆ A. (17.152)

Therefore,

f (X(A), (X(A))c) =
∑

{f (u, v) : (u, v) ∈ E, u ∈ X(A), v �∈ X(A)}
−
∑

{f (u, v) : (u, v) ∈ E, u �∈ X(A), v ∈ X(A)} (17.153)

≤
∑

{f (u, v) : (u, v) ∈ E, u ∈ X(A), v �∈ X(A)} (17.154)

≤
∑

(u,v)∈A

f (u, v) (17.155)

≤
∑

(u,v)∈A

c(u, v) = C(A), (17.156)
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where Inequality (17.155) follows from Equation (17.152). Using Equations (17.149)–
(17.151) and (17.153)–(17.156), we deduce that for every flow f and every cut A,

M(f ) ≤ C(A). (17.157)

This leads to

max
f

M(f ) ≤ min
A

C(A), (17.158)

where the maximum is taken over all flows and the minimum is over all cuts. The minimum
is attained because the number of cuts in the graph is finite, and the maximum is attained
because the set of flows is compact and the function f #→ M(f ) is continuous. That
completes the proof of the first part of Theorem 17.74.

To prove the second part of the theorem, let f ∗ be a maximal flow. We will show that
there exists a cut A such that M(f ∗) = C(A). Such a cut A is in particular a cut with
minimal capacity.

Define a graph Ĝ = (V, Ê) as follows: The edge (u, v) is in Ê if and only if at least
one of the following two conditions holds:

� The edge (u, v) is in E, and f ∗(u, v) < c(u, v).
� The edge (v, u) is in E, and f ∗(v, u) > 0.

In words, if the flow in edge (u, v) is less than its maximal capacity (and therefore more
flow can be added to that edge), then we add the edge (u, v) to Ê. If the flow in edges
(u, v) is positive (and therefore flow can be removed from that edge), we add the edge
in the opposite direction, (v, u), to Ê. In particular, it follows that the set of edges Ê is
nonempty.

We first claim that the graph Ĝ contains no path from v0 to v1. Suppose by contradiction
that there exists such a path σ . Denote

ε := min
{
min{c(u, v) − f (u, v) : (u, v) ∈ E, (u, v) ∈ Ê, f ∗(u, v) < c(u, v)},
min{f ∗(v, u) : (v, u) ∈ E, (u, v) ∈ Ê, f ∗(v, u) > 0}} > 0. (17.159)

If the set {(u, v) ∈ E, (u, v) ∈ Ê, f ∗(u, v) < c(u, v)} is empty, then the first internal
minimum on the right-hand side of Equation (17.159) is ∞, and if the set {(v, u) ∈
E, (u, v) ∈ Ê, f ∗(v, u) > 0} is empty, then the second internal minimum is ∞. Since at
least one of these two sets is nonempty, ε is a positive number.

Define a function f̂ : E → R+ as follows:

f̂ (u, v) =
⎧⎨⎩

f ∗(u, v) (u, v) is not in the path σ,

f ∗(u, v) + ε f ∗(u, v) < c(u, v) and (u, v) in the path σ,

f ∗(u, v) − ε f ∗(u, v) > 0 and (v, u) in the path σ.

(17.160)

Since σ is a path from v0 to v1 in Ĝ, the function f̂ is a flow in G, and its magnitude is
M(f ∗) + ε (Exercise 17.64). This contradicts the fact that f ∗ is a maximal flow.

Let X be a set containing v0 and every vertex v such that there is a path from v0 to v

in the graph Ĝ. Since there is no path from v0 to v1 we deduce that v1 �∈ X. Let A be the
following cut (why is this a cut?):

A := {(u, v) ∈ E : u ∈ X, v �∈ X}. (17.161)
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Let u ∈ X and v �∈ X. Note that (u, v) �∈ Ê by the definition of X. Therefore, if (u, v) ∈ E,
then necessarily f ∗(u, v) = c(u, v), and if (v, u) ∈ E, then necessarily f ∗(v, u) = 0.
Therefore,

M(f ∗) = f ∗(X, Xc) (17.162)

=
∑

{f ∗(u, v) : (u, v) ∈ E, u ∈ X, v ∈ Xc}
−
∑

{f ∗(u, v) : (u, v) ∈ E, u ∈ Xc, v ∈ X} (17.163)

=
∑

{c(u, v) : (u, v) ∈ E, u ∈ X, v ∈ Xc} = C(A). (17.164)

This completes the proof of Theorem 17.74. �

If (N ; v) is a flow game corresponding to the flow problem (V, E, v0, v1, c, N, I ), then
the magnitude of the maximal flow in the graph is v(N). The Ford–Fulkerson Theorem
implies that the minimal capacity of a cut in the problem equals v(N).

We now complete the proof of Theorem 17.69 by proving the following theorem.

Theorem 17.75 Every flow game is a totally balanced game.

Proof: Let (N ; v) be a flow game. We first show that the core of the game (N ; v) is
nonempty. Let F = (V, E, v0, v1, c, N, I ) be a flow problem corresponding to (N ; v).
Let A be a cut of minimal capacity in the flow problem F . For each player i ∈ N , denote
by ci the sum of the capacities of all the edges in A controlled by player i,

ci =
∑

{e∈A : I (e)=i}
c(e). (17.165)

We will show that the imputation c = (ci)i∈N is in the core of (N ; v). The worth v(N)
of coalition N is the magnitude of the maximal flow, which equals the capacity of the
minimal cut A by the Ford–Fulkerson Theorem (Theorem 17.74):

v(N) =
∑
i∈N

ci. (17.166)

Thus, c is an efficient vector. We next show that v(S) ≥ ∑
i∈S ci for every nonempty

coalition S ⊆ N . Fix then a nonempty coalition S, and define A|S = {e ∈ A : I (e) ∈ S}.
These are all the edges in the cut that are controlled by the players in S. The collection
A|S is a cut of F|S , because every path from v0 to v1 using only edges controlled by the
members of S must use an edge in A|S . By definition, v(S) is the magnitude of the maximal
flow in F|S , and by the first part of the Ford–Fulkerson Theorem, this quantity is at most
the capacity of any cut. It follows that

v(S) ≤
∑
e∈A|S

c(e) =
∑
i∈S

ci . (17.167)

Since this inequality holds for every nonempty coalition S ⊆ N , the vector c is coalition-
ally rational, and since it is efficient, it is in the core of the game (N ; v).

We have therefore proved that the core of every flow game is nonempty. Since every
subgame of a flow game is a flow game (Theorem 17.68), it follows that the core of
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every subgame of a flow game is nonempty, and therefore the game (N ; v) is totally
balanced. �

Using Theorem 17.40 (page 712), Theorem 17.44 (page 713), and Theorem 17.69
(page 726), we deduce the following corollary.

Corollary 17.76 The following statements are equivalent for a coalitional game (N ; v):

� (N ; v) is totally balanced.
� (N ; v) is a market game.
� (N ; v) is the minimum of a finite number of additive games.
� (N ; v) is a flow game.

17.10 The core for general coalitional structures
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we extend the solution concept of the core to cover cases in which the
grand coalition N is not formed, and instead players are partitioned into several disjoint
coalitions. When several disjoint coalitions are formed, the members of each coalition
divide the worth of that coalition among themselves.

Recall that a coalitional structure is a partition B of the set of players N . In other
words, B is a set of disjoint sets whose union is N . The set of imputations for a coalitional
structure B is the set

X(B; v) := {x ∈ RN : x(B) = v(B) ∀B ∈ B, xi ≥ v(i) ∀i ∈ N}. (17.168)

In words, an imputation for the coalitional structure B is an individually rational vector
at which the total payoff to the members of each coalition B in the coalitional structure is
equal to v(B), the amount that the members of B can obtain on their own.

Definition 17.77 The core of a coalitional game (N ; v) for a coalitional structure B is the
set

C(N ; v;B) := {x ∈ X(B; v) : x(S) ≥ v(S) ∀S ⊆ N} . (17.169)

This is the set of imputations for B, such that no coalition of players can profit by forming
and producing its worth. The coalitional rationality condition applies to all coalitions, not
only to the subcoalitions of the coalitions in B. For B = {N}, the set C(N ; v;B) is the
core of the game (N ; v) defined in Equation (17.2) on page 687.

A useful concept for the characterization of the core for coalitional structures is the
superadditive cover of a coalitional game.

Definition 17.78 Let (N ; v) be a coalitional game. The superadditive cover of (N ; v) is
the game (N ; v∗) defined by

v∗(S) := max
T

∑
T ∈T

v(T ), (17.170)

where the maximization is taken over all the partitions T of S.
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The idea behind this definition is as follows. Suppose that the members of S are interested
in maximizing the total amount they generate, without taking into account the players
who are not in S. In that case they will separate into several subcoalitions in a way that
maximizes the sum total of the worth of these subcoalitions. The quantity v∗(S) is precisely
this maximal sum.

Note that v(S) ≤ v∗(S) for every coalition S, with equality between these two worths
for every S ⊆ N , if the game is superadditive. Also, v∗(i) = v(i) for every player i ∈ N .

Theorem 17.79 Let (N ; v) be a coalitional game.

1. The game (N ; v∗) is superadditive.
2. The game (N ; v∗) is the smallest superadditive game that is larger than (N ; v): for every

superadditive game (N ; w) satisfying w(S) ≥ v(S) for every coalition S, w(S) ≥ v∗(S)
for every coalition S.

3. The game (N ; v) is superadditive if and only if v∗ = v.

The proof of the theorem is left to the reader (Exercise 17.68). The next theorem
characterizes the core for a general coalitional structure B.

Theorem 17.80 Let (N ; v) be a coalitional game with a coalitional structure B. Then,

C(N ; v;B) = C(N ; v∗) ∩ X(B; v). (17.171)

The theorem states that to compute the core for a given coalitional structure, and in
particular for the coalitional structure B = {N}, it suffices to compute the core of the
superadditive cover of (N ; v), and the set of imputations for B, and to take the intersection
of these two sets. We deduce from this that it suffices to compute the core only for
superadditive games.

Proof: We first prove that C(N ; v;B) ⊇ C(N ; v∗) ∩ X(B; v). Let x ∈ C(N ; v∗) ∩ X(B; v).
In particular, x ∈ X(B; v), and therefore to prove that x ∈ C(N ; v;B), we need to prove
that for every coalition S,

x(S) ≥ v(S). (17.172)

Since x ∈ C(N ; v∗),

x(S) ≥ v∗(S) ≥ v(S), (17.173)

which is what we needed to show.
We next prove that C(N ; v;B) ⊆ C(N ; v∗) ∩ X(B; v). Let x ∈ C(N ; v;B). In particular,

x ∈ X(B; v). To show that x ∈ C(N ; v∗), we need to show that (a) x(N) = v∗(N), and (b)
x(S) ≥ v∗(S) for every coalition S.

Let S ⊆ N be a coalition. Then there is a partition T = {T1, . . . , TK} of S such that

v∗(S) =
K∑

k=1

v(TK ). (17.174)

Since x ∈ C(N ; v;B),

x(TK ) ≥ v(TK ), ∀k ∈ {1, 2, . . . , K}, (17.175)
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and, therefore,

x(S) =
K∑

k=1

x(TK ) ≥
K∑

k=1

v(TK ) = v∗(S). (17.176)

It follows that x(S) ≥ v∗(S) for every coalition S ⊆ N . We set S = N , to deduce

x(N) ≥ v∗(N). (17.177)

Since x ∈ X(B; v), and since v∗ is the superadditive cover of (N ; v),

x(N) =
∑
B∈B

x(B) =
∑
B∈B

v(B) ≤ v∗(N). (17.178)

Equations (17.177) and (17.178) imply that x(N) = v∗(N). This completes the proof. �

The last theorems lead to the following corollary.

Corollary 17.81 Let (N ; v) be a coalitional game with a coalitional structure B.
If v∗(N ) = ∑

B∈B v(B), then C(N ; v;B) = C(N ; v∗). If v∗(N) >
∑

B∈B v(B), then
C(N ; v;B) is empty.

This corollary further leads to the conclusion that if the core of the superadditive cover
(N ; v∗) is empty, then the core relative to any coalitional structure is also empty. This fact
can also be deduced from Theorem 17.80. Similarly, if the core of (N ; v∗) is nonempty,
then the core is nonempty only for coalitional structuresB satisfying v∗(N) = ∑

B∈B v(B).
The coalitional structures in which the core is nonempty are precisely those structures in
which the sum

∑
B∈B v(B) attains its maximum, i.e., the “optimal” partition of the set of

all players.

Proof of Corollary 17.81: If v∗(N ) >
∑

B∈B v(B), then C(N ; v∗) and X(B; v) are dis-
joint, since every imputation x ∈ C(N ; v∗) satisfies

∑
i∈N xi = v∗(N), while every impu-

tation x ∈ X(B; v) satisfies
∑

i∈N xi =
∑

B∈B x(B) = ∑
B∈B v(B). By Theorem 17.80,

C(N ; v;B) is empty.
If v∗(N) = ∑

B∈B v(B), then C(N ; v∗) ⊆ X(B; v), because every imputation x ∈
C(N ; v∗) satisfies ∑

B∈B
x(B) =

∑
i∈N

xi = v∗(N) =
∑
B∈B

v(B), (17.179)

and

xi ≥ v∗(i) = v(i), ∀i ∈ N. (17.180)

Since x ∈ C(N ; v∗),

x(B) ≥ v∗(B) ≥ v(B). (17.181)

Equations (17.179) and (17.181) imply that x(B) = v(B) for every B ∈ B, and therefore
x ∈ X(B; v). Since C(N ; v∗) ⊆ X(B; v), Theorem 17.80 then implies that C(N ; v;B) =
C(N ; v∗). �
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17.11 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The concept of a balanced collection was introduced in Shapley [1967]. The proof appear-
ing in Section 17.3.2 showing that the Bondareva–Shapley condition implies that the core
is nonempty is due to Robert J. Aumann. Other proofs of this result appear in Bondareva
[1963] and Shapley [1967]. The Weber set was introduced in Weber [1988].

Theorem 17.63 was first proved in Bird [1976]. The proof presented in this chap-
ter is from Granot and Huberman [1981]. The results in Section 17.9 (page 724) and
Exercise 17.65 are from Kalai and Zemel [1982b].

The definition of the reduced game to coalition S relative to preimputation x was
introduced in Davis and Maschler [1965]. A different definition of the concept of a
reduced game was introduced by Hart and Mas-Colell; we study the Hart–Mas-Colell
reduced game in Chapter 18. The concept of a reasonable solution (Exercise 17.16) was
introduced in Milnor [1952]. Exercise 17.17 is based on Huberman [1980]. The result in
the exercise first appeared in Gillies [1953, 1959]. Exercise 17.18 is based on Schmeidler
[1972]. The ε-core appearing in Exercise 17.33 was introduced in Shapley and Shubik
[1966]. The intuitive meaning of this concept is that a deviation by members of a coalition
S that leads to its formation requires information and imposes a cost, and the players will
therefore not deviate to form a coalition S unless the profit from deviating is greater than
this cost. The least core, and its geometric analysis, were introduced in Maschler, Peleg,
and Shapley [1979]. Exercise 17.41 is from Kalai and Zemel [1982a]. Exercise 17.43 is
from Aumann and Drèze [1975]. Exercise 17.58 is from Tamir [1991].

17.12 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

17.1 Prove that the core is a convex set. That is, show that for any two imputations
x, y in the core of a coalitional game (N ; v), and for all α ∈ [0, 1], the imputation
αx + (1 − α)y is also in the core of the game (N ; v).

17.2 (a) Give an example of a three-player coalitional game whose core is a triangle.
(b) Give an example of a three-player coalitional game whose core is a parallelo-

gram.
(c) Give an example of a three-player coalitional game whose core is a pentagon.

17.3 Give an example of a monotonic game with an empty core.

17.4 Give an example of a superadditive game with an empty core.

17.5 Draw the cores of the following coalitional games. These games are 0-normalized,
and in all of them N = {1, 2, 3} and v(N) = 90.

(a) v(1, 2) = 20, v(1, 3) = 30, v(2, 3) = 10.
(b) v(1, 2) = 30, v(1, 3) = 10, v(2, 3) = 80.
(c) v(1, 2) = 10, v(1, 3) = 20, v(2, 3) = 70.
(d) v(1, 2) = 50, v(1, 3) = 50, v(2, 3) = 50.
(e) v(1, 2) = 70, v(1, 3) = 80, v(2, 3) = 60.
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17.6 Draw the core of the following three-player coalitional game:

v(1) = 5, v(2) = 10, v(3) = 20, v(1, 2) = 50, v(1, 3) = 70,

v(2, 3) = 50, v(1, 2, 3) = 90.

17.7 Players i, j are symmetric players if for every coalition S that does not include any
one of them,

v(S ∪ {i}) = v(S ∪ {j}). (17.182)

(a) Prove that the symmetry relation between two players is transitive: if i and j

are symmetric players, and j and k are symmetric players, then i and k are
symmetric players.

(b) Show that if the core is nonempty, then there exists an imputation x in the core
that grants every pair of symmetric players the same payoff, i.e., xi = xj for
every pair of symmetric players i, j .

17.8 Let (ai)i∈N be nonnegative real numbers. Let v be the coalitional function

v(S) =
{

0 if |S| ≤ k,∑
i∈S ai if |S| > k.

(17.183)

Compute the core of the game (N ; v) for every k = 0, 1, . . . , n.

17.9 Prove that a three-player 0-normalized game whose core is nonempty, and sat-
isfying v(S) ≥ 0 for every coalition S, is monotonic. Is this true also for games
with more than three players? Justify your answer. Does it hold true without the
condition that v(S) ≥ 0 for every coalition? Justify your answer.

17.10 A player i in a coalitional game (N ; v) is a null player if for every coalition S,

v(S ∪ {i}) = v(S). (17.184)

In particular, by setting S = ∅, this implies that if player i is a null player then
v(i) = 0. Show that if the core is nonempty, then xi = 0 for every imputation x in
the core, and every null player i.

17.11 Let (N ; v) be a coalitional game satisfying the strong symmetry property: for every
permutation π over the set of players, and every coalition S ⊆ N ,

v(S) = v(π(S)), (17.185)

where

π(S) = {π(i) : i ∈ S}. (17.186)

Prove the following claims:

(a) The core of the game is nonempty if and only if for every coalition S ⊆ N ,

v(S) ≤ |S|
n

v(N). (17.187)
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(b) If the core of the game is nonempty, and there exists a coalition ∅ �= S ⊂ N

satisfying v(S) = |S|
n

v(N), then the core contains only the imputation(
v(N)

n
, . . . ,

v(N)

n

)
. (17.188)

17.12 A player i in a simple game is a veto player if v(S) = 0 for every coalition S that
does not contain i.

(a) Show that the core of a simple game satisfying v(N) = 1 contains every impu-
tation x satisfying xi = 0 for every player i who is not a veto player, and does
not contain any other imputation. In other words, the only imputations in the
core are those in which the set of veto players divide the worth of the grand
coalition, v(N ), between them.

(b) Using part (a), find the core of the gloves game (Example 17.5 on page 690).
(c) Consider a simple majority game in which a coalition wins if and only if it has

at least n+1
2 votes; that is, for every coalition S ⊆ N ,

v(S) =
{

1 if |S| ≥ n+1
2 ,

0 if |S| < n+1
2 .

(17.189)

What is the core of this game?
(d) What is the core of a simple coalitional game without veto players?

17.13 A buyer–seller game is a coalitional game in which the set of players N is the
union of a set of buyers B and a set of sellers S (with these two sets disjoint from
each other). The payoff function is defined by

v(T ) := min{|T ∩ B|, |T ∩ S|}, ∀T ⊆ N. (17.190)

Compute the core of this game. Check your answer against the gloves game
(Example 17.5 on page 690).

17.14 Compute the core of the cost game (N ; c) in which N = {1, 2, 3, 4} and the coali-
tional function c is

c(S) =
⎧⎨⎩

0 S = ∅,

2 if |S| = 2 or |S| = 1,

4 if |S| = 3 or |S| = 4.

(17.191)

17.15 Define the dual game of a coalitional game (N ; v) to be the coalitional game (N ; v∗)
where

v∗(S) = v(N) − v(N \ S), ∀S ⊆ N. (17.192)

Is the core of a coalitional game (N ; v) nonempty if and only if the core of its dual
(N ; v∗) is nonempty? Either prove this claim, or provide a counterexample.

17.16 Prove that every imputation x in the core of a coalitional game (N ; v) satisfies

xi ≤ max
S⊆N\{i}

{v(S ∪ {i}) − v(S)}, ∀i ∈ N. (17.193)

A solution satisfying this property is called a reasonable solution.



738 The core

17.17 In this exercise, we will show that to compute the core of a coalitional game it
suffices to know the worth of only some of the coalitions.

A coalition S is inessential in a coalitional game (N ; v) if there exists
a partition S1, S2, . . . , Sr of S into nonempty coalitions such that r ≥ 2 and
v(S) ≤ ∑r

j=1 v(Sj ). A coalition S that is not inessential is an essential coalition.

(a) Prove that if S is an inessential coalition, then there exists a partition (Sj )rj=1
of S into essential coalitions such that v(S) ≤ ∑r

j=1 v(Sj ).
(b) Prove that an imputation x is in the core of the game (N ; v) if and only if (a)

x(N) = v(N), and (b) x(S) ≥ v(S) for every essential coalition S.

Let (N ; v) and (N ; u) be two coalitional games satisfying v(S) = u(S) for every
essential coalition S in (N ; v) or in (N ; u). Prove the following claims:

(c) A coalition S is essential in the game (N ; v) if and only if it is essential in the
game (N ; u).

(d) Deduce that if v(N) = u(N), then C(N ; v) = C(N ; u).
(e) Prove that if the cores of the games (N ; v) and (N ; u) are nonempty, then

v(N ) = u(N ), and therefore by part (d), C(N ; v) = C(N ; u).
(f) Show by example that it is possible for the core of the game (N ; v) to be

nonempty while the core of the game (N ; u) is empty. In this case show, using
part (d) above, that v(N ) �= u(N).

17.18 A coalitional game (N ; v) with a nonempty core C(N ; v) is an exact game if every
coalition S satisfies v(S) = minx∈C(N ;v) x(S). In other words, the worth of every
coalition S equals the minimal total payoff, among the imputations in the core, that
the members of S can get working together. In this exercise, we will show that for
every game (N ; v) with a nonempty core there exists an exact game whose core
equals the core of the original game (N ; v). In other words, the core of a coalitional
game is also the core of an exact game. Moreover, we will show that every convex
game is an exact game.

Let (N ; v) be a coalitional game with a nonempty core C(N ; v). For every
coalition S ⊆ N , define

vE(S) := min
x∈C(N ;v)

x(S). (17.194)

Answer the following questions:

(a) Prove that vE(S) ≥ v(S) for every coalition S ⊆ N .
(b) Prove that vE(N ) = v(N).
(c) Prove that C(N ; v) = C(N ; vE). Deduce that the coalitional game (N ; vE) is

exact.

17.19 Prove that if Equations (17.23)–(17.27) hold for a coalitional game (N ; v), where
N = {1, 2, 3}, then the game has a nonempty core.
Guidance: Show that if v(1, 2) + v(1, 3) ≥ v(N) + v(1), then the imputation

(v(1, 2) + v(1, 3) − v(N), v(N) − v(1, 3), v(N) − v(1, 2)) (17.195)
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is in the core. If v(1, 2) + v(1, 3) < v(N) + v(1) and v(1, 3) ≥ v(1) + v(3), then
the imputation

(v(1), v(N) − v(1, 3), v(1, 3) − v(1)) (17.196)

is in the core. If v(1, 2) + v(1, 3) < v(N) + v(1) and v(1, 3) < v(1) + v(3), then
the imputation

(v(1), v(N) − v(1, 3), v(1, 3) − v(1)) (17.197)

is in the core.

17.20 Prove that if D1 and D2 are two balanced collections, then their union D1 ∪D2 is
also a balanced collection.

17.21 Let D be a balanced collection of coalitions. Suppose that there is a player
i contained in every coalition in D. Prove that D contains a single coalition,
D = {N}.

17.22 Let D be a balanced collection of coalitions, and let S ∈ D. Prove that there is a
minimal balanced collection T ⊆ D containing S. Deduce that D is the union of
all the minimal balanced collections contained in D.

17.23 Given a balanced collection D that is not minimal, and any coalition S ∈ D, does
there exist a minimal balanced collection T ⊆ D that does not contain S? If so,
prove it. If not, provide a counterexample.

17.24 Show that if D is a minimal balanced collection of coalitions, then the vectors
{χS, S ∈ D} (which are vectors in RN ) are linearly independent.

17.25 Suppose that |N | = 4.

(a) Prove that {{1}, {2}, {3}, {3, 4}, {1, 3, 4}} is not a balanced collection.
(b) Prove that {{1, 2}, {1, 3}, {1, 4}, {3}, {4}, {2, 3, 4}} is a balanced collection, but

is not a minimal balanced collection.

17.26 Prove or disprove the following:

(a) If D is a balanced collection of coalitions that is not minimal, then it has an
infinite set of balancing weights.

(b) If D is a weakly balanced collection of coalitions that is not minimal, then it
has an infinite set of balancing weights.

17.27 Show that if N = {1, 2, 3}, then the only minimal balanced collections of coalitions
are: (a) {{1, 2, 3}}, (b) {{1}, {2}, {3}}, (c) {{1, 2}, {3}}, (d) {{1, 3}, {2}},
(e) {{2, 3}, {1}}, (f) {{1, 2}, {1, 3}, {2, 3}}.

17.28 Prove that the two formulations of the Bondareva–Shapley Theorem, Theorem
17.14 (page 695) and Theorem 17.19 (page 701), are equivalent. To do so, show
that the following two conditions are equivalent:
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� Equation (17.36) holds for every balanced collection of coalitions D with bal-
ancing weights (δS)S∈D .

� Equation (17.62) holds for every δ ∈ P .

17.29 Prove that the coalitional game ({1, 2, 3, 4}; v), in which v is defined by

v(S) =

⎧⎪⎪⎨⎪⎪⎩
0 if |S| = 1,

30 if |S| = 2,

0 if |S| = 3,

50 if |S| = 4,

(17.198)

has an empty core.
Guidance: Find a balanced collection of coalitions that does not satisfy the
Bondareva–Shapley condition.

17.30 In the following games, how large must v(1, 2, 3) be for the game ({1, 2, 3}, v) to
have a nonempty core?

(a) v(1) = 12, v(2) = 10, v(3) = 20, v(1, 2) = 20, v(1, 3) = 50, v(2, 3) = 70.
(b) v(1) = 30, v(2) = 40, v(3) = 70, v(1, 2) = 10, v(1, 3) = 20, v(2, 3) = 5.

17.31 The totally balanced cover of a coalitional game (N ; v) is the minimal totally
balanced coalitional game (N ; w) greater than or equal to (N ; v). In other words:

(a) (N ; w) is a totally balanced game.
(b) w(S) ≥ v(S) for every coalition S ⊆ N .
(c) Every totally balanced coalition (N ; u) satisfying u(S) ≥ v(S) for every coali-

tion S ⊆ N also satisfies u(S) ≥ w(S) for every coalition S ⊆ N .

What is the totally balanced cover of the two games in Exercise 17.30? (For
v(1, 2, 3) insert the worths you found in Exercise 17.30.)

17.32 Prove that a minimally balanced collection of coalitions contains at most n coali-
tions.

17.33 Let (N ; v) be a coalitional game. For any real number ε, define the ε-core of the
game as follows.

Cε(N ; v) = {x ∈ RN : x(N) = v(N), x(S) ≥ v(S) − ε ∀S ⊂ N ; S �= ∅}.
Note that for ε = 0, the ε-core C0(N ; v) is the core of the game. Denote ε0 =
inf{ε ∈ R : Cε(N ; v) �= ∅}. The set Cε0 (N ; v) is the least core of the game (N ; v).

(a) Prove that for every ε ∈ R, the set Cε(N ; v) is a polytope; i.e., it is a compact
set defined by the intersection of a finite number of half-spaces.

(b) Prove that the least core Cε0 (N ; v) is nonempty.

Finding the least core of a three-player coalitional game can be accomplished
graphically as follows. Draw the space of payoffs, and the half-spaces {x ∈
RN : x(S) ≥ v(S)} defining the core. For example, the game

v(1) = v(2) = v(3) = 0, v(1, 2) = 2, v(1, 3) = 3, v(2, 3) = 7, v(1, 2, 3) = 9
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yields the following picture.

(0, 0, 9)

(9, 0, 0)
(0, 9, 0)

x1 + x2 ≥ 2

x2 + x3 ≥ 7

x1 + x3 ≥ 3

x3 ≥ 0

x2 ≥ 0

x1 ≥ 0

The core (which is the ε-core for ε = 0) is nonempty, and therefore to obtain the
least core, we need to decrease ε. All the half-spaces appearing in the figure will
then be moved in parallel in the direction of the arrow at a constant rate (with all
the half-spaces moving at the same rate). As can be seen in the following figure,
the least core is obtained at ε∗ = −1, and is the interval whose ends are (1, 5, 3)
and (1, 2, 6).

(0, 0, 9)

(9, 0, 0)
(0, 9, 0)

x1 + x2 ≥ 3
x1 + x3 ≥ 4

x1 ≥ 1

x2 ≥ 1

x2 + x3 ≥ 8
x3 ≥ 1

The least core

(c) Find the least core of each of the following games. Note that if the core is
empty, then the least core is obtained at a positive ε.
(i) v(1) = v(2) = v(3) = 0, v(1, 2) = 2, v(1, 3) = 8, v(2, 3) = 3,

v(1, 2, 3) = 12.
(ii) v(1) = 6, v(2) = 5, v(3) = 4, v(1, 2) = 2, v(1, 3) = 4, v(2, 3) = 3,

v(1, 2, 3) = 12.
(iii) v(1) = v(2) = v(3) = 0, v(1, 2) = 8, v(1, 3) = 8, v(2, 3) = 8,

v(1, 2, 3) = 12.
(iv) v(1) = v(2) = v(3) = 0, v(1, 2) = 3, v(1, 3) = 6, v(2, 3) = 2,

v(1, 2, 3) = 12.
(v) v(1) = v(2) = v(3) = 0, v(1, 2) = 12, v(1, 3) = 15, v(2, 3) = 12,

v(1, 2, 3) = 12.
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17.34 Let (N ; v) and (N ; w) be two coalitional games satisfying v(N) = w(N) and
v(S) ≥ w(S) for every coalition S ⊆ N . Prove or disprove each of the following
two claims:

(a) If C(N ; v) �= ∅ then C(N ; w) �= ∅.
(b) If C(N ; w) �= ∅ then C(N ; v) �= ∅.

17.35 Prove that if (N ; v) is a market game, then every game that is strategically equivalent
to (N ; v) is also a market game.

17.36 Complete the computation of the market game derived from the market in Example
17.24 (page 704).

17.37 (a) Prove that a coalitional game (N ; v) where N = {1, 2} and the coalitional
function v is defined by

v(1) = v(2) = 1, v(1, 2) = 3 (17.199)

is a market game.
(b) Find a market such that (N ; v) is the market game derived from it.

17.38 Let (N ; v) be a coalitional game, and let (N ; w) be a coalitional game strategically
equivalent to it. Give direct proofs of the following claims:

(a) The game (N ; v) is a market game if and only if the game (N ; w) is a market
game.

(b) The game (N ; v) is totally balanced if and only if the game (N ; w) is totally
balanced.

17.39 Consider the following coalitional game (N ; v) where the set of players is N =
{1, 2, 3}, and the coalitional function is

v(S) =
⎧⎨⎩

0 if |S| = 1,

1 if |S| = 2,

2 if |S| = 3.

(17.200)

Show in a direct way that this game is totally balanced, and find a market from
which this game can be derived.

17.40 Let ε > 0, let x ∈ RN , and let (δS){S⊆N,S �=∅} be nonnegative weights satisfying∑
{S⊆N,S �=∅} δSχ

S = x. Let y ∈ RN be a vector satisfying |xi − yi | < ε for all
i ∈ N . Prove that there exists a collection of nonnegative weights (μS){S⊆N,S �=∅}
satisfying (a)

∑
{S⊆N,S �=∅} μSχ

S = y and (b) |δS − μS | < 2|N |ε.
Deduce that the function u defined in Equation (17.88) (page 710) is a continuous

function.
Guidance: First, define μ̂S := max{δS − ε, 0} for every nonempty coalition S, and
show that

∑
{S⊆N,S �=∅} μ̂Sχ

S is approximately x. The vector (μS){S⊆N,S �=∅} equals
the vector (μ̂S){S⊆N,S �=∅}, except for coalitions containing only one player.

17.41 Let N = {1, 2, . . . , n} be a set of players. A collection (YS){S⊆N,S �=∅} of subsets of
Rd is balanced relative to N if for every balanced collection of coalitions D with
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balancing weights (δS)S∈D, and every list of points (yS){S⊆N,S �=∅} such that yS ∈ YS

for every S ∈ D, one has
∑

S∈D δSyS ∈ YN . The collection (YS){S⊆N,S �=∅} is totally
balanced if for every nonempty coalition T , the collection (YS)S⊆T ,S �=∅ is balanced
relative to T .

Let {B1, B2, . . . , Bn} be a partition of the set {1, 2, . . . , d}. For each coalition
S define

RS := {y ∈ Rd : yj = 0 ∀j �∈ ∪i∈SBi}. (17.201)

Regard the variables (yj )j∈Bi
as variables under the control of player i. The set RS

denotes the possible values of the variables (yj )dj=1, when the players who are not
in S set all the variables under their control to 0.

Let f : Rd → R be a concave function, and let (YS){S⊆N,S �=∅} be a collection of
compact, nonempty subsets of Rd satisfying RS ⊆ YS for every nonempty coalition
S. Define a coalitional game (N ; v) by

v(S) := max
y∈YS

f (y). (17.202)

(a) Prove that if the collection (YS){S⊆N,S �=∅} is totally balanced, then (N ; v) is a
totally balanced game.

(b) Show that for every market game (N ; v) there exist a natural number d ∈ N,
a partition {B1, B2, . . . , Bn} of {1, 2, . . . , d}, a concave function f : Rd → R,
and a totally balanced collection (YS){S⊆N,S �=∅} of compact, nonempty subsets
of Rd satisfying RS ⊆ YS for every nonempty coalition S, such that v(S) =
maxy∈YS

f (y).

17.42 Find the cores for all the coalitional structures of all the games in Exercise 17.5,
under the assumption that v(N) = 60 (and not v(N) = 90, as stated in the exercise).

17.43 Let (N ; v) be a coalitional game with a coalitional structure B. Let k and l be two
players who are members of different coalitions in B. Prove that if k and l are
symmetric players, i.e., v(S ∪ {k}) = v(S ∪ {l}) for every coalition S that does not
contain either of them, then for every imputation x in the core of the game with
coalitional structure B, one has xk = xl .

17.44 Prove that every additive game is convex.

17.45 Find a superadditive game that is not convex.

17.46 Prove that a subgame of a convex game is a convex game. Deduce that every
subgame of a convex game has a nonempty core, and that every convex game is
totally balanced.

17.47 Prove or disprove: the core of a superadditive game is not empty.

17.48 Let (N ; v) be a convex game whose core contains exactly one imputation. Prove
that (N ; v) is an additive game; i.e., v(S) = ∑

i∈S v(i) for every coalition S.
Hint: Make use of Remark 17.56 on page 719.
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17.49 Let N be a set of players, let p0 be a probability distribution over N , and let B be
a partition of N into disjoint sets. Define a coalitional game (N ; v) by

v(S) :=
∑

{B∈B,B⊆S}

∑
i∈B

p0(i). (17.203)

In words, v(S) is the sum of the probabilities associated with the atoms of B that
are contained in S. Let C(p0) be a set of probability distributions over N that are
identical with p0 over the elements of B,

C(p0) :=
{

p ∈ 
(N) :
∑
i∈B

pi =
∑
i∈B

p0(i) ∀B ∈ B
}

. (17.204)

Prove the following claims:

(a) v(N ) = 1 and v(i) ≥ 0 for all i ∈ N . Deduce that the set of imputations X(B; v)
is a subset of 
(N). When does this inclusion hold as an equality?

(b) (N ; v) is a convex game.
(c) The core of (N ; v) equals C(p0).

17.50 Prove that if the coalitional game (N ; v) is strategically equivalent to the coalitional
game (N ; w), and if (N ; v) is a convex game, then (N ; w) is also a convex game.

17.51 Let N be a set of players, and let f : N → R be a function. The function f is a
convex function9 if for every three natural numbers k, m, l satisfying k ≤ m ≤ l

and k < l,

f (m) ≤ l − m

l − k
f (k) + m − k

l − k
f (l). (17.205)

Let N be a set of players, and let f : N → R be a function. Define a coalitional
game (N ; v) by

v(S) := f (|S|). (17.206)

Prove that (N ; v) is a convex game if and only if f is a convex function.

17.52 The monotonic cover of a coalitional game (N ; v) is the coalitional game (N ; ṽ)
defined by

ṽ(S) := max
R⊆S

v(R). (17.207)

Prove that the monotonic cover of a convex game is a convex game.

17.53 Find a coalitional game that is not convex, and has a nonempty core that does not
contain the Weber set.

17.54 Find a coalitional game in which all the vectors wπ defined in Equation (17.138)
(page 720) are identical: wπ1 = wπ2 for every pair of permuations π1 and π2 of the
set of players N .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 This is the discrete analogue to the definition of a convex function over R, since l−m
l−k

k + m−k
l−k

l = m. Recall that a
real-valued function g is convex if g(αx + (1 − α)y) ≤ αg(x) + (1 − α)g(y) for all x, y and for all α ∈ [0, 1].
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17.55 Write out the coalitional function of the spanning tree game corresponding to
Example 17.62 (page 721). Is this a convex game?

17.56 Prove that a connected graph over a set V with n + 1 vertices is a tree (that is, it is
acyclic) if and only if it contains n edges.

17.57 A spanning tree system (N, V, E, v0, a), where (V, E) is a tree (i.e., a connected
acyclic graph), is called a tree system. Prove that the spanning tree game corre-
sponding to such a system is a convex game.

17.58 In Section 17.8 we defined a spanning tree system (N, V, E, v0, a) in which every
vertex that is not the source is associated with a player in N . In this exercise we
will assume that some of the vertices are unmanned, i.e., V ⊇ N ∪ {v0}. In this
case, as in the standard case, the spanning tree game (N ; c) corresponding to the
spanning tree system is a cost game in which the worth c(S) of each coalition S is
the cost of the minimal-cost spanning tree of the coalition.

(a) Write out the spanning tree game corresponding to the following spanning tree
system.

I

II III

v0

11

1
11

1

1

1

1

(b) Prove that the core of this game is empty.

17.59 A bankruptcy problem is given by n + 1 nonnegative numbers [E; d1, d2, . . . , dn].
Here E represents the assets of a bankrupt individual or corporation, and N =
{1, 2, . . . , n} is the set of creditors, with each creditor i owed a debt of di . It is
assumed that E <

∑n
i=1 di (otherwise every creditor can be paid off in full, and

there is no bankruptcy problem to be considered).
This problem can be analyzed using a mathematical model in several different

ways. One way, as presented in O’Neill [1982], depicts the problem as a coalitional
game (N ; v), where the set of players is the set of creditors, and the coalitional
function is

v(S) := max

⎧⎨⎩E −
∑
i �∈S

di, 0

⎫⎬⎭ . (17.208)

Prove that this game is convex, and deduce that it has a nonempty core.
Explanation: The intuition behind this definition is as follows. When a coalition
S intends on forming, it computes what it can gain for its members. The coalition
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takes into account the worst-case scenario, in which all the creditors who are not
members of S get paid all the debt they are owed in full, if the worth of E enables
this.

17.60 Let [E; d1, d2, . . . , dn] be a bankruptcy problem, and let x be an imputation that
divides the assets of the bankrupt estate among the creditors proportionally to the
debt that is owned to each of them:

xi = di∑n
j=1 dj

· E. (17.209)

Is x in the core of the game defined in Exercise 17.59?

17.61 Let [E; d1, d2, . . . , dn] be a bankruptcy problem, and let (N ; v) be the coali-
tional game corresponding to this problem, as defined in Exercise 17.59. Let
x = (x1, x2, . . . , xn) be an imputation in the core of (N ; v), and let S be a nonempty
coalition. Let � = [x(S); (di)i∈S] be the bankruptcy problem restricted to the cred-
itors in S, given the imputation x. Denote by (S; xw

S ) the reduced game of (N ; v)
to coalition S relative to x. Prove that (S; wx

S) is the game corresponding to the
bankruptcy problem �.

In other words, this exercise states that for every imputation x in the core, the
game corresponding to the bankruptcy problem for coalition S at the point x is the
reduced game to S relative to x.

17.62 Let ϕ be the solution concept to the collection of bankruptcy problems that divides
the asset E among the creditors proportionally to the debt owed to them:

ϕi(E; d1, d2, . . . , dn) := di∑n
j=1 dj

· E. (17.210)

Does this solution concept satisfy the Davis–Maschler reduced game property (see
page 715)?

17.63 Prove Theorem 17.68 on page 726.

17.64 Prove that the function f̂ that is defined in Equation (17.160) (page 730) is a flow
in the graph G, and its magnitude is M(f ∗) + ε.

17.65 In Section 17.9 we defined a flow problem in which each edge is controlled by one
of the players. In this exercise we consider a flow problem (V, E, v0, v1, c, N, I )
in which some of the edges are “public edges”; that is, the function I is a function
from E to N ∪ {∗}. If I (e) = ∗ we say that e is a public edge.

The worth of a coalition S is the maximal magnitude of the flow that can pass
from v0 to v1 using the edges controlled by the members of S and the public edges.
Answer the following questions.

(a) Construct a flow problem with public edges such that the core of the corre-
sponding flow game is empty.

(b) Prove that every flow game corresponding to a flow problem with public edges
is a monotonic game. In addition, show that for every monotonic game (N ; v)
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there is a flow problem in which there may be public edges such that (N ; v) is
the flow game corresponding to this flow problem.

17.66 Write out the superadditive cover of the games in Exercise 17.5.

17.67 Draw the core of the game in Exercise 17.6, with respect to each possible coalitional
structure.

17.68 Prove Theorem 17.79 on page 733.

17.69 Let x ∈ C(N ; v;B) and y ∈ C(N ; w;B). Is x + y ∈ C(N ; v + w;B)? Is x − y ∈
C(N ; v − w;B)? For each claim, either prove it, or provide a counterexample.

17.70 Prove or disprove: for every coalitional game (N ; v) there exists a coalitional
structure B such that C(N ; v;B) �= ∅.

17.71 Let (N ; v) be a coalitional game, let (N, v∗) be its superadditive cover, and let (N ; ṽ)
be its monotonic cover (see Definition 17.78 for the definition of the superadditive
cover, and Exercise 17.52 for the definition of the monotonic cover). Is one of the
quantities v(N), v∗(N ), and ṽ(N) always greater than or equal to one of the other
quantities? Justify your answer.



18 The Shapley value

Chapter summary
This chapter presents the Shapley value, which is one of the two most important
single-valued solution concepts for coalitional games. It assigns to every coalitional
game an imputation, which represents the payoff that each player can expect to obtain
from participating in the game. The Shapley value is defined by an axiomatic approach:
it is the unique solution concept that satisfies the efficiency, symmetry, null player, and
additivity properties. An explicit formula is provided for the Shapley value of a
coalitional game, as a linear function of the worths of the various coalitions. A second
characterization, due to Peyton Young, involves a marginality property that replaces the
additivity and null player properties.

The Shapley value of a convex game turns out to be an element of the core of the
game, which implies in particular that the core of a convex game is nonempty. Similar to
the core, the Shapley value is consistent: it satisfies a reduced game property, with
respect to the Hart–Mas-Colell definition of the reduced game.

When applied to simple games, the Shapley value is known as the Shapley–Shubik
power index and it is widely used in political science as a measure of the power
distribution in committees.

This chapter studies the Shapley value, a single-valued solution concept for coalitional
games first introduced in Shapley [1953]. Shapley’s original goal was to answer the
question “How much would a player be willing to pay for participating in a game?”
Plainly, the answer to that question depends on how much a player expects to receive
when he comes to play the game.

Assuming that the grand coalition N will be formed, how will the worth v(N) be divided
among the members of the coalition? If one may “expect” that player i will receive the
sum ϕi , that sum will be called “player i’s value in the game.” We will also interpret ϕi as
the sum that it is “reasonable” for player i to receive if the grand coalition N is formed.

Shapley proposed a solution concept that satisfies several properties, which have come
to be known as the Shapley properties (or axioms). We leave it to the reader to judge to
what extent the properties put forward by Shapley reflect his original goal. The properties
may also be applicable to a fair judge who is hired to advise the players on how to divide
their profit among themselves after forming the grand coalition.

748
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18.1 The Shapley properties
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We start by presenting Shapley’s properties, also sometimes called “axioms,” as they form
the basis of a theory developed from them.

Recall that a single-valued solution concept ϕ is a function associating every coalitional
game (N ; v) and every coalitional structure B with an imputation ϕ(N ; v;B) ∈ RN . In
this chapter, we will restrict our attention to a coalitional structure containing only one
coalition, the grand coalition B = {N}, and therefore omit mentioning the coalitional
structure in the notation for solution concepts. As we have seen, every game with a set
of players N is a vector1 z = (zS)S⊆N ∈ RP(N) satisfying z∅ = 0. It follows that for a
fixed set of players, a single-valued solution concept is a function ϕ defined over the set
{z ∈ RP(N) : z∅ = 0}, which is a (2n − 1)-dimensional subspace of RP(N). The function
ϕ associates every game in this subspace with an n-dimensional vector in RN . In other
words, a single-valued solution concept is an infinite sequence of functions, one for each
set of players N .

Definition 18.1 Let ϕ be a single-valued solution concept, let (N ; v) be a coalitional
game, and let i ∈ N be a player. Then ϕi(N ; v) is called the value of player i in (N ; v)
according to ϕ.

18.1.1 Efficiency
The first property we present here is the efficiency property, which requires that the sum
total that all the players expect to get equals v(N), the worth of the grand coalition N .

Definition 18.2 A solution concept ϕ satisfies efficiency if for every coalitional game
(N ; v), ∑

i∈N

ϕi(N ; v) = v(N). (18.1)

If we assume that the coalition that will form is the grand coalition N , then the sum
total that the players expect to receive is v(N), the total amount available to them, and
it is reasonable to assume that rational players will divide the entire sum total, without
“wasting” any part of it.

18.1.2 Symmetry
The next property is the symmetry property, which is essentially a “non-discrimination”
property, because it states that two players with the same standing in the game (who differ
only in their names) should expect the same amount.

Definition 18.3 Let (N ; v) be a coalitional game, and let i, j ∈ N . Players i and j are
symmetric players if for every coalition S ⊆ N \ {i, j} (which contains neither i nor j as
members),

v(S ∪ {i}) = v(S ∪ {j}). (18.2)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 P(N ) is the collection of all subsets of the set of players N .
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Symmetric players give the same marginal contribution to every coalition that does not
contain them, and they are therefore identical from a strategic perspective. Adding player
i to a coalition is equivalent to adding player j to that coalition.

Definition 18.4 A solution concept ϕ satisfies symmetry2 if for every coalitional game
(N ; v) and every pair of symmetric players i and j in the game:

ϕi(N ; v) = ϕj (N ; v). (18.3)

The symmetry property requires that the solution concept be independent of the names
of the players if their contributions to every coalition are equal. Two such players ought
to get the same share of v(N), and therefore ought to be willing to pay the same sum for
participating in the game. This property is a reasonable one to adopt when there are no
other differences between the players, stemming from social standing, age, personality,
and so on.

18.1.3 Covariance under strategic equivalence
Another reasonable property to apply is covariance under strategic equivalence (see
Section 16.2 on page 668).

Definition 18.5 A solution concept ϕ satisfies covariance under strategic equivalence if
for every coalitional game (N ; v), every positive real number a, every vector b ∈ RN , and
every player i ∈ N ,3

ϕi(N, av + b) = aϕi(N ; v) + bi. (18.4)

18.1.4 The null player property
The next property is the null player property, which states that if a player contributes
nothing to any coalition he joins, then he should not expect to receive a positive amount
for participating in the game.

Definition 18.6 A player i is called a null player in a game (N ; v) if for every coalition
S ⊆ N , including the empty coalition, one has4

v(S) = v(S ∪ {i}). (18.5)

A null player contributes nothing to any coalition he chooses to join. In particular, if i is
a null player, then v(i) = 0.

Definition 18.7 A solution concept ϕ satisfies the null player property if for every coali-
tional game (N ; v) and every null player i in the game,

ϕi(N ; v) = 0. (18.6)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 This property is sometimes called the equal treatment property.
3 Recall that for every coalitional game (N ; v), for every a > 0, and for every b ∈ RN , the coalitional function av + b

is defined by

(av + b)(S) := av(S) + b(S).

4 If a coalition S contains player i then this equality holds trivially, because then S ∪ {i} = S.
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18.1.5 Additivity property
The next property looks at a pair of coalitional games with the same set of players, and
connects the solution of those two games to the solution of their sum.5

Definition 18.8 A solution concept ϕ satisfies additivity if for every pair of coalitional
games (N ; v) and (N ; w),

ϕ(N ; v + w) = ϕ(N ; v) + ϕ(N ; w). (18.7)

The additivity property is justified as follows: suppose that the same set of players
participate in the two coalitional games (N ; v) and (N ; w). The amount that player i

expects to receive in (N ; v) is ϕi(N ; v), and the amount that he expects to receive in
(N ; w) is ϕi(N ; w). If the two games are independent, we may regard this situation as a
single game in which each coalition S, if it forms, receives v(S) + w(S). Additivity states
that player i should expect to receive ϕi(N ; v) + ϕi(N ; w) in the game (N ; v + w).

This justification depends on the answer to the question: “To what extent is the single
game (N ; v + w) equivalent to playing both (N ; v) and (N ; w)?” In other words, to what
extent are the two games indeed independent of each other? If we accept the additivity
property, then the sum of the expectations of the players in the game (N ; v + w) is the
sum of their expectations in the games (N ; v) and (N ; w). But is the “strength” of a player
in the game (N ; v + w) equal to the sum of his “strengths” in each of the games (N ; v)
and (N ; w)? It is possible, for example, that one player may be willing to give up a bit in
the game (N ; v) in exchange for receiving much more in the game (N ; w).

Another interpretation that can be adduced in justification of the additivity property is
that the players play only one of the games, (N ; v) or (N ; w), each with probability 1

2 . In
this case, they will expect to receive in the combined game 1

2ϕ(N ; v) + 1
2ϕ(N ; w). The

worth of a coalition in the combined game is then 1
2v(S) + 1

2w(S), yielding the require-
ment that ϕ(N ; 1

2v + 1
2w) = 1

2ϕ(N ; v) + 1
2ϕ(N ; w), which, together with the covariance

under strategic equivalence, is equivalent to the definition of the additivity property. This
justification assumes that the utility that the players receive from the lottery conducted
to choose the game equals the expected utility under the lottery, but in practice this does
not always hold. Since the additivity property reflects assumptions that do not hold in
all situations, it has been criticized. There is therefore some interest in characterizing the
Shapley value using a system of properties that does not include the additivity property.
We will present such a characterization in Section 18.5.

18.2 Solutions satisfying some of the Shapley properties
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present several solutions, and check which of the Shapley properties
they satisfy.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 If (N ; v) and (N ; w) are two games, their sum is (N ; v + w), defined by (v + w)(S) := v(S) + w(S) for every
coalition S ⊆ N .
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Example 18.9 Consider the solution concept ψ defined by

ψi(N ; v) := v(i). (18.8)

This solution concept satisfies additivity, symmetry, the null player property, and covariance under
strategic equivalence. It does not, however, satisfy efficiency (Exercise 18.1). �

Example 18.10 A player i is called a dummy player if v(S ∪ {i}) = v(S) + v(i) for every coalition

S ⊆ N \ {i}. Every null player is a dummy player. Denote by d(v) the number of dummy players.
Consider the solution concept ψ defined by

ψi(N ; v) :=
{

v(i) + v(N )−∑
j∈N v(j )

n−d(v) if i is not a dummy player,
v(i) if i is a dummy player.

(18.9)

This solution concept satisfies efficiency, symmetry, covariance under strategic equivalence, and
the null player property. It does not, however, satisfy additivity (Exercise 18.2).

Here is an example that shows that this solution concept does not satisfy additivity. Consider the
following two three-player games:

v(1) = v(2) = v(3) = v(1, 2) = v(1, 3) = 0, v(2, 3) = v(1, 2, 3) = 1, (18.10)

and

u(1) = u(2) = u(3) = u(1, 3) = 0, u(1, 2) = u(2, 3) = u(1, 2, 3) = 1. (18.11)

In the game (N ; v), only Player 1 is a dummy player, and in the game (N ; u) there is no dummy
player. Therefore,

ψ(N ; v) = (
0, 1

2 , 1
2

)
, ψ(N ; u) = (

1
3 , 1

3 , 1
3

)
. (18.12)

The game (N ; v + u) is the game

(v + u)(1) = (v + u)(2) = (v + u)(3) = u(1, 3) = 0, (v + u)(1, 2) = 1,

(v + u)(2, 3) = (v + u)(1, 2, 3) = 2.

There is no dummy player in this game, and therefore

ψ(N ; v + u) = (
2
3 , 2

3 , 2
3

) �= (
1
3 , 5

6 , 5
6

) = ψ(N ; v) + ψ(N ; u). (18.13)

In other words, ϕ does not satisfy additivity. �

Example 18.11 Consider the solution concept ψ defined by

ψi(N ; v) := max
{S : i �∈S}

(v(S ∪ {i}) − v(S)). (18.14)

This is the maximal marginal contribution that player i can give to any coalition. This solution
concept satisfies symmetry, the null player property, and covariance under strategic equivalence. It
does not, however, satisfy efficiency and additivity (Exercise 18.3).
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We first show that ψ does not satisfy efficiency. To this end, define the following three-player
game (N ; w):

w(1) = 0, w(2) = w(3) = w(1, 2) = w(1, 3) = w(2, 3) = w(1, 2, 3) = 1. (18.15)

Applying Equation (18.14) yields

ψ(N ; w) = (0, 1, 1). (18.16)

Since
∑3

i=1 ψi (N ; w) = 2 �= 1 = w(N ), the solution concept ψ does not satisfy efficiency.
We next show that ψ does not satisfy additivity. Let (N ; v) be the game defined in Equation

(18.10). Then

ψ(N ; v) = (0, 1, 1). (18.17)

The sum v + w is the coalitional function given by

(v + w)(1) = 0, (18.18)

(v + w)(2) = (v + w)(3) = (v + w)(1, 2) = (v + w)(1, 3) = 1, (18.19)

(v + w)(2, 3) = (v + w)(1, 2, 3) = 2, (18.20)

and therefore

ψ(N ; v + w) = (0, 1, 1) �= (0, 1, 1) + (0, 1, 1) = ψ(N ; v) + ψ(N ; w), (18.21)

from which we deduce that ψ does not satisfy additivity. �

Example 18.12 Consider the solution concept ψ defined by

ψi(N ; v) := v({1, 2, . . . , i}) − v({1, 2, . . . , i − 1}). (18.22)

This solution concept satisfies efficiency, additivity, the null player property, and covariance under
strategic equivalence. It does not satisfy symmetry (Exercise 18.4). To show that this solution
concept does not satisfy symmetry, note that for the game (N ; v) defined in Equation (18.10)

ψ(N ; v) = (0, 0, 1), (18.23)

even though Players 2 and 3 are symmetric players in this game. �

In the last example, we assumed the existence of a particular ordering of the players,
namely, 1, 2, . . . , n. Clearly, this solution concept can be defined using any arbitrary
ordering of the players. Denote by �(N) the set of all permutations of the set of players N

(recall that the number of players is n = |N |). The set �(N) then contains n! permutations.
For every permutation π ∈ �(N ), define

Pi(π) := {j ∈ N : π(j ) < π(i)}. (18.24)

This is the set of players ahead of player i when the players are ordered according to
permutation π . Note that Pi(π) = ∅ if and only if π(i) = 1. Similarly, Pi(π) contains
only one element (which is π−1(1)) if and only if π(i) = 2. Generally,

Pi(π) ∪ {i} = Pk(π) if and only if π(k) = π(i) + 1. (18.25)
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For every permutation π ∈ �(N ), define a solution concept ψπ as follows.

ψπ
i (N ; v) := v(Pi(π) ∪ {i}) − v(Pi(π)). (18.26)

As in Example 18.12, this solution concept satisfies efficiency, additivity, the null player
property, and covariance under strategic equivalence. It does not satisfy symmetry.

18.3 The definition and characterization of the Shapley value
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Are there solution concepts that satisfy efficiency, additivity, the null player property, and
symmetry? Shapley [1953] proved that this is indeed the case, and furthermore that there
is a unique such solution concept.

Theorem 18.13 (Shapley [1953]) There is a unique solution concept satisfying effi-
ciency, additivity, the null player property, and symmetry.

Shapley provided an explicit formula for computing this solution concept. In
Example 18.12, we saw that for every permutation π ∈ �(N), the solution concept ψπ

satisfies all the Shapley properties except symmetry. To define a solution concept that in
addition satisfies symmetry, we average the solution concepts ψπ over all permutations
of the set of players N .

Definition 18.14 The Shapley value is the solution concept Sh defined as follows.

Shi(N ; v) := 1

n!

∑
π∈�(N)

(v(Pi(π) ∪ {i}) − v(Pi(π))), ∀i ∈ N. (18.27)

Using the solution concept ψπ defined in Equation (18.26), one may write Equation
(18.27) as follows:

Sh(N ; v) := 1

n!

∑
π∈�(N)

ψπ (N ; v). (18.28)

Before proceeding to the proof that the Shapley value Sh satisfies the above-listed
properties, we present a probabilistic interpretation of Equation (18.27). Suppose that
the players enter a room one at a time. Each player, upon entry, receives his marginal
contribution to the set composed of the players who entered the room before him; i.e., if S is
the set of players already in the room as player i enters, player i receives v(S ∪ {i}) − v(S).
If the ordering under which the players enter the room is chosen randomly, with every
ordering given equal probability of being chosen, then the expected payoff of player i is
given by Equation (18.27).

Theorem 18.15 The Shapley value is the only single-valued solution concept satisfying
efficiency, additivity, the null player property, and symmetry.

Remark 18.16 In Exercise 18.10, we show that there exist subfamilies of the class of
coalitional games over which one may define a solution concept different from the Shapley
value and that satisfies efficiency, additivity, the null player property, and symmetry.
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Theorem 18.15, however, shows that the Shapley value is the only solution concept defined
over all coalitional games that satisfies these four properties. �

We now present a formulation equivalent to Equation (18.27). Let i be a player, and S be
an arbitrary coalition that does not include player i. What is the number of permutations
π for which Pi(π) = S? For Pi(π) to equal S, we must require that the players in S

enter the room before player i under the permutation π , then player i, and after him the
players in N \ (S ∪ {i}). The number of different ways that the players in S can be ordered
is S!, and the number of different ways that the players in N \ (S ∪ {i}) can be ordered
is (n − |S| − 1)!. It follows that the number of permutations π under which Pi(π) = S is
|S|! × (n − |S| − 1)!. This shows that the Shapley value of player i can be computed as
follows.

Theorem 18.17 The Shapley value is given by the following equation:

Shi(N ; v) =
∑

S⊆N\{i}

|S|! × (n − |S| − 1)!

n!
(v(S ∪ {i}) − v(S)). (18.29)

We begin the proof of Theorem 18.15 by ascertaining that the Shapley value satisfies
the four properties listed in the statement of the theorem.

Claim 18.18 The Shapley value satisfies efficiency, additivity, the null player property,
and symmetry. Furthermore, it satisfies covariance under strategic equivalence.

Proof: Since

Sh(N ; v) = 1

n!

∑
π∈�(N)

ψπ (N ; v), (18.30)

and since for each permutation π , the solution concept ψπ satisfies additivity, the
null player property, and covariance under strategic equivalence, the Shapley value,
as the average of these solution concepts, also satisfies the same list of properties
(Exercise 18.6).

We now show that the Shapley value satisfies symmetry. Let i and j be two symmetric
players. Define a function f : �(N) → �(N) that maps each permutation over the set of
players to another permutation as follows. For every permutation π , the permutation f (π)
is identical to π except that it swaps player i with player j :

(f (π))(k) =
⎧⎨⎩

π(j ) if k = i,

π(i) if k = j,

π(k) if k �∈ {i, j}.
(18.31)

Another way of saying this is that f (π) is the composition of π with the permutation that
swaps i with j and leaves all the other players in their place. The function f is bijective6

(explain why).
We next show that if i and j are symmetric players, then the permutation π satisfies

v(Pi(π) ∪ {i}) − v(Pi(π)) = v(Pj (f (π)) ∪ {j}) − v(Pj (f (π))). (18.32)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 A function f : A → B is bijective if it is one-to-one and onto.
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Figure 18.1 The case in which player i appears before player j under permutation π
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Figure 18.2 The case in which player i appears after player j under permutation π

Case 1: Player i appears before player j under permutation π , i.e., j �∈ Pi(π).
In this case, Pi(π) = Pj (f (π)) (see Figure 18.1), and in particular v(Pi(π)) =
v(Pj (f (π))). Since i and j are symmetric players, and since Pi(π) contains nei-
ther i nor j , v(Pi(π) ∪ {i}) = v(Pj (f (π)) ∪ {j}). These two equalities together imply
Equation (18.32).

Case 2: Player i appears after player j under permutation π , i.e., j ∈ Pi(π).
In this case, Pi(π) ∪ {i} = Pj (f (π)) ∪ {j} (see Figure 18.2), and in particular v(Pi(π) ∪
{i}) = v(Pj (f (π)) ∪ {j}). Similarly, Pi(π) \ {j} = Pj (f (π)) \ {i}. Since i and j are
symmetric players, v((Pi(π) \ {j}) ∪ {j}) = v((Pj (f (π)) \ {i}) ∪ {i}), i.e., v(Pi(π)) =
v(Pj (f (π))). These two equalities together imply that Equation (18.32) holds in this
case as well.

Since f is bijective,

{f (π) : π ∈ �(N)} = �(N). (18.33)

Therefore,

Shi(N ; v) = 1

n!

∑
π∈�(N)

(v(Pi(π) ∪ {i}) − v(Pi(π))) (18.34)

= 1

n!

∑
π∈�(N)

(
v(Pj (f (π)) ∪ {j}) − v(Pj (f (π)))

)
(18.35)

= 1

n!

∑
μ∈�(N)

(
v(Pj (μ) ∪ {j}) − v(Pj (μ))

)
(18.36)

= Shj (N ; v), (18.37)
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where Equation (18.35) follows from Equation (18.32) and Equation (18.36) follows
from setting μ = f (π) and from using Equation (18.33). This shows that the Shapley
value Sh satisfies symmetry, which is what we wanted to prove, completing the proof of
Claim 18.18. �

We next prove the uniqueness claim in Theorem 18.15. Define, for every nonempty
coalition T , a simple game called the carrier game over T . In the carrier game over T , a
coalition is a winning coalition (with worth 1) if and only if it contains T .

Definition 18.19 Let T ⊆ N be a nonempty coalition. The carrier game over T is the
simple game (N ; uT ) defined as follows. For each coalition S ⊆ N ,

uT (S) :=
{

1 if T ⊆ S,

0 otherwise.
(18.38)

Theorem 18.20 Every game (N ; v) is a linear combination of carrier games.

Proof: Recall that the space of the coalitional games over the set of players N is a vector
space of dimension 2n − 1. The number of carrier games equals the number of nonempty
coalitions in N , namely, 2n − 1. To prove the theorem, it suffices to show that the carrier
games are linearly independent over R2n−1; this will imply that they form a linear basis of
the space of games. Indeed, every set of 2n − 1 independent vectors in a vector space of
dimension 2n − 1 is a basis for that space, and therefore every element of the vector space
can be written as a linear combination of the basis elements.

Suppose, by contradiction, that the carrier games are linearly dependent. Then there
exists a linear combination of carrier games with non-zero coefficients that sums to the
zero vector. In other words, there exist real numbers (αT ){T⊆N,T �=∅}, not all zero, such that∑

{T⊆N,T �=∅}
αT uT (S) = 0, ∀S ⊆ N. (18.39)

Let T = {T ⊆ N : T �= ∅, αT �= 0} be the set of all coalitions with non-zero coefficients
in the linear combination in Equation (18.39). Since we assumed that not all coefficients
are zero, the set T is nonempty. Let S0 ∈ T be a minimal coalition in T ; i.e., there is no
coalition in T strictly contained in S0. We will show that

∑
{T⊆N,T �=∅} αT uT (S0) �= 0, in

contradiction to Equation (18.39). Note that∑
{T⊆N,T �=∅}

αT uT (S0) =
∑

{T⊂S0,T �=∅}
αT uT (S0) + αS0uS0 (S0) +

∑
T �⊆S0

αT uT (S0). (18.40)

αT = 0 for every T satisfying T ⊂ S0, since S0 is a minimal coalition in T . For every T

satisfying T �⊆ S0, the definition of a carrier game implies that uT (S0) = 0. Therefore,∑
{T⊆N,T �=∅}

αT uT (S0) = αS0uS0 (S0) = αS0 �= 0, (18.41)

which is what we wanted to show. The contradiction implies that the assumption that the
carrier games are linearly dependent is false; i.e., they are linearly independent. �
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The next theorem states that every solution concept satisfying efficiency, symmetry,
and the null player property is uniquely determined for every game that is the product of
a carrier game by a scalar.

Theorem 18.21 Let T be a nonempty coalition, and let α be a real number. Define a
game (N ; uT,α) as follows:

uT,α(S) =
{

α if T ⊆ S,

0 otherwise.
(18.42)

If ϕ is a solution concept satisfying efficiency, symmetry, and the null player property, then

ϕi(N ; uT,α) =
{ α

|T | if i ∈ T ,

0 if i �∈ T .
(18.43)

Proof: In the game (N ; uT,α), every player i �∈ T is a null player, and every pair of players
in T are symmetric. The claim of the theorem then follows from the assumption that ϕ

satisfies efficiency, symmetry, and the null player property. �

Proof of Theorem 18.15: By Claim 18.18, the Shapley value Sh satisfies additivity,
efficiency, symmetry, and the null player property. All that remains is to show that the
Shapley value is the unique solution concept satisfying these properties. Let ϕ therefore
be a solution concept satisfying these properties; we will show that ϕ = Sh. Let (N ; v) be
a coalitional game. Theorem 18.20 implies that v is a sum of games of the form uT,α

T
for

coalitions T in the collection {T ⊆ N, T �= ∅}. In other words, there exist real numbers
(αT ){T⊆N,T �=∅} such that

v(S) =
∑

{T⊆N,T �=∅}
uT,α

T
(S). (18.44)

By Theorem 18.21, since both ϕ and Sh satisfy symmetry, efficiency, and the null player
property,

ϕ(N ; uT,α
T

) = Sh(N ; uT,α
T

), ∀T ⊆ N, T �= ∅. (18.45)

Since both ϕ and Sh satisfy additivity,

ϕ(N ; v) =
∑

{T⊆N,T �=∅}
ϕ(N ; uT,α

T
) =

∑
{T⊆N,T �=∅}

Sh(N ; uT,α
T

) = Sh(N ; v). (18.46)

Because this is true for every game (N ; v), we conclude that ϕ = Sh. In other words,
every solution satisfying additivity, efficiency, symmetry, and the null player property is
identical to the Shapley value. This concludes the proof of Theorem 18.15. �

18.4 Examples
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we compute the Shapley value in several examples.
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Example 18.22 A two-player bargaining game Let (N ; v) be a two-player game with the following coali-

tional function:

v(1) = v(2) = 0, v(1, 2) = 1. (18.47)

Since the two players are symmetric, Sh1(N ; v) = Sh2(N ; v), the efficiency property implies that
the Shapley value is

Sh(N ; v) = (
1
2 , 1

2

)
. (18.48)

�

Example 18.23 A simple majority game with n players Let (N ; v) be an n-player game with the following

coalitional function:

v(S) =
{

0 if |S| ≤ n
2 ,

1 if |S| > n
2 .

(18.49)

Since all the players are symmetric, Shi(N ; v) = Shj (N ; v) for every pair of players i, j ∈ N ,
and applying the efficiency property yields

Sh(N ; v) = (
1
n
, 1

n
, . . . , 1

n

)
. (18.50)

�

Example 18.24 The gloves game Let (N ; v) be a three-player game with the following coalitional function:

v(1) = v(2) = v(3) = v(1, 2) = 0, v(1, 3) = v(2, 3) = v(1, 2, 3) = 1. (18.51)

We previously saw this game in Example 17.5 on page 690, where we found that its core solely
contains the imputation (0, 0, 1). We next compute the Shapley value of the game. To this end,
we use Equation (18.27). For every permutation of N (there are six such permutations) we list the
marginal contribution of each player:

Permutation Contribution of Player 1 Contribution of Player 2 Contribution of Player 3
(1, 2, 3) v(1) − v(∅) = 0 v(1, 2) − v(1) = 0 v(1, 2, 3) − v(1, 2) = 1
(1, 3, 2) v(1) − v(∅) = 0 v(1, 2, 3) − v(1, 3) = 0 v(1, 3) − v(1) = 1
(2, 1, 3) v(1, 2) − v(2) = 0 v(2) − v(∅) = 0 v(1, 2, 3) − v(1, 2) = 1
(2, 3, 1) v(1, 2, 3) − v(2, 3) = 0 v(2) − v(∅) = 0 v(2, 3) − v(2) = 1
(3, 1, 2) v(1, 3) − v(3) = 1 v(1, 2, 3) − v(1, 3) = 0 v(3) − v(∅) = 0
(3, 2, 1) v(1, 2, 3) − v(2, 3) = 0 v(2, 3) − v(3) = 1 v(3) − v(∅) = 0

Summing the contribution of each player, and dividing by the number of permutations, 6, yields
the Shapley value:

Sh(N ; v) = (
1
6 , 1

6 , 2
3

)
. (18.52)

This imputation emphasizes the fact that although Player 3 is the strongest player here, holding the
left glove, the Shapley value of the other players is not zero, in contrast to the core of the gloves
game.
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Note that in this computation, it sufficed to compute only one of the three columns, say the
Shapley value of Player 1, and to use that to deduce the Shapley values of Players 2 and 3. (Explain
why this is true. Which properties did you use in your explanation?)

The core of this game contains only one imputation, (0, 0, 1) (see Example 17.5 on page 690),
and therefore even when the core is nonempty, the Shapley value may be outside the core. �

18.5 An alternative characterization of the Shapley value
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The characterization of the Shapley value presented in the previous section relies on the
additivity property. The motivation behind this property may be unpersuasive, and there
are many cases in which it is unclear why additivity is a reasonable assumption. In this
section we present a characterization of the Shapley value that does not use the additivity
property. We first present several new properties, and then show that they can be used to
characterize the Shapley value.

18.5.1 The marginality property
The property of monotonicity of marginal contributions requires that if a player contributes
to each coalition in a game (N ; v) no less than he contributes to the same coalition in
another game (N ; w) with the same set of players, then his value in (N ; v) is at least as
great as his value in (N ; w).

Definition 18.25 A solution concept ϕ satisfies monotonicity of marginal contributions
if for every pair of games (N ; v) and (N ; w) with the same set of players, and for each
player i ∈ N , if

v(S ∪ {i}) − v(S) ≥ w(S ∪ {i}) − w(S), ∀S ⊆ N \ {i}, (18.53)

then

ϕi(N ; v) ≥ ϕi(N ; w). (18.54)

The property of monotonicity of marginal contributions implies the property of marginal-
ity, defined as follows.

Definition 18.26 A solution concept ϕ satisfies marginality if for every pair of games
(N ; v) and (N ; w) with the same set of players, and for every player i, if

v(S ∪ {i}) − v(S) = w(S ∪ {i}) − w(S), ∀S ⊆ N \ {i}, (18.55)

then

ϕi(N ; v) = ϕi(N ; w). (18.56)

This property imposes the property that the value of a player depends only on his marginal
contribution to each coalition, and is independent of the marginal contributions of the
other players to all possible coalitions.

Theorem 18.27 The Shapley value satisfies monotonicity of marginal contributions, and
it therefore also satisfies marginality.
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The proof of Theorem 18.27 follows from the fact that by definition (see
Definition 18.14) the Shapley value of player i is the weighted average of his marginal
contributions to all possible coalitions. The next theorem connects several properties.

Theorem 18.28 Every solution concept ϕ satisfying efficiency, symmetry, and marginality
also satisfies the null player property.

Proof: Let ϕ be a solution concept satisfying efficiency, symmetry, and marginality. We
will show that ϕ also satisfies the null player property.

Let (N ; v) be a coalitional game, and let i be a null player in this game. Denote by z

the zero game that is defined by z(S) = 0 for every coalition S. In (N ; z), all the players
are symmetric, and the properties of efficiency and symmetry then imply that

ϕj (N ; z) = 0 ∀j ∈ N. (18.57)

Since player i is a null player, one has

v(S ∪ {i}) − v(S) = 0 = z(S ∪ {i}) − z(S) ∀S ⊆ N. (18.58)

We deduce from this that the vector of marginal contributions of player i in (N ; v) equals
his vector of marginal contributions in (N ; z). Marginality then implies that ϕi(N ; v) =
ϕi(N ; z) = 0. �

18.5.2 The second characterization of the Shapley value
The next theorem, which was proved in Young [1985], provides a second characterization
of the Shapley value, replacing the properties of additivity and null player in the previous
characterization with marginality.

Theorem 18.29 (Young [1985]) The Shapley value is the unique single-valued solution
concept satisfying efficiency, symmetry, and marginality.

Proof: We have already seen (Claim 18.18 on page 755, and Theorem 18.27) that the
Shapley value satisfies the three properties in the statement of the theorem. To prove the
other direction of the claim of the theorem, we need to show that every solution concept
ϕ satisfying efficiency, symmetry, and marginality is the Shapley value. The proof relies
on the following definitions.

For every coalitional game (N ; v), denote

I (N ; v) = {S ⊆ N : ∃T ⊆ S, v(T ) �= 0}. (18.59)

A coalition S is not in I (N ; v) if and only if its worth, and the worth of all its subcoalitions,
is 0. It follows that if S is a minimal coalition in I (N ; v) (i.e., none of its subcoalitions are
in I (N ; v)), then v(S) �= 0, and the worth of all the subcoalitions of S is 0.

Given a game (N ; v), define for each coalition S a game (N ; vS) as follows:

vS(T ) = v(S ∩ T ), ∀T ⊆ N. (18.60)

Every player i �∈ S is a null player in (N ; vS). To see this, note that S ∩ (T ∪ {i}) = S ∩ T ,
because i �∈ S, and therefore

vS(T ∪ {i}) = v(S ∩ (T ∪ {i})) = v(S ∩ T ) = vS(T ). (18.61)
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Claim 18.30 Let S be a coalition in I (N ; v). Then I (N ; v − vS) ⊂ I (N ; v).

Proof of Claim 18.30: We first show that I (N ; v − vS) ⊆ I (N ; v). If T ∈ I (N ; v − vS),
then there exists a subcoalition R ⊆ T satisfying

0 �= (v − vS)(R) = v(R) − vS(R) = v(R) − v(R ∩ S). (18.62)

Therefore, either v(R) �= 0, or v(R ∩ S) �= 0 (or both inequalities hold). Since R ⊆ T ,
both R and R ∩ S are subsets of T . It follows that T has at least one subset whose worth
is not 0, and therefore T ∈ I (N ; v), which is what we wanted to show.

To show that I (N ; v − vS) �= I (N ; v), we will show that S �∈ I (N ; v − vS). Indeed, for
every coalition T ⊆ S,

(v − vS)(S) = v(S) − v(S ∩ S) = v(S) − v(S) = 0. (18.63)

From this we deduce that S is not in I (N ; v − vS), which is what we wanted to show. �
To prove uniqueness in Theorem 18.29, let ϕ be a solution concept satisfying efficiency,

symmetry, and marginality. We will show that ϕ = Sh. By Theorem 18.28, the solution
concept ϕ also satisfies the null player property.

The proof of uniqueness will be an inductive proof over |I (N ; v)|, the number of
elements in I (N ; v). If |I (N ; v)| = 0, then v(S) = 0 for every coalition S, and then
all the players are null players. Since both ϕ and Sh satisfy the null player property,
ϕi(N ; v) = 0 = Shi(N ; v) for every player i ∈ N .

Assume by induction that ϕ(N ; v) = Sh(N ; v) for every game (N ; v) satisfying
|I (N ; v)| < k, and let (N ; v) be a game satisfying |I (N ; v)| = k. Denote by Ŝ the set
formed by the intersection of all the coalitions in I (N ; v), i.e.,

Ŝ = ∩S∈I (N ;v)S. (18.64)

Step 1: Shi(N ; v) = ϕi(N ; v) for each i �∈ Ŝ.
Let i �∈ Ŝ. Then there exists a coalition S ∈ I (N ; v) that does not contain i. By
Claim 18.30,

|I (N ; v − vS)| < |I (N ; v)| = k, (18.65)

and the inductive hypothesis then implies that

ϕj (N ; v − vS) = Shj (N ; v − vS) ∀j ∈ N. (18.66)

We next compute the marginal contribution of player i in (N ; v − vS), and show that it
equals the marginal contribution of that player in (N ; v). For every coalition T ⊆ N \ {i},

(v − vS)(T ∪ {i}) = v(T ∪ {i}) − vS(T ∪ {i}) (18.67)

= v(T ∪ {i}) − v(S ∩ (T ∪ {i})) (18.68)

= v(T ∪ {i}) − v(S ∩ T ) (18.69)

= v(T ∪ {i}) − vS(T ), (18.70)

and, therefore,

(v − vS)(T ∪ {i}) − (v − vS)(T ) = v(T ∪ {i}) − vS(T ) − v(T ) + vS(T )

= v(T ∪ {i}) − v(T ). (18.71)
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By assumption, ϕ satisfies marginality. By Theorem 18.27, the Shapley value Sh also
satisfies marginality. It follows that ϕi(N ; v) = ϕi(N ; v − vS) and Shi(N ; v) = Shi(N ; v −
vS). Using Equation (18.66), we get

ϕi(N ; v) = Shi(N ; v), ∀i �∈ Ŝ. (18.72)

Step 2: Shi(N ; v) = ϕi(N ; v) for each i ∈ Ŝ.
If Ŝ = ∅, the conclusion follows vacuously.

If |Ŝ| = 1, the conclusion follows from Step 1 and the fact that both the Shapley value
Sh and the solution concept ϕ are efficient. Suppose, therefore, that Ŝ contains at least
two players.

We first show that every coalition T that does not contain Ŝ satisfies v(T ) = 0. Indeed,
by the definition of I (N ; v), if v(T ) �= 0 then T ∈ I (N ; v). In particular, T must then
contain Ŝ, which is the intersection of all the coalitions in I (N ; v), contradicting the fact
that T does not contain Ŝ.

We now show that any pair of players in Ŝ are symmetric players. Let i, j ∈ Ŝ be
two different players. For every coalition T that contains neither player i nor player j ,
both the coalitions T ∪ {i} and T ∪ {j} do not contain Ŝ, and therefore v(T ∪ {i}) = 0 =
v(T ∪ {j}). Since this equality holds for every coalition T that contains neither i nor j ,
these players are symmetric, which is what we wanted to show.

Since both ϕ and Sh satisfy symmetry,

ϕi(N ; v) = ϕj (N ; v), Shi(N ; v) = Shj (N ; v), ∀i, j ∈ Ŝ. (18.73)

Because we know from the previous step that ϕk(N ; v) = Shk(N ; v) for every player
k �∈ Ŝ, and since both ϕ and Sh satisfy efficiency,∑

k∈Ŝ

ϕk(N ; v) = v(N) −
∑
k �∈Ŝ

ϕk(N ; v) = v(N) −
∑
k �∈Ŝ

Shk(N ; v) =
∑
k∈Ŝ

Shk(N ; v).

(18.74)

Equations (18.73)–(18.74) imply that for every player j ∈ Ŝ,

ϕj (N ; v) = 1

|Ŝ|
∑
k∈Ŝ

ϕk(N ; v) = 1

|Ŝ|
∑
k∈Ŝ

Shk(N ; v) = Shj (N ; v). (18.75)

This completes the proof of the theorem. �

18.6 Application: the Shapley–Shubik power index
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The Shapley value can be used to measure the power of each member in a decision-making
process. This application of the Shapley value was developed by Shapley and Shubik in
1954, and is called the Shapley–Shubik power index.

In this section, we will concentrate on simple monotonic games. Recall that simple
games are coalitional games in which the worth of each coalition is 0 or 1. A simple game
is monotonic if when the worth of a coalition is 1, the worth of every coalition containing
it is also 1. These games can model decision-making in collectives containing several
decision makers. v(S) = 1 if the members of the coalition S can impose a decision even
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when the other players are opposed to their decision. In this case, we say that the coalition
S is a winning coalition. In contrast, v(S) = 0 if the members of S cannot impose their
decisions on the other decision makers. In this case, we say that the coalition S is a losing
coalition. In particular, in a simple monotonic game, a subcoalition of a losing coalition
is also a losing coalition, and a coalition containing a winning coalition is also a winning
coalition.

Here are three examples of simple monotonic games:

1. Simple majority games (see Example 18.23).
2. Unanimity games, in which a decision is accepted only if all the players agree to

accept it:

v(S) =
{

1 if S = N,

0 otherwise.
(18.76)

3. Dictatorship games, in which a single player decides whether or not to accept or reject
a decision; i.e., there exists a player i0 such that

v(S) =
{

1 if i0 ∈ S,

0 if i0 �∈ S.
(18.77)

Definition 18.31 The Shapley–Shubik power index is the function associating each sim-
ple monotonic game with its Shapley value. The i-th coordinate of this vector is called the
power index of player i.

In a simple monotonic game, the Shapley value has a particularly simple form. In this
case, v(S ∪ {i}) − v(S) either has the value 0 (if S and S ∪ {i} are both winning coalitions
or both losing coalitions) or 1 (if S is a losing coalition, and S ∪ {i} is a winning coalition).

By Theorem 18.17 on page 755, the Shapley value can therefore be written as follows:

Shi(N ; v) =
∑

{S⊆N : S∪{i}winning,S losing}

|S|! × (n − |S| − 1)!

n!
. (18.78)

In what sense can one say that the Shapley–Shubik power index measures the power
of a player in a game? Suppose that a set of individuals N make decisions by voting on
them, and the outcome of a vote is determined by a simple monotonic game. Then, for
every ordering (i1, i2, . . . , in) of the players, there is precisely one player such that the set
of all the players before him in the sequence are a losing coalition, and his joining the
coalition changes it into a winning coalition. Such a player is called a pivot player.

Suppose that a proposed decision is being voted on. The proposal induces an ordering
of the players, according to their opinions regarding the proposal; the first player in this
ordering is the most enthusiastic supporter of the proposal, the last player in this ordering
is the most vociferous opponent of the proposal, and the players in between these two are
ordered by decreasing support. The most enthusiastic supporter and the most vociferous
opponent vie for the support of the other players for their positions.

Assume that all the players are exposed to the same arguments for and against the
proposed decision. If the pivot player supports and votes in favor of the proposal, since
all the players before him in the ordering support it to an equal or greater extent than
he, they too will vote for it, and the proposal will be accepted. If, in contrast, the pivot
player votes against the proposal, since all the players after him in the ordering are less



765 18.6 Application: the Shapley–Shubik power index

enthusiastic about it than he, they too will vote against it, and the proposal will be rejected.
It follows that the arguments for and against the proposed decision will be directed at the
pivot player, whose vote will be the deciding vote, and his power flows from this.

When the number of proposals to be decided upon is large, and they induce all possible
orderings of the players with equal probabilities, the Shapley–Shubik power index of
player i is the probability that player i will be a pivot player. In this sense, the index
does measure the power of each player. If the proposals to be decided upon do not induce
all possible orderings of the players with equal probabilities, the Shapley–Shubik power
index lacks a clear justification, and variations of this index need to be defined.

18.6.1 The power index of the United Nations Security Council
The United Nations Security Council, the most important body in the international political
system, was formed in the aftermath of the Second World War. At the time, it was
composed of five permanent members7 and six nonpermanent members. The council’s
original charter established that a resolution could be adopted only if it received supporting
votes from at least seven members. In addition, every permanent member was granted
veto power over any resolution. Ignoring the possibility of a council member abstaining
from a vote, it followed that for a resolution to be passed by the Security Council,
it had to be supported by all five permanent members and at least two nonpermanent
members.

The veto power in the hands of the permanent members of the council was the target
of criticism over the years by observers who objected to the “unbalanced power” it gives
the permanent members relative to the nonpermanent members. The chorus of criticism
led to a restructuring of the Security Council in 1965, giving the council the structure
it maintains to this day. Under the new council structure, four nonpermanent members
were added to the body, and the number of supporting members required for the adoption
of a resolution was raised to nine, including, as before, all five permanent members. It
was claimed that both the increase in the number of nonpermanent members, from six
to ten, and the fact that adoption of a resolution now required at least 4 nonpermanent
members in addition to the five permanent members, as opposed to a minimum of two
nonpermanent members in the previous structure, significantly changed the balance of
power in the council. Can this claim be sustained?

The Shapley–Shubik power index enables us to explore this question in a quantified
manner. To do so, we compute the Shapley value of the members of the Security Council
under both structures, prior to 1965 and after 1965, and then check what change, if any,
occurred in the Shapley value as a result of the 1965 restructuring. The pre-1965 structure
of the Security Council can be described by a coalitional game. If we denote by P the set
of permanent members of the council, and by NP the set of nonpermanent members, the
resulting game is a simple game in which the set of players is given by N := P ∪ NP ,
and the coalitional function (ignoring the possibility of abstentions) is given by

v(S) =
{

1 if S ⊃ P and |S| ≥ 7,

0 otherwise.
(18.79)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 The United States, the United Kingdom, the Union of the Soviet Socialist Republics, China, and France.
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In this coalitional function all the members of P are symmetric and all the members of
NP are symmetric, and hence only two Shapley values need to be computed: the Shapley
value of a member of P and the Shapley value of a member of NP . Let us first compute
the Shapley value of a nonpermanent member i ∈ NP using Equation (18.78). For every
i ∈ NP there are five coalitions S that are not winning coalitions but satisfy the property
that S ∪ {i} is a winning coalition, namely, the coalitions containing the five permanent
members along with one nonpermanent member other than i. The size of each such
coalition is |S| = 6, and therefore Equation (18.78) enables us to compute the Shapley
value of each nonpermanent member, which is

5 × 6! × 4!

11!
= 1

462
= 0.0021645. (18.80)

Since every pair of nonpermanent members is symmetric, each nonpermanent member
has the same Shapley value. It follows that the sum of the Shapley values of the six
nonpermanent members is

6 × 1

462
= 6

462
≈ 0.013. (18.81)

Since the Shapley value satisfies efficiency, the sum of the Shapley values of the 5
permanent members is 1 − 6

462 = 456
462 ≈ 0.987. Furthermore, since every pair of permanent

members is symmetric, the Shapley value of each permanent member is 1
5 · 456

462 = 91.2
462 =

0.1974. Note the immense ratio 1 : 456
5 = 1 : 91.2 between the power of a permanent

member and the power of a nonpermanent member.
The simple game corresponding to the structure of the post-1965 Security Council is

given by the following coalitional game, where the set R now contains ten players:

v(S) =
{

1 if S ⊃ P and |S| ≥ 9,

0 otherwise.
(18.82)

We now compute the Shapley value of a nonpermanent member i in this game. The
number of coalitions S that are not winning coalitions but satisfy the property that S ∪ {i}
is a winning coalition is

(9
3

)
, because, in addition to the five permanent members, such a

coalition must contain three out of the nine nonpermanent members different from i. Since
such a coalition contains eight players, applying Equation (18.78) gives us the Shapley
value of a nonpermanent member, which is(

9

3

)
× 8! × 6!

15!
= 4

2145
= 0.001865. (18.83)

The power of all the nonpermanent members together is 40
2145 ≈ 0.0186. This enables us

to deduce that the Shapley value of each permanent member is

1

5

(
1 − 10 × 4

2145

)
= 421

2145
= 0.1963. (18.84)

The change in the total power of the permanent members dropped from 0.987 to 2105
2145 ≈

0.9814 as a result of the restructuring of the Security Council, but the relative power ratio
between pairs of members moved in a negative direction for the nonpermanent members:
while the power of every permanent member fell relatively marginally (by about half a
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percent), the power of each nonpermanent member fell by 14%. The ratio between the
power of a permanent member to a nonpermanent member rose to 1 : 105 1

4 .
If one accepts the Shapley value as a reasonable index of power, the conclusion of this

computation is that the restructuring of the Security Council in 1965 did not significantly
change the basic balance of power on the council: almost all the power in the Council
was and remained in the hands of the veto-wielding permanent members. Measuring
power under a different index, the Banzhaf power index (see Exercise 18.27) results in
the conclusion that the power of the permanent members fell to a greater extent after
the restructuring, but even under the Banzhaf power index the power of the permanent
members was still much higher than the power of the nonpermanent members. It is
therefore not surprising that complaints about the imbalance of power on the Security
Council continue to be heard, with suggested changes in the composition of the council
and its voting rules regularly raised by members of the United Nations.

18.7 Convex games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Recall that a game (N ; v) is convex if for every pair of coalitions S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (18.85)

In Theorem 17.55 (page 719) we proved that the core of such a game is never empty.
In this section we will show that the Shapley value of a convex game is in the core of the
game.

Theorem 18.32 If (N ; v) is a convex game, then the Shapley value is in the core of the
game.

Proof: For every permutation π ∈ �(N), denote by wπ the vector in RN such that for
every i ∈ {1, 2, . . . , n}, its i-th coordinate is8

wπ
i = v(Pi(π) ∩ {i}) − v(Pi(π)). (18.86)

By Theorem 17.55 (page 719), for every π ∈ �(N), the imputation wπ is in the core of
(N ; v). By Equation (18.27), the Shapley value is the average of the vectors (wπ )π∈�(N):

Sh(N ; v) =
∑

π∈�(N)

1

n!
wπ. (18.87)

Since the core is a convex set (Theorem 17.3 on page 687), we conclude that the Shapley
value is in the core. �

In Remark 17.59 (page 720) we noted that in a convex game the core equals the convex
hull of the imputations defined by Equation (18.86). Since some of these vectors may be
equal to each other, the Shapley value is not necessarily the core’s center of mass.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 Recall that Pi (π ) denotes the set of players preceding player i according to the permutation π .
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18.8 The consistency of the Shapley value
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the previous chapter on the core (see page 715), we defined the Davis–Maschler reduced
game, and showed that the core satisfies the consistency property: if x is a point in the
core of a game (N ; v), then for every nonempty coalition S ⊆ N , the vector (xi)i∈S is a
point in the core of the Davis–Maschler reduced game (S; vS). In this section, we prove
that a similar property also holds for the Shapley value, but the definition of the reduced
game is different in this case; it is the one introduced in Hart and Mas-Colell [1989].
Furthermore, we will prove that the reduced game property can be used to characterize
the Shapley value axiomatically, similarly to the way that it can be used to characterize
the nucleolus axiomatically (see Section 20.5 on page 816). Both of these single-valued
solution concepts have the same system of characterizing axioms, but the definition of
the reduced game differs between the two of them. It follows that if we have to choose
between these two solution concepts, we can check which definition of a reduced game is
more appropriate to the situation at hand.

Definition 18.33 Let ϕ be a single-valued solution concept, let (N ; v) be a coalitional
game, and let S be a nonempty coalition. The Hart–Mas-Colell reduced game over S

relative to ϕ is the game (S; ṽS,ϕ), with the following coalitional function:9

ṽS,ϕ(R) = v(R ∪ Sc) −
∑
i∈Sc

ϕi(R ∪ Sc; v), ∀R ⊆ S, R �= ∅, (18.88)

ṽS,ϕ(∅) = 0. (18.89)

The idea behind the definition is that when a coalition R is formed in the reduced game
over S, it adds as partners in the coalition all the players in Sc, computes how much each
player should receive according to the solution concept ϕ in the reduced game, over the set
of players R ∪ Sc, and gives the players in Sc their shares in the solution. What remains
after the members of Sc receive their share is the worth of the coalition R in the reduced
game ṽS,ϕ .

Remark 18.34 Recall that when S is a nonempty coalition and x is an individually
rational vector in RN the Davis–Maschler reduced game over S relative to x, denoted by
(S; wx

S), is the game with the set of players S in which the coalitional function is

wx
S(R) =

⎧⎨⎩
maxQ⊆N\S(v(R ∪ Q) − x(Q)) ∅ �= R ⊂ S,

x(S) R = S,

0 R = ∅.

(18.90)

There are two differences between the Davis–Maschler reduced game and the Hart–
Mas-Colell reduced game:

1. The Hart–Mas-Colell reduced game is appropriate only for single-valued solution
concepts, while the Davis–Maschler reduced game is appropriate for single-valued
and set-valued solution concepts because it is defined in relation to each imputation in
the solution.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 We alternatively use the notation Sc and N \ S to denote the complement coalition of S.
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2. In the definition of the Hart–Mas-Colell reduced game, the members of R must add all
the players who are not members of S as partners, while in the Davis–Maschler reduced
game they may choose as partners the most beneficial subset, from their perspective,
of the players in Sc. �

Example 18.35 The reduced game of the carrier game Recall that for every nonempty coalition T the

carrier game over T is the game (N ; uT ) (see Definition 18.19) in which

uT (R) =
{

1 if R ⊇ T ,

0 if R �⊇ T .
(18.91)

By Theorem 18.21 (page 758) the Shapley value of the carrier game uT is

Shi (N ; uT ) =
{ 1

|T | if i ∈ T ,

0 if i �∈ T .
(18.92)

Let S ⊆ N be a nonempty coalition. We will compute the Hart–Mas-Colell reduced game over
S relative to the Shapley value Sh.

Case 1: S ∩ T = ∅.
Let R ⊆ S. Then R ⊆ N \ T , and therefore every player in R is a null player. Since R ∪ Sc ⊇
Sc ⊇ T ,

uT (R ∪ Sc) = 1 =
∑
i∈T

Shi(R ∪ Sc; uT ) =
∑
i∈Sc

Shi (R ∪ Sc; uT ). (18.93)

Therefore

ũS,Sh(R) = v(R ∪ Sc) −
∑
i∈Sc

Shi (R ∪ Sc; uT ) = 0, (18.94)

which implies that the reduced game over S of the carrier game T is the zero game.

Case 2: S ∩ T �= ∅.
Let R ⊆ S be a nonempty coalition. If R ⊇ S ∩ T then R ∪ Sc ⊇ T (see Figure 9.3), and there-
fore uT (R ∪ Sc) = 1. The calculation of the Shapley value of the carrier game of T yields that∑

i �∈S Shi(R ∪ Sc; uT ) = |T \S|
|T | .

N

S T

R

R ∪S c ⊇ T

N

S T

R

R ∪S c T

Figure 18.3
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If R �⊇ S ∩ T , then R ∪ Sc �⊇ T (see Figure 18.3), and therefore the game (R ∪ Sc; uT ) is the
zero game.

We deduce from this that ũT ,S,Sh, the Hart–Mas-Colell reduced game of uT , is given by

ũT ,S,Sh(R) =
{

1 − |T \S|
|T | R ⊇ S ∩ T ,

0 R �⊇ S ∩ T .
(18.95)

Note that in this case, all the players in S ∩ T are symmetric, and all the players not in S ∩ T are
null players. �

A solution concept ϕ is called linear if for every pair of coalitional games (N ; v) and
(N ; u) with the same set of players and every pair of real numbers α and β,

ϕi(N ; αu + βv) = αϕi(N ; u) + βϕi(N ; v), ∀i ∈ N. (18.96)

The Shapley value is a linear solution concept (Exercise 18.8).
The following result follows from the definitions and is left to the reader as an exercise

(Exercise 18.33). It states that the correspondence between a coalitional game and its
reduced game relative to a linear solution concept ϕ is a linear function.

Theorem 18.36 Let ϕ be a linear solution concept. Then for every pair of coalitional
games (N ; v) and (N ; u) and for every pair of real numbers α and β,

w̃S,ϕ = αũS,ϕ + βṽS,ϕ, (18.97)

for every nonempty coalition S ⊆ N , where w = αu + βv.

Definition 18.37 A single-valued solution concept ϕ is said to be consistent relative to
the Hart–Mas-Colell reduced game if for every game (N ; v), every nonempty coalition S,
and every player i ∈ S,

ϕi(N ; v) = ϕi(S; ṽS,ϕ). (18.98)

Theorem 18.38 The Shapley value is consistent relative to the Hart–Mas-Colell reduced
game: for every game (N ; v), and every nonempty coalition S,

Shi(N ; v) = Shi(S; ṽS,Sh), ∀i ∈ S. (18.99)

Proof: Denote by G̃ the set of games satisfying Equation (18.99). We need to show that
G̃ contains the set of all games. This is accomplished in two steps. In the first step, we
prove that Equation (18.99) holds for the set of carrier games, which forms a basis for the
vector space of all games. In the second step we show, using Theorem 18.36, that a linear
combination of games satisfying Equation (18.99) also satisfies that equation.

Step 1: G̃ contains the set of all carrier games.
Let T be a nonempty coalition. We will show that (N ; uT ) is in G̃. Let S ⊆ N be a
nonempty coalition. If S ∩ T = ∅, the left-hand side of Equation (18.99) equals 0 because
the players in S are null players in the game (N ; uT ). We showed in Example 18.35 that the
reduced game ũT ,S,Sh is the zero game, and therefore the Shapley value of all the players
in S is 0. Thus, Equation (18.99) holds, with both sides being 0.
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Suppose now that S ∩ T �= ∅. As we showed in Example 18.35, in the reduced game
ũT ,S,Sh, players who are not in S ∩ T are null players. and all the players in S ∩ T are
symmetric. Therefore, the Shapley value of the reduced game ũT ,S,Sh is

Shi(S; ũT ,S,Sh) =
{

1
|T | if i ∈ S ∩ T ,

0 if i ∈ S \ T .
(18.100)

By Theorem 18.21 we deduce that in this case Equation (18.99) also holds.

Step 2: G̃ contains the space of all games.
Let (N ; v) be a coalitional game, and let S ⊆ N be a nonempty coalition. We will show
that Equation (18.99) is satisfied for (N ; v) and S ⊆ N . By Theorem 18.20 (page 757)
every game is equal to a linear combination of carrier games. There therefore exist real
numbers (αT ){T⊆N,T �=∅} such that

v =
∑

{T⊆N,T �=∅}
αT uT . (18.101)

Since the Shapley value is a linear solution concept, it follows in particular that

Shi(N ; v) =
∑

{T⊆N,T �=∅}
αT Shi(N ; uT ), ∀i ∈ S. (18.102)

Since Equation (18.99) holds for all carrier games, we deduce that

Shi(N ; v) =
∑

{T⊆N,T �=∅}
αT Shi(S; ũT ,S,Sh), ∀i ∈ S. (18.103)

Using once again the fact that the Shapley value is a linear solution concept yields

Shi(N ; v) = Shi

⎛⎝S;
∑

{T⊆N,T �=∅}
αT ũT ,S,Sh

⎞⎠ , ∀i ∈ S. (18.104)

To complete this proof we need to show that

Shi

⎛⎝S;
∑

{T⊆N,T �=∅}
αT ũT ,S,Sh

⎞⎠ = Shi(S; ṽS,Sh), ∀i ∈ S, (18.105)

and for this purpose, it suffices to show (again using the linearity of Sh) that∑
{T⊆N,T �=∅}

αT ũT ,S,Sh = ṽS,Sh. (18.106)

From Theorem 18.36, the function associating each game with its reduced game is linear,
and this equality therefore holds. �

Theorem 18.39 The Shapley value is the unique single-valued solution concept satisfying
efficiency, symmetry, and covariance under strategic equivalence, and is also consistent
relative to the Hart–Mas-Colell reduced game.
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In comparison with Theorem 18.15 (page 754), the properties of additivity and the
null player are replaced in Theorem 18.39 by the properties of covariance under strategic
equivalence and consistent relative to the Hart–Mas-Colell reduced game.

Proof: Let ϕ be a single-valued solution concept satisfying efficiency, symmetry, and
covariance under strategic equivalence, which is also consistent relative to the Hart–Mas-
Colell reduced game. We will show that ϕ coincides with the Shapley value Sh. The proof
is accomplished by induction over the number of players n.

Step 1: n = 1.
When N = {1}, since both the Shapley value and ϕ satisfy efficiency,

ϕ1(N ; v) = v(1) = Sh1(N ; v). (18.107)

Step 2: n = 2.
For two-player games, every single-valued solution concept ϕ satisfying efficiency, covari-
ance under strategic equivalence, and symmetry is given by (see Exercise 18.5)

ϕ1(N ; v) = v(1) + v(1, 2) − v(1) − v(2)

2
, (18.108)

ϕ2(N ; v) = v(2) + v(1, 2) − v(1) − v(2)

2
. (18.109)

Since both the Shapley value and ϕ satisfy these properties, we deduce that

ϕi(N ; v) = Shi(N ; v), i = 1, 2. (18.110)

Note that by Equations (18.108)–(18.109)

ϕ1(N ; v) − ϕ2(N ; v) = v(1) − v(2) = Sh1(N ; v) − Sh2(N ; v). (18.111)

Step 3: n > 2.
Assume by induction that for every k-player game (K; u), such that 2 ≤ k < n, ϕ(K; u) =
Sh(K; u). Let (N ; v) be an n-player game. We will prove that ϕ(N ; v) = Sh(N ; v). Let i

and j be two players, and let S := {i, j}. Since {i} ∪ Sc = N \ {j} and {j} ∪ Sc = N \ {i},
the Hart–Mas-Colell reduced game over S relative to ϕ is the game ({i, j}; ṽS,ϕ) given by
the following coalitional function:

ṽS,ϕ(i) = v(N \ {j}) −
∑
k �=i,j

ϕk(N \ {j}; v), (18.112)

ṽS,ϕ(j ) = v(N \ {i}) −
∑
k �=i,j

ϕk(N \ {i}; v). (18.113)

Similarly, the Hart–Mas-Colell reduced game over S relative to Sh is the game ({i, j}; ṽS,Sh)
with the following coalitional function:

ṽS,Sh(i) = v(N \ {j}) −
∑
k �=i,j

Shk(N \ {j}; v), (18.114)

ṽS,Sh(j ) = v(N \ {i}) −
∑
k �=i,j

Shk(N \ {i}; v). (18.115)
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The inductive hypothesis, applied to the (n − 1)-player games (N \ {i}; v) and (N \ {j}; v),
and Equations (18.112)–(18.115), together yield

ϕk(N \ {i}; v) = Shk(N \ {i}; v), ∀k �= i, (18.116)

ϕk(N \ {j}; v) = Shk(N \ {j}; v), ∀k �= j. (18.117)

By Equations (18.112)–(18.113):

ṽS,ϕ(i) = ṽS,Sh(i), (18.118)

ṽS,ϕ(j ) = ṽS,Sh(j ). (18.119)

Applying Equation (18.111) to the reduced game over S, one has

ϕi(S, ṽS,ϕ) − ϕj (S, ṽS,ϕ) = ṽS,ϕ(i) − ṽS,ϕ(j ), (18.120)

Shi(S, ṽS,Sh) − Shj (S, ṽS,Sh) = ṽS,Sh(i) − ṽS,Sh(j ). (18.121)

By Equations (18.118)–(18.119), the right-hand side of Equation (18.120) equals the
right-hand side of Equation (18.121), and therefore

ϕi(S, ṽS,ϕ) − ϕj (S, ṽS,ϕ) = Shi(S, ṽS,Sh) − Shj (S, ṽS,Sh). (18.122)

By Theorem 18.38, the Shapley value is consistent relative to the Hart–Mas-Colell reduced
game, and therefore

Shk(S, ṽS,Sh) = Shk(N ; v), ∀k ∈ {i, j}. (18.123)

Since ϕ is consistent relative to the Hart–Mas-Colell reduced game, one has

ϕk(S, ṽS,ϕ) = ϕk(N ; v), ∀k ∈ {i, j}. (18.124)

Inserting this into Equation (18.122) yields

ϕi(N ; v) − ϕj (N ; v) = Shi(N ; v) − Shj (N ; v). (18.125)

Since i and j are arbitrary players, Equation (18.125) holds for any pair of players i, j ∈ N .
Since both the Shapley value and ϕ satisfy efficiency,∑

k∈N

ϕk(N ; v) = v(N) =
∑
k∈N

Shk(N ; v), (18.126)

Summing Equation (18.125) over j ∈ N , and using Equation (18.126), yields

nϕi(N ; v) − v(N) = nShi(N ; v) − v(N). (18.127)

This further implies that for every player i ∈ N ,

ϕi(N ; v) = Shi(N ; v). (18.128)

This completes the inductive step, and the proof that ϕ = Sh. �
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18.9 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The proof of Theorem 18.29 (page 761) presented in this section is from Neyman [1989].
The concept of consistency presented in this chapter first appeared in Hart and Mas-Colell
[1989], who proved that the Shapley value is consistent.

The potential function in Exercise 18.26 was introduced in Hart and Mas-Colell [1989].
The interested reader is directed to Felsenthal and Machover [1998] for an insight-
ful discussion of the Shapley–Shubik power index and the Banzhaf power index (see
Exercise 18.27). The interested reader is similarly directed to Aumann and Shapley
[1974] for a thorough exposition of the Shapley value in games with a continuum of
players.

18.10 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

18.1 Prove that the solution concept defined in Example 18.9 (page 752) satisfies additiv-
ity, symmetry, the null player property, and covariance under strategic equivalence,
but does not satisfy efficiency.

18.2 Prove that the solution concept defined in Example 18.10 (page 752) satisfies effi-
ciency, symmetry, the null player property, and covariance under strategic equiva-
lence.

18.3 Prove that the solution concept defined in Example 18.11 (page 752) satisfies the
null player property, symmetry, and covariance under strategic equivalence.

18.4 Prove that the solution concept defined in Example 18.12 (page 753) satisfies effi-
ciency, additivity, the null player property, and covariance under strategic equiva-
lence.

18.5 Prove that when restricted to two-player games, every single-valued solution con-
cept ϕ satisfying efficiency, covariance under strategic equivalence, and symmetry
is given by the following equations:

ϕ1(N ; v) = v(1) + v(1, 2) − v(1) − v(2)

2
= v(1, 2) + v(1) − v(2)

2
, (18.129)

ϕ2(N ; v) = v(2) + v(1, 2) − v(1) − v(2)

2
= v(1, 2) − v(1) + v(2)

2
. (18.130)

18.6 Let ψ1 and ψ2 be two solution concepts both satisfying symmetry, efficiency, the
null player property, and covariance under strategic equivalence, and let λ ∈ [0, 1].
Define a solution concept ψ by ψ := λψ1 + (1 − λ)ψ2. Prove that ψ also satis-
fies symmetry, efficiency, the null player property, and covariance under strategic
equivalence.



775 18.10 Exercises

18.7 Decompose the following game (N ; v) as a linear combination of carrier games.
The set of players is N = {1, 2, 3, 4}, and the coalitional function is

v(1) = 6, v(2) = 12, v(3) = 0, v(4) = 18,

v(1, 2) = 24, v(1, 3) = 48, v(1, 4) = 60, v(2, 3) = 12,

v(2, 4) = 32, v(3, 4) = 38

v(1, 2, 3) = 120, v(1, 2, 4) = 89, v(1, 3, 4) = 150,

v(2, 3, 4) = 179, v(1, 2, 3, 4) = 240.

18.8 Prove that the Shapley value is a linear solution concept: for every list of K games
((N ; vk))Kk=1, and every list of K real numbers (αk)Kk=1:

Sh

(
N ;

K∑
k=1

αkvk

)
=

K∑
k=1

αkSh(N ; vk). (18.131)

18.9 In Theorem 18.15 (page 754), can any one of the properties (efficiency, symmetry,
null player, or additivity) be replaced by covariance under strategic equivalence,
while maintaining the conclusion of the theorem? Prove your answer.

18.10 A single-valued solution concept is a function associating an imputation with every
coalitional game. One may also define solution concepts that are only defined for
a subset of the class of coalitional games. Let F be a subset of the class of
coalitional games. A single-valued solution concept for F is a function associating
an imputation with each coalitional game in F . The Shapley value is the only
solution concept satisfying the four properties proposed by Shapley for the class
of all coalitional games. In this exercise, we show that there exist families of
coalitional games over which solution concepts different from the Shapley value
that nevertheless satisfy Shapley’s four properties can be defined.

A family F of coalitional games is called additively closed if for every pair of
coalitional games (N ; v) and (N ; u) in F , the game (N ; v + u) is also in F .

Find a family of coalitional games that is additively closed and a single-valued
solution concept defined over that family that satisfies the four Shapley properties
but is not the Shapley value.

Explain why this exercise does not contradict Theorem 18.15 on page 754.

18.11 A coalitional game (N ; v) is called additive if every coalition S satisfies v(S) =∑
i∈S v(i). What is the Shapley value of each player i in an additive game?

18.12 Let a ∈ RN be a vector. Compute the Shapley value of the coalitional game (N ; v)
defined as follows:

v(S) :=
(∑

i∈S

ai

)2

, ∅ �= S ⊆ N. (18.132)

18.13 In this exercise, we present an algorithm for computing a solution concept. Given
a coalitional game (N ; v):
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(a) Choose a coalition whose worth is not 0, and divide this worth equally among
the members of the coalition (this is called the dividend given to the members
of the coalition).

(b) Subtract the worth of this coalition from the worth of every coalition containing
it, or equal to it. This defines a new coalitional function (where subtracting a
negative number is understood to be equivalent to adding the absolute value of
that number).

(c) Repeat this process until there are no more coalitions whose worth is not 0.

For example, consider the game (N ; v) defined by the set of players N = {1, 2, 3},
and the coalitional function

v(1) = 6, v(2) = 12, v(3) = 18, v(1, 2) = 30, v(1, 3) = 60,

v(2, 3) = 90, v(1, 2, 3) = 120.

The following table summarizes a stage of the algorithm in each row, and includes
the coalitional function at the beginning of that stage, the chosen coalition (whose
worth is not 0), and the payoff given to each player at that stage. The last line
presents the sum total of all payoffs received by each player.

Stage 1 2 3 1, 2 1, 3 2, 3 1, 2, 3 Coalition 1 2 3
1 6 12 18 30 60 90 120 1, 2 15 15 0
2 6 12 18 0 60 90 90 2 0 12 0
3 6 0 18 −12 60 78 78 1, 3 30 0 30
4 6 0 18 −12 0 78 18 1 6 0 0
5 0 0 18 −18 −6 78 12 3 0 0 18
6 0 0 0 −18 −24 60 −6 1, 2, 3 −2 −2 −2
7 0 0 0 −18 −24 60 0 1, 2 −9 −9 0
8 0 0 0 0 −24 60 18 1, 3 −12 0 −12
9 0 0 0 0 0 60 42 2, 3 0 30 30
10 0 0 0 0 0 0 −18 1, 2, 3 −6 −6 −6
11 0 0 0 0 0 0 0

22 40 58

Prove the following claims:

(a) This process always terminates.
(b) The total payoffs received by the players are the Shapley value of the game

(and are therefore independent of the order in which the coalitions are chosen).

Remark 18.40 The algorithm terminates in the least number of steps if we first
choose the coalitions containing only one player, then the coalitions containing
two players each, and so on. This process was first presented by John Harsanyi. �

18.14 Compute the Shapley value of the game in Exercise 18.7, using the algorithm
described in Exercise 18.13.
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18.15 For every game (N ; v), define the dual game (N ; v∗) as follows:

v∗(S) = v(N) − v(N \ S). (18.133)

Prove the following claims:

(a) If (N ; v∗) is the dual game to (N ; v), then (N ; v) is the dual game to (N ; v∗).
(b) Sh(N ; v) = Sh(N ; v∗).

18.16 The maintenance costs of airport runways are usually charged to the airlines landing
planes at that airport. But light planes require shorter runways than heavy planes,
and this raises the question of how to determine a fair allocation of maintenance
costs among airlines with different types of planes.

Define a cost game (N ; c), where N is the set of all planes landing at an airport,
and c(S), for each coalition S, is the maintenance cost of the shortest runway that
can accommodate all the planes in the coalition.

The following figure depicts an example in which eight planes, labeled A, B,
C, D, E, F , G, and H land at an airport on a daily basis. Each plane requires the
entire length of the runway up to (and including) the interval on which it is located
in the figure. For example, plane F needs the first three segments of the runway.
The weekly maintenance costs of each runway segment appear at the bottom of the
figure. For example, c(A, D, E) = 3,200, c(A) = 2,000, and c(C, F, G) = 5,100.

Start of
runway

End of
runway

A, B C , D ,E GF , H

2,000 1,200 900 1,000

Prove that if the Shapley value of this game is used to determine the allocation of
costs, then the maintenance cost of each runway segment is borne equally by the
planes using that segment.

For example, in the above figure,

ShA(N ; c) = 2,000

8
= 250, (18.134)

ShF (N ; c) = 2,000

8
+ 1,200

6
+ 900

3
= 750. (18.135)

18.17 This exercise considers maintenance costs associated with a road network con-
necting villages to a central township. The network is depicted as a tree, with the
central township at the root of the tree. Each village is associated with a node of the
tree, and there are additional nodes of the tree that represent road intersections. The
villages vary in their numbers of inhabitants. An example appears in the following
figure, which depicts six villages and two intersections; the number of inhabitants
in each village appears in the figure, near that village’s name, and each segment of
road connecting two intersections, or connecting the township to an intersection,
is labeled with that segment’s maintenance cost.

A cost game (N ; c) is derived from the network, where N is the set of residents
in all the villages (in this example |N | = 200), and for each coalition S ⊆ N , c(S)



778 The Shapley value

is the maintenance cost of the minimal subtree required to maintain the network
of roads connecting all the members in S to the central township.

Central township

Bucklebury (50)

Hobbiton (60)

Woodhall (30)

Deephallow (10)

Greenholm (20)

Budgeford (30)

3,000

500

1,500

300

1,200

800 1,0002,000

Prove that if the Shapley value of such a game is used to determine the allocation
of costs, then the maintenance cost of each road segment is borne equally by all
the people using that segment. For example, in the figure above, the Shapley value
of every resident of Hobbiton is

500

60
+ 1,000

90
+ 3,000

200
= 34 4

9 . (18.136)

18.18 For every pair of games over the same set of players (N ; v) and (N ; w), define the
maximum game (N ; v ∨ w) as follows:

(v ∨ w)(S) = max{v(S), w(S)}, ∀S ⊆ N, (18.137)

and the minimum game (N ; v ∧ w) by

(v ∧ w)(S) = min{v(S), w(S)}, ∀S ⊆ N. (18.138)

Suppose that (N ; v) and (N ; w) are two weighted majority games (see
Section 16.1.4). Are the games (N ; v ∨ w) and (N ; v ∧ w) also weighted majority
games?

18.19 Let (N ; v) and (N ; w) be two coalitional games over the same set of players.
Does Shi(N ; v ∨ w) ≥ Shi(N ; v) hold for every player i ∈ N? Either prove this
statement or provide a counterexample. For the definition of the game (N ; v ∨ w),
see Exercise 18.18.

18.20 Let �N be the set of simple monotonic games over a set of players N .

(a) Prove that if (N ; v), (N ; w) ∈ �N then (N ; v ∨ w) and (N ; v ∧ w) are also
games in �N .

Since a sum of games in �N is not necessarily in �N , the additivity property is
not applicable to this family of games. This motivated Dubey [1975] to define the
following valuation property. A solution concept ϕ over �N satisfies the valuation
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property if for every pair10 of games (N ; v) and (N ; w) in �N ,

ϕ(N ; v) + ϕ(N ; w) = ϕ(N ; v ∧ w) + ϕ(N ; v ∨ w). (18.139)

(b) Prove that the Shapley value is the unique solution concept over �N satisfying
efficiency, symmetry, the null player property, and the valuation property.

18.21 Let (ai)i∈N be real numbers. Let v be the following coalitional function:

v(S) =
{

0 if |S| ≤ k,∑
i∈S ai if |S| > k.

(18.140)

Compute the Shapley value of the game (N ; v) for every k = 0, 1, . . . , n.

18.22 Consider a weighted majority game with four players, with quota q = 1
2 , and

weights (0.1, 0.2, 0.3, 0.4) (see Section 16.4, page 671, for a discussion on
weighted majority games).

(a) Write down the coalitional game corresponding to this weighted majority game.
(b) Compute the Shapley value of the game.
(c) Compute the core of the game.

18.23 Compute the Shapley value of the weighted majority game with N + 1 players,
weights (N

3 , 1, 1, 1, . . . , 1), and quota q = N
2 . Suppose that N is divisible by 6.

What is the limit of the Shapley value of the player with weight N
3 as N goes to

infinity?

18.24 Compute the Shapley value of the weighted majority game with N + 2 players,
weights (N

3 , N
3 , 1, 1, 1, . . . , 1), and quota q = 5N

6 . Suppose that N is divisible by
6. What is the limit of the Shapley value of each player with weight N

3 as N goes
to infinity?

18.25 Compute the Shapley value of the weighted majority game with N + 2 players,
weights (N

3 , N
3 , 1, 1, 1, . . . , 1), and quota q = N . Suppose that N is divisible by

6. What is the limit of the Shapley value of each player with weight N
3 as N goes

to infinity?

18.26 Let U be a nonempty set of players. Denote by �∗
U the family of coalitional games

(N ; v) such that N ⊆ U , i.e., those games in which the set of players is taken
from U .

Let P : �∗
U → R be a function associating each game in �∗

U with a real number.

Definition 18.41 For every game (N ; v) ∈ �∗
U , the marginal contribution of player

i in N to the game (N ; v) relative to P is

DiP (N ; v) :=
{

P (N ; v) if |N | = 1,

P (N ; v) − P (N \ {i}; v) if |N | ≥ 2.
(18.141)

In Equation (18.141), (N \ {i}; v) is the game in which the set of players is N \ {i},
and the coalitional function is the function v restricted to this set of players.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 For the definition of the games v ∧ w and v ∨ w, see Exercise 18.18.
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Definition 18.42 A function P : �∗
U → R is called a potential function over �∗

U

if for every (N ; v) ∈ �∗
U the sum of the marginal contributions equals v(N):∑

i∈N

DiP (N ; v) = v(N). (18.142)

Prove the following claims:

(a) For every nonempty set of players U , there is a unique potential function
P : �∗

U → R.
(b) If P is a potential function, then for every game (N ; v) ∈ �∗

U , and every i ∈ N ,

DiP (N ; v) = Shi(N ; v). (18.143)

18.27 Let (N ; v) be a simple monotonic game satisfying v(N) = 1. For each player
i, define Bi(N ; v) to be the number11 of coalitions S satisfying v(S) = 0 and
v(S ∪ {i}) = 1. The Banzhaf value of player i is defined to be

BZi(N ; v) := Bi(N ; v)∑
j∈N Bj (N ; v)

. (18.144)

Similarly to the Shapley–Shubik power index, the Banzhaf value also constitutes
a power index, measuring the relative power of each player.

(a) Which of the following properties are satisfied by the Banzhaf value: efficiency,
the null player property, additivity, marginality, symmetry?

(b) Compute the Banzhaf value of the game in Exercise 18.22.
(c) Find a formula for the Banzhaf value of the games in Exercises 18.23–18.24.
(d) Compute the Banzhaf value of the members of the United Nations Security

Council, both in its pre-1965 structure and in its post-1965 structure (see
Section 18.6.1 on page 765).

18.28 A cost game (N ; c) is called convex if

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀S, T ⊆ N. (18.145)

Prove that this property is equivalent to the following property:

c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ), ∀i ∈ N, ∀S ⊆ T ⊆ N \ {i}. (18.146)

Prove that the airport game in Exercise 18.16 is a convex cost game.

18.29 Construct a road network game, as in Exercise 18.17, for which the corresponding
cost game is not convex.
Hint: Construct a road network in which the villages and the central township are
geographically situated on a circle.

18.30 Let i be a null player in a coalitional game (N ; v). Compute the Hart–Mas-Colell
reduced game over N \ {i} relative to the Shapley value Sh.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 Such a coalition S is called a swing for player i.
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18.31 Let (N ; v) be an additive game (for the definition of an additive game, see Exercise
18.11) and let S be a nonempty coalition. Compute the Hart–Mas-Colell reduced
game over S relative to the Shapley value Sh.

18.32 Let (N ; v) be a coalitional game, and let (N ; v∗) be its dual game (for the definition
of a dual game, see Exercise 18.15). For a nonempty coalition S, write down the
coalition function of the Hart–Mas-Colell reduced game of (N ; v∗) over S relative
to the Shapley value Sh, in terms of v and ṽS,Sh.

18.33 Prove that for every linear solution concept ϕ and for every nonempty coalition S ⊆
N , the function that assigns to each coalition game its Hart–Mas-Colell reduced
game over S relative to ϕ is a linear function. That is, for every pair of coalitional
games (N ; v) and (N ; u) and for every pair of real numbers α and β,

w̃S,ϕ = αũS,ϕ + βṽS,ϕ. (18.147)



19 The bargaining set

Chapter summary
In this chapter we present the bargaining set, which is a set solution concept for
coalitional games. The idea behind the bargaining set is that when the players consider
how to divide the worth of a coalition among themselves, a player who is unsatisfied
with the suggested imputation can object to it. An objection, which is directed against
another player, roughly claims: “I deserve more than my suggested share and you should
transfer part of your suggested share to me because . . . ” The player against whom the
objection is made may or may not have a counterobjection. An objection that meets
with no counterobjection is a justified objection. The bargaining set consists of all
imputations in which no player has a justified objection against any other player.

It follows from the definition of an objection that in any imputation in the core no
player has an objection, and therefore the core is always a subset of the bargaining set.
It is proved that contrary to the core, the bargaining set is never empty. In convex games
the bargaining set coincides with the core.

In Chapter 17 we noted that the core, as a solution concept for coalitional games, suffers
from a significant drawback: in many cases, the conditions that the core must satisfy are
too strong, and as a result, there is no imputation that satisfies all of them. Consequently,
in many games the core is the empty set. In this chapter, we present another solution
concept, termed “the bargaining set,” which imposes weaker conditions, and yields a
recommended solution for every coalitional structure, provided that there exists at least
one feasible imputation for that structure.

Example 19.1 An advertising agency seeks two celebrities to star in an advertising campaign. Three cele-

brities, Anna, Ben, and Carl, are approached, with the intention that two of them will be chosen
for the advertising campaign. The advertising agency is persuaded that an advertisement depicting
a man and a woman is generally more effective than one depicting two men, and it therefore offers
a pair of celebrities comprised of a man and a woman $1,000,000, and offers a pair comprised of
two men only $500,000. This situation may be depicted as a game in coalitional form (all payoffs
are in thousands of dollars).

v(∅) = 0,

v(Anna) = v(Ben) = v(Carl) = 0,

v(Ben, Carl) = 500,

v(Anna, Ben) = v(Anna, Carl) = 1,000,

v(Anna, Ben, Carl) = 0.

782
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Remark 19.2 We define v(Anna, Ben, Carl) = 0 because the advertising campaign cannot
include three celebrities. We could alternatively define v(Anna, Ben, Carl) = 1,000, with all
three celebrities forming a coalition that sends only two of them to be photographed for the
advertisements. �

Which coalition will be formed? Suppose that Anna and Ben form a coalition, without Carl’s
participation. How will they divide the $1,000,000 they are paid?

It is readily verified that this game has an empty core for any coalitional structure (the core
is empty also if we set v(Anna, Ben, Carl = 1,000)). Experiments conducted using games similar
to this game indicate that the players usually raise offers and counteroffers, in the hope of being
included in the coalition that eventually forms. A typical bargaining process looks something like
this (see Maschler [1978] and Kahan and Rapoport [1984]):

Imputation
Stage Offer Coalitional Structure Anna Ben Carl

1 Ben {Carl}, {Anna, Ben} 500 500 0
2 Carl {Ben}, {Anna, Carl} 600 0 400
3 Ben {Carl}, {Anna, Ben} 700 300 0
4 Carl {Ben}, {Anna, Carl} 800 0 200
5 Ben {Anna}, {Carl, Ben} 0 250 250
6 Anna {Carl}, {Anna, Ben} 740 260 0
7 Carl {Ben}, {Anna, Carl} 750 0 250

After this bargaining process is completed, Anna and Carl form a coalition, dividing the $1,000,000
they are paid among them as ($750,000, $250,000).

Experimental evidence indicates that the results of bargaining processes in this game are usually
very close to one of the following imputations (again, in thousands of dollars in the order (Anna,
Ben, Carl)):1

(750, 250, 0), (750, 0, 250), (0, 250, 250),

with slight variations in various directions, since a person who sees he is about to be left out is
usually willing to yield a bit in the bargaining process to increase his chance of being included in a
two-player coalition. Some experimental evidence indicates that each one of the above imputations
is the average of payoffs obtained when the appropriate coalitional structure is formed. There are
other empirical results pointing to more equitable outcomes, perhaps because Anna stands to lose
more than the other players if she is not included in a two-player coalition, resulting in greater
willingness on her part to yield in the bargaining process.

What characterizes these outcomes, and how can they be generalized to a solution concept?
To answer this question, we first look at an imputation that is not included in the above set. For
example, suppose that Anna proposes that she and Ben form a coalition, and offers to divide the
money according to the imputation

x = (800, 200, 0).

Ben can be expected to be dissatisfied with this offer. He tells Anna that she should give him some
of the 800 that she suggests for herself, because otherwise he will approach Carl with an offer

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Other possible foreseeable outcomes are presented later in this chapter.
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to form a coalition {Ben, Carl}, with the imputation:

y = (0, 250, 250).

Carl will certainly agree to such an offer, and both Ben and Carl profit more from y than from x.
We term the pair ({Ben, Carl}, y) an objection of Ben against Anna at x.

Anna may respond by saying that she also has an objection to x: Ben needs to give her an even
share greater than 800 since she can approach Carl and offer to form the coalition {Anna, Carl},
with the imputation:

z = (810, 0, 190).

The pair ({Anna, Carl}, z) is an objection of Anna against Ben at x. But there is a difference between
these objections: Ben’s objection is justified, while Anna’s objection is unjustified.

Why is Anna’s objection unjustified? Suppose that Anna approaches Carl with the suggestion
that they form a coalition and divide the money according to imputation z. Ben can prevent this
from happening by offering to form a coalition with Carl and dividing the money according to
y. Both Ben and Carl stand to gain from this: Ben receives 250 (instead of the 200 he receives
according to x), and Carl receives 250 (instead of the 190 Anna promises him under z). Anna has
no chance of realizing her objection ({Anna, Carl}, z), and we therefore regard it as unrealistic. In
this case, we say that ({Ben, Carl}, y) is a counterobjection of Ben to Anna’s objection z.

Why is Ben’s objection justified? Because Anna has no counterobjection to it. Suppose that Ben
indeed offers to form a coalition with Carl and divide the money according to y. To prevent this
from happening, Anna must suggest forming a coalition with Carl, with an imputation giving Carl
at least 250. But then all she will have left for herself is at most 750 – less than the 800 she received
under x. In other words, Anna cannot defend the 800 she receives under x, and therefore Ben’s
objection against Anna is justified.

If the coalition {Anna, Ben} is formed, we claim that neither Anna nor Ben has a justified
objection to the imputation x̂ = (750, 250, 0). For example, if Anna objects to x̂ by proposing to
form the coalition {Anna, Carl} with an imputation (750 + ε, 0, 250 − ε), where ε > 0, then as a
counterobjection Ben can suggest the coalition {Ben, Carl}with the imputation (0, 250, 250). If Ben
objects to x̂ by proposing the coalition {Ben, Carl} with an imputation (0, 250 + ε, 250 − ε), Anna
can counterobject by proposing to form the coalition {Anna, Carl}with the imputation (750, 0, 250).

For the coalitional structure {{Anna, Ben}, {Carl}} the imputation x̂ = (750, 250, 0) is the only
imputation at which every objection of one player against another player in the same coalition can
be met with a counterobjection. (Exercise 19.7). �

19.1 Definition of the bargaining set
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We are now ready for the formal presentation of the bargaining set. Let (N ; v) be a
coalitional game. Recall that for every vector x ∈ RN we set x(∅) = 0, and for every
nonempty coalition S ⊆ N we have denoted x(S) = ∑

i∈S xi . Recall also that a coalitional
structure B is a partition of the set of players into disjoint, nonempty coalitions whose
union is N , and X(B; v) is the set of imputations relative to B:

X(B; v) := {x ∈ RN : x(B) = v(B) ∀B ∈ B, xi ≥ v(i) ∀i ∈ N}. (19.1)

An imputation in X(B; v) is therefore a way to divide the worth of each coalition in B
among its members, where each player receives at least what he can get by himself.
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Definition 19.3 Let x ∈ X(B; v) be an imputation, and let k �= l be two players belonging
to the same coalition in B. An objection of player k against player l at x is a pair (C, y)
such that:

1. C ⊆ N is a coalition containing k but not l: k ∈ C, l �∈ C.
2. y ∈ RC is a vector of real numbers satisfying y(C) = v(C), and yi > xi for each

player i ∈ C.

The interpretation of an objection of player k against player l is that player k demands
that player l give some of his payoff to player k, because otherwise player k can approach
the members of coalition C (which contains player k but not player l, and therefore does
not require player l’s approval) and suggest dividing the worth of the coalition C among
its members in such a way that each of them receives more than he receives under x.

Remark 19.4 An objection can be raised by a player only against another player in
the same coalition in the coalitional structure. This implies, among other things, that
there are no objections in a one-player coalition. The point of an objection is not for
the objection to be realized, but rather to bring about a situation in which the objecting
player receives a greater payoff, at the expense of the player against whom the objection is
raised. However, the coalition C with which player k raises an objection against player l

may be any coalition, not necessarily a subcoalition of the coalition in B that contains
players k and l. �

The core can be characterized using the concept of an objection (Exercise 19.1).

Theorem 19.5 The core of the coalitional game (N ; v) for the coalitional structure B =
{N} is the set of all imputations at which no player has an objection against another
player.

For other coalitional structures, the statement of the above theorem holds only if the
core is nonempty (Exercises 19.2 and 19.3).

Theorem 19.6 If the core of the coalitional game (N ; v) for a coalitional structure B
is nonempty, then it is the set of all imputations in X(B; v) at which no player has an
objection against another player in the same coalition in B.

Definition 19.7 Let (C, y) be an objection of player k against player l at x. A counter-
objection of player l against player k is a pair (D, z) satisfying:

1. D is a coalition containing l but not k: l ∈ D, k �∈ D.
2. z ∈ RD , and z(D) = v(D).
3. zi ≥ xi for every player i ∈ D \ C.
4. zi ≥ yi for every player i ∈ D ∩ C.

Player l has a counterobjection to player k’s objection against him if he can find a coalition
D containing himself, but not player k, and a way to divide the worth of coalition D among
its members in such a way that each member of D \ C receives at least what he receives
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under x, and each member of D ∩ C receives at least what he receives under y (which is
what player k promises to give him in his objection to x.)

Remark 19.8 It is possible for a counterobjection to satisfy the property that D ∩ C = ∅.
In that case, the fourth condition in Definition 19.7 is satisfied vacuously. When the
objection (C, y) is relative to the coalitional structure B, the coalition D used for the
counterobjection, just like the coalition C used for the objection, can be any coalition in
N , and not necessarily a subcoalition of a coalition in B. �

Definition 19.9 An objection (C, y) of player k against player l at x is a justified objection
if player l has no counterobjection to it.

We are now ready to define the bargaining set of a coalitional game (N ; v) for any
coalition structure B.

Definition 19.10 Let (N ; v) be a coalitional game, and B a coalitional structure. The
bargaining set relative to the coalitional structure B is the set M(N ; v;B) of imputations
in X(B; v) at which no player has a justified objection against any other player in his
coalition.

In other words, the bargaining set is the set of all imputations in X(B; v) at which every
objection of one player against another player in his coalition in the coalitional structure
B, is met by a counterobjection.

We next present a few simple properties satisfied by the bargaining set.

Theorem 19.11 If B = {{1}, {2}, . . . , {n}}, then

M(N ; v;B) = {(v(1), v(2), . . . , v(n))}. (19.2)

Proof: The vector (v(1), v(2), . . . , v(n)) is the only imputation in X(B; v). It is therefore
the only vector that could possibly be in the bargaining set. Since there are no objections
in one-player coalitions, there are in particular no justified objections, and therefore
the bargaining set for this coalitional structure contains a single vector,
(v(1), v(2), . . . , v(n)). �

Since there can be no objection raised at an imputation that is in the core, and therefore
certainly no justified objection, we obtain the following result.

Theorem 19.12 For every coalitional game (N ; v) and every coalitional structure B, the
bargaining set relative to B contains the core relative to B:

M(N ; v;B) ⊇ C(N ; v;B). (19.3)

Thus, the bargaining set contains the core, but it may contain imputations that are not
in the core. In Exercise 19.16, we will see an example that shows that there are situations
in which imputations that are not in the core are more intuitive solutions than imputations
in the core (Exercise 19.16). There are cases in which the core is empty, and then the
bargaining set, which is never empty, can provide a solution to the game.
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Example 19.1 (Continued) It is left to the reader to ascertain that the following vectors are in the bargaining

set, for various coalitional structures:

Imputation Coalitional structure
(750, 250, 0) {{Anna, Ben}, Carl}
(750, 0, 250) {{Anna, Carl}, Ben}
(0, 250, 250) {Anna}, {Carl, Ben}

(0, 0, 0) {Anna}, {Ben},{Carl}
(0, 0, 0) {Anna, Ben, Carl} if v(N ) = 0

(666 2
3 , 166 2

3 , 166 2
3 ) {Anna, Ben, Carl} if v(N ) = 1,000

In contrast, the core of the game is empty, relative to every coalitional structure. �

Definition 19.13 Let (N ; v) be a coalitional game, let x ∈ RN , and let S ⊆ N be a
coalition. The excess of the coalition S at x is

e(S, x) := v(S) − x(S). (19.4)

The excess e(S, x) measures the extent to which the members of S are dissatisfied when
receiving payments according to x: if the excess is positive, the members of S are dissatis-
fied with x, because they could band together to form a coalition, receive v(S), and divide
that sum among them in such a way that every member of S gets more than he gets under
x. The smaller the excess, the less the members of S are dissatisfied. When the excess
is negative, the members of S are satisfied with x, and the more negative the excess, the
luckier they consider themselves.

The following theorem illustrates the importance of considering the excess in studying
the bargaining set.

Theorem 19.14 Let (N ; v) be a coalitional game, let B be a coalitional structure, and
let k and l be two players in the same coalition in B. If (C, y) is a justified objection of
player k against player l, and if D is a coalition containing player l but not player k, then
e(D, x) < e(C, x).

Proof: The intuition behind this theorem is as follows. The excess e(C, x) is the total
sum that player k ∈ C can divide among the members of C under an objection (C, y).
If e(D, x) is greater than or equal to e(C, x), player l can divide among the members
of D ∩ C at least what player k gives them under objection (C, y), thereby creating a
counterobjection. Thus, if (C, y) has no counterobjection, then e(D, x) < e(C, x) must
hold.

Formally, define a vector z ∈ RD as follows:

zi =
⎧⎨⎩

xi if i ∈ D \ (C ∪ {l}),
yi if i ∈ D ∩ C,

v(D) − x(D \ (C ∪ {l})) − y(D ∩ C) if i = l.

(19.5)

Note that z(D) = v(D). The pair (D, z) satisfies Conditions (1), (2), and (4) of the
definition of a counterobjection, and satisfies Condition (3) for all i �= l. Since (C, y)
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is a justified objection, (D, z) is not a counterobjection of player l against player k, and
therefore necessarily Condition (3) in the definition of a counterobjection for i = l does
not hold, that is, zl < xl . Now,

e(D, x) = v(D) − x(D) (19.6)

= v(D) − x(D \ (C ∪ {l})) − x(D ∩ C) − xl − y(D ∩ C) + y(D ∩ C) (19.7)

= zl − x(D ∩ C) − xl + y(D ∩ C) (19.8)

< y(C ∩ D) − x(D ∩ C) (19.9)

≤ y(C) − x(C) (19.10)

= v(C) − x(C) = e(C, x), (19.11)

where Equation (19.8) holds by the definition of zl , Equation (19.9) holds because zl < xl ,
and Equation (19.10) holds because yi > xi for all i ∈ C \ D. In other words, e(D, x) <

e(C, x), which is what we needed to show. �

19.2 The bargaining set in two-player games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that N = {1, 2}. If v(1, 2) < v(1) + v(2), then the set X({N}; v) is empty, and
therefore M(N ; v;B) is empty.

If v(1, 2) ≥ v(1) + v(2), there are no objections at any vector x ∈ X({N}; v). To see
this, note that the only coalition that player k can form for use in an objection is the
coalition containing himself alone, but if x ∈ X({N}; v), then xi ≥ v(i), and therefore
player i cannot use this coalition for an objection at x. It follows that the bargaining set
coincides with the core and with the set of imputations, namely, it is the line segment

M(N ; v; {N}) = {(x, v(1, 2) − x) : v(1) ≤ x ≤ v(1, 2) − v(2)}. (19.12)

Recall that according to Theorem 19.11, for the coalitional structure B = {{1}, {2}},
M(N ; v;B) = C(N ; v;B) = X(B; v) = {(v(1), v(2))}. (19.13)

19.3 The bargaining set in three-player games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Suppose that N = {1, 2, 3}. Relative to the coalitional structure B = {{1}, {2}, {3}},
M(N ; v;B) = C(N ; v;B) = X(B; v) = {(v(1), v(2), v(3))}. (19.14)

We next turn to studying the bargaining set for the coalitional structure B = {{1, 2}, {3}}:
Players 1 and 2 form a coalition, and Player 3 forms a one-player coalition. In this case,

X(B; v) = {
x ∈ R3 : x1 ≥ v(1), x2 ≥ v(2), x3 = v(3), x1 + x2 = v(1, 2)

}
. (19.15)

A necessary condition for Player 1 to fail to have a justified objection against Player 2 at
x ∈ X(B; v), is that at least one of the following expressions holds:

x1 + x3 ≥ v(1, 3) x2 = v(2) v(1, 3) − x1 ≤ v(2, 3) − x2 (19.16)
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The reason for this is as follows. At every objection, Player 1 must join a coalition with
Player 3. If the left-hand inequality in (19.16) holds, then Player 2 cannot join an objection
of Player 1, since Player 1 cannot offer him more than he gets under x. If the equality in
Equation (19.16) holds, then for every objection of Player 1 against Player 2, Player 2 has
a counterobjection ({2}, v(2)). If the right-hand inequality in Equation (19.16) holds, then
for every objection of Player 1 that includes Player 3, Player 2 can offer Player 3 more
in a counterobjection. For every x ∈ X(B; v) at which at least one of these expressions
holds, Player 1 has no justified objection against Player 2. The opposite also holds: if
neither of these inequalities hold, Player 1 has a justified objection against Player 2
(Exercise 19.5).

Theorem 19.15 In a three-player game (N ; v), the bargaining set relative to the coali-
tional structure B = {{1, 2}, {3}} is the set of vector payoffs in X(B; v) satisfying at least
one expression in each line of the following table. (each line has two numbers in the form
k → l on the left-hand side, which express that that line contains the conditions that must
be met for player k to fail to have a justified objection against player l).

1 → 2 x1 + x3 ≥ v({1, 3}) x2 = v(2) v({1, 3}) − x1 ≤ v({2, 3}) − x2

2 → 1 x2 + x3 ≥ v({2, 3}) x1 = v(1) v({2, 3}) − x2 ≤ v({1, 3}) − x1
(19.17)

A larger system is needed for the coalitional structure {N}. A payoff vector x ∈
X({N}; v) is in the bargaining set relative to the coalitional structure {N} if and only
if it satisfies at least one expression in each line in the following system (as before, each
line is specified by l ← k and contains the conditions necessary for player k to fail to have
a justified objection against player l):

1 → 2 x1 + x3 ≥ v(1, 3) x2 = v(2) v(1, 3) − x1 ≤ v(2, 3) − x2

2 → 1 x2 + x3 ≥ v(2, 3) x1 = v(1) v(2, 3) − x2 ≤ v(1, 3) − x1

1 → 3 x1 + x2 ≥ v(1, 2) x3 = v(3) v(1, 2) − x1 ≤ v(2, 3) − x3

3 → 1 x2 + x3 ≥ v(2, 3) x1 = v(1) v(2, 3) − x3 ≤ v(1, 2) − x1

2 → 3 x1 + x2 ≥ v(1, 2) x3 = v(3) v(1, 2) − x2 ≤ v(1, 3) − x3

3 → 2 x1 + x3 ≥ v(1, 3) x2 = v(2) v(1, 3) − x3 ≤ v(1, 2) − x2

(19.18)

Checking whether a particular vector x is in the bargaining set is relatively easy to do;
it involves checking that at most 22 conditions are met (explain why). Computing the
entire bargaining set requires solving 36 systems each with 10 linear equations (equalities
and inequalities; explain why). The following theorem, whose proof is left to the reader
(Exercise 19.11), shows that when a three-player game is 0-monotonic2 computing the
bargaining set is simplified.

Theorem 19.16 In a 0-monotonic, three-player game, the bargaining set for the coali-
tional structure {N} coincides with the core, if the core is nonempty, and it contains only
one imputation, if the core is empty.

Computing the bargaining set for a three-player game that is not 0-monotonic is a
problem with high computational complexity. This complexity is vastly increased when

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 A coalitional game is 0-mononotonic if its 0-normalization is monotonic, or, equivalently, if v(S ∪ {i}) ≥ v(S) + v(i)
for every coalition S and every player i �∈ S (Exercise 16.27 on page 683).
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there are four or more players, because then for every objection of player k against
player l we need to list the conditions negating the possibility of the formation of a
counterobjection for each subset N \ {k, l}. For example, to determine if a particular point
x is in the bargaining set for the coalitional structure {N} in a four-player game, it suffices
to check 197 simple inequalities. But computing all the points in the bargaining set directly
requires solving 15012 systems, each one containing 41 inequalities. To date there is no
known practical method for computing the bargaining set in games with a large number
of players, which is why indirect methods are often used to compute the bargaining set
for specific families of games.

The set of solutions for a system of weak linear inequalities is an intersection of a finite
number of half-spaces and is therefore a closed and convex set. The bargaining set is
contained in the set of vector payoffs, which is a compact set. This leads to the following
theorem, whose proof is left to the reader (Exercise 19.21).

Theorem 19.17 For every coalitional game (N ; v) and every coalitional structure B, the
bargaining set M(N ; v;B) is a finite union of polytopes.3

Another property of the bargaining set that is a corollary of our discussion so far is:

Theorem 19.18 When the values of the coalitional functions are all in a subfield of the
real numbers (such as the field of the rational numbers), then all the vertices of the
polytopes determining the bargaining set have coordinates in that subfield.

The reason this theorem holds is that the operations required to solve a finite system of
linear equations are multiplying and dividing the coefficients in the equations, and appli-
cation of those operators always yields results in the same field in which the coefficients
are located.

The main significance of the bargaining set is that it may be regarded as a set of suggested
ways of dividing the worth of the coalition among its members, which is applicable also
in cases in which the core is empty, because, as the next theorem states, the bargaining set
is not empty provided that the set of imputation is not empty.

Theorem 19.19 For every game in coalitional form (N ; v) and every coalitional4 struc-
ture B, if X(B; v) �= ∅, then M(N ; v;B) �= ∅.

We will prove this theorem for the coalitional structure {N}. The proof of the general
case appears in the chapter on the nucleolus (Theorem 20.21 on page 813), where we
show that the nucleolus is always contained in the bargaining set, and the nonemptiness of
the nucleolus follows from simple considerations involving continuous functions defined
on compact sets.

The proof presented here is important both because of its contribution to the under-
standing of the structure of the bargaining set, and because it can be extended to a proof
of the nonemptiness of the bargaining set in games without transferable utility, where
the proof using the nucleolus is not applicable. The proof makes use of the following
definition and two theorems.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Recall that a polytope is a compact set that is the intersection of a finite number of half-spaces.
4 Since by definition M(N ; v;B) is contained in X(B; v), if X(B; v) = ∅, then M(N ; v;B) = ∅.
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Definition 19.20 Let (N ; v) be a coalitional game, let k and l be two players, and let
x ∈ X(N ; v). We say that player k is stronger than player l at x, denoted by k x l, if
player k has a justified objection against player l at x (relative to the coalitional structure
{N}).

The following example shows that the “stronger than” relation is not necessarily tran-
sitive.

Example 19.21 Let (N ; v) be a coalitional game where N = {1, 2, 3, 4, 5}, and the coalitional function is

v(1, 2, 3, 4, 5) = v(1, 2, 3) = v(2, 4, 5) = 30, (19.19)

v(1, 4) = 40, (19.20)

v(3, 5) = 20, (19.21)

v(S) = 0, for every other coalition S. (19.22)

Consider the imputation x = (10, 10, 10, 0, 0) ∈ X(N ; v). At x:

� ({1, 4}, (11, 0, 0, 29, 0)) is a justified objection of Player 1 against Player 2 (check!). It follows
that 1 x 2.

� ({2, 4, 5}, (0, 11, 0, 1, 18)) is a justified objection of Player 2 against Player 3 (check!). It follows
that 2 x 3.

� We now show that 1 �x 3, leading to the conclusion that the “stronger than” relation is not
transitive. The only way that Player 1 can raise an objection against Player 3 involves the
coalition {1, 4}. But for every such objection, Player 3 can respond with a counterobjection
(0, 0, 10, 0, 10), with coalition {3, 5}.

The last item also shows that 3 �x 1. This indicates that although the “stronger than” relation is not
transitive, it is likely to be acyclic, and in fact this is true, as stated in the next theorem. �

Theorem 19.22 The relation x is acyclic, i.e., if 1 x 2 x 3 x . . . x t − 1 x t ,
then it t x 1 does not hold.

Proof: Suppose by contradiction that 1 x 2 x 3 x . . . x t − 1 x t and t x 1.
Suppose that the justified objections used in the above sequence involve coalitions
S1, S2, . . . , St , respectively; i.e., Si is the coalition that player i uses for his justified
objection against player i + 1, for i = 1, 2, . . . , t − 1, and St is the coalition that player t

uses for his objection against Player 1.
Consider the excesses e(S1, x), e(S2, x), . . . , e(St , x). Since the coalitions

S1, S2, . . . , St are used in justified objections, these excesses must be positive. Re-
label the names of the players in such a way that e(St , x) is the maximal excess among these
excesses (there may be several indices i at which this maximum is attained). Then coalition
St cannot include Player 1 as a member, since it is used in an objection against him.

We show by induction that the coalition St includes players {1, 2, . . . , t}. This contra-
dicts the fact, just mentioned, that it cannot include Player 1. The contradiction establishes
what we wanted to show, namely, that x is an acyclic relation.

Since St is used in an objection of player t , it must include that player as a member.
Suppose by induction that St contains players {i + 1, i + 2, . . . , t}. We show that it must
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include player i as well. To do so, we make use of Theorem 19.14 on page 787: the
coalition Si is used in a justified objection of player i against player i + 1 and by the
inductive hypothesis the coalition St contains player i + 1. If i �∈ St were to hold, it would
follow from Theorem 19.14 that e(St , x) < e(Si, x) in contradiction to the assumption that
e(St , x) is the maximal excess among the excesses (e(Sj , x))tj=1. Hence i ∈ St , completing
the inductive step of the proof and the proof of the theorem. �

The next theorem is a corollary of an important theorem in topology known as the KKM
Theorem (after Knaster–Kuratowski–Mazurkiewicz). A proof of this theorem appears in
Section 23.1.4 (page 941). A different proof, using Brouwer’s Fixed Point Theorem, is
given as a guided exercise (Exercise 23.31 page 953).

Theorem 19.23 (KKM) Consider the (n − 1)-dimensional simplex

X(n) =
{

x ∈ Rn :
n∑

i=1

xi = 1, xi ≥ 0 i = 1, . . . , n

}
. (19.23)

Let X1, X2, . . . , Xn be compact subsets of X(n) satisfying

{x ∈ X(n) : xi = 0} ⊆ Xi, i = 1, . . . , n, (19.24)

and whose union is X(n):
n⋃

i=1

Xi = X(n). (19.25)

Then their intersection is nonempty:
n⋂

i=1

Xi �= ∅. (19.26)

Recall that we are assuming in this section that the coalitional structure is {N}. For
every pair of players k and l, denote by Ykl the set of vector payoffs at which player k has
a justified objection against player l:

Ykl := {x ∈ X(N ; v) : k x l}. (19.27)

Theorem 19.24 The set Ykl is relatively open5 in X(N ; v).

Proof: Let x ∈ Ykl . We will show that every imputation located in a small neighborhood
of x is also in Ykl. Towards that goal we will prove that if (C, y) is a justified objection of
player k against player l at x then (C, y) is also a justified objection of player k against
player l at every payoff vector in a sufficiently small neighborhood of x.

We will first prove that (C, y) is an objection of player k against player l at each
payoff vector in a sufficiently small neighborhood of x. Denote δ := mini∈C(yi − xi).
Since (C, y) is a justified objection of player k against player l at x, it is an objection and
therefore δ > 0. By Definition 19.3, (C, y) is an objection of player k against player l at
every payoff vector x̂ satisfying |̂xi − xi | < δ for all i ∈ C.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 That is, Ykl is the intersection of an open set in RN with X(N ; v).
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We now prove that there exists a sufficiently small neighborhood of x satisfying the
property that at every vector in that neighborhood (C, y) is a justified objection of player k

against player l. Suppose by contradiction that this is not true. Then there exists a sequence
(xm)m∈N of payoff vectors converging to x such that (C, y) is not a justified objection of
player k against player l at xm, for all m ∈ N. In other words, for every m ∈ N there exists
a counterobjection (Dm, zm) of player l against player k at xm to the objection (C, y):

� l ∈ Dm, k �∈ Dm and zm(Dm) = v(Dm).
� zm

i ≥ xm
i for all i ∈ Dm \ C.

� zm
i ≥ yi for all i ∈ Dm ∩ C.

Since the number of coalitions is finite, there is a coalition D∗ appearing an infinite number
of times in the sequence (Dm)m∈N. The set of payoff vectors is compact and therefore
every subsequence of the sequence (zm) has a subsequence converging to the limit z∗. By
taking the limit in the subsequence we deduce that:

� l ∈ D∗, k �∈ D∗ and z∗(D∗) = v(D∗).
� z∗i ≥ x∗

i for all i ∈ D∗ \ C.
� z∗i ≥ yi for all i ∈ D∗ ∩ C.

It follows that (D∗, z∗) is a counterobjection of player l against player k at x to the objection
(C, y), and therefore (C, y) is not a justified objection, contradicting our assumption. This
contradiction proves that the set Ykl is a relatively open set in X(N ; v). �

We turn now to the proof of Theorem 19.19, which states that for the coalitional structure
{N} the bargaining set is not empty provided that the set of imputations is not empty.

Proof of Theorem 19.19 in the case that B = {N}: The bargaining set is covariant
under strategic equivalence (Exercise 19.6). By Theorem 16.7 (page 670) we may assume
without loss of generality that the game is 0 − 0, 0 − 1, or 0 − (−1) normalized.

We will first deal with the interesting case in which the game is 0 − 1 normalized, and
then treat the other two cases, where the proof is rather simple.

When the game is 0 − 1 normalized, the set of imputations for the coalitional structure
{N} is

X(N ; v) =
{

x ∈ RN :
n∑

i=1

xi = 1, xi ≥ 0 i = 1, . . . , n

}
. (19.28)

This is an (n − 1)-dimensional simplex. Define n subsets of the simplex by:

Xi := {x ∈ X(N ; v) : there is no justified objection against player i at x} . (19.29)

Claim 19.25 Xi contains the set {x ∈ X(N ; v) : xi = 0}, for all i = 1, 2, . . . , n.

Proof: If xi = 0, the pair ({i}, 0) constitutes a counterobjection of player i to any objection
raised against him. �
Claim 19.26 ∪n

i=1Xi = X(N ; v).

Proof: Suppose by contradiction that there exists a point x in X(N ; v) that is not in∪n
i=1Xi .

Let j be any player. Since x �∈ Xj , at x there is a player kj who has a justified objection
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against j , that is, kj x j . This holds for every player j , and in particular, there is a
player j1 such that j1 x 1, there is a player j2 such that j2 x j1, there is a player j3 such
that j3 x j2, and so on. Since the number of players is finite, the sequence (jm)∞m=1 must
contain a player who appears at least twice; i.e., there exist m and l satisfying jm = jm+l .
In particular,

jm x jm+1 x jm+2 x · · · x jm+l−1 x jm+l = jm.

The existence of such a sequence contradicts the fact that the relation x is acyclic
(Theorem 19.22). The contradiction proves that our starting assumption was false, and
hence ∪n

i=1Xi = X(N ; v). �
Claim 19.27 For every i, the set Xi is closed.

Proof: Xi is a set of imputations at which there are no justified objections against player i.
The complement X(N ; v) \ Xi is therefore the set of imputations at which at least one
player has a justified objection against player i; i.e.,

X(N ; v) \ Xi =
⋃

{k : k �=i}
Yki. (19.30)

By Theorem 19.24, the sets (Xki)i∈N are all relatively open in X(N ; v). Therefore
X(N ; v) \ Xi , as the union of relatively open sets, is itself relatively open in X(N ; v),
and thus its complement Xi is relatively closed in X(N ; v). Since the set X(N ; v) is closed
in RN it follows that Xi is also a closed set in RN , as claimed. �

These three claims show that the sets {X1, X2, . . . , Xn} satisfy the conditions of the
KKM Theorem (Theorem 19.23), and their intersection is therefore nonempty. This inter-
section is the bargaining set,

n⋂
i=1

Xi = M(N ; v; {N}), (19.31)

since x ∈ ⋂n
i=1 Xi if and only if no player has a justified objection at x against any other

player. This completes the proof in the case that the game is 0 − 1 normalized.
If the game is 0 − 0 normalized, the only imputation in X({N}; v) is (0, 0, . . . , 0). This

imputation is in the bargaining set, because at it there are no objections that can be raised
by any player against any other player (explain why).

If the game is 0−(−1) normalized, the set X({N}; v) is empty, and the statement of the
theorem holds vacuously. This completes the proof of Theorem 19.19 for the coalitional
structure B = {N}. �

19.4 The bargaining set in convex games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

There are several classes of games in which it is known that the bargaining set for the
coalitional structure {N} coincides with the core. This property, when it holds, constitutes
a strong recommendation for choosing a point in the core as the solution to such a game,
because at every imputation that is not in the core, there is a player who has a justified
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objection against another player. We prove in this section that in convex games the core
and the bargaining set coincide for the coalitional structure B = {N}. Recall that for this
coalition structure we use the short notation C(N ; v) for C(N ; v; {N}). For the definition
of a convex game see Definition 17.51 (page 717).

Theorem 19.28 For every convex game (N ; v)

C(N ; v) = M(N ; v; {N}). (19.32)

Proof: By Theorem 19.12 on page 786, we know that C(N ; v) ⊆ M(N ; v; {N}), and we
therefore need to show that C(N ; v) ⊇ M(N ; v; {N}). Let x /∈ C(N ; v) be an imputation
that is not in the core. We need to show that it is not in the bargaining set, i.e., there is a
justified objection at x.

Since the vector x is fixed throughout the proof, we denote by e(S) = e(S, x) = v(S) −
x(S) the excess of the coalition S at x. The function e associates each coalition with a real
number, the excess, and we can therefore view (N ; e) as a coalitional game, namely, the
game in which the worth of each coalition is its excess at x. We first show that (N ; e) is a
convex game. To see this, note that

e(A) + e(B) = v(A) + v(B) − x(A) − x(B) (19.33)

≤ v(A ∪ B) + v(A ∩ B) − x(A ∪ B) − x(A ∩ B) (19.34)

= e(A ∪ B) + e(A ∩ B). (19.35)

The inequality in Equation (19.34) holds because (N ; v) is a convex game, and x(A) +
x(B) = x(A ∪ B) + x(A ∩ B). Next, define the game (N ; ê) to be the monotonic cover of
the game (N ; e), that is,

ê(S) = max
R⊆S

e(R). (19.36)

We will show that (N ; ê) is also a convex game. In fact, the proof we provide is valid
for any convex game and thus proves that the monotonic cover of any convex game is a
convex game. Let S and T be two coalitions. Denote by R and R′ the coalitions at which
the maximum is attained in the definition of ê(S) and ê(T ) respectively:

ê(S) = max
P⊆S

e(P ) : = e(R) (19.37)

ê(T ) = max
P ′⊆T

e(P ′) : = e(R′). (19.38)

Then

ê(S) + ê(T ) = e(R) + e(R′). (19.39)

Since (N ; e) is a convex game,

e(R) + e(R′) ≤ e(R ∪ R′) + e(R ∩ R′). (19.40)

Since R ∪ R′ ⊆ S ∪ T and R ∩ R′ ⊆ S ∩ T ,

e(R ∪ R′) + e(R ∩ R′) ≤ max
P⊆S∪T

e(P ) + max
P⊆S∩T

e(P ) = ê(S ∪ T ) + ê(S ∩ T ).

(19.41)
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Using Equations (19.39)–(19.41) we deduce that

ê(S) + ê(T ) ≤ ê(S ∪ T ) + ê(S ∩ T ). (19.42)

Since this inequality holds for every S and T , the game (N ; ê) is indeed convex.
From among all the coalitions C that have maximal excess at x choose one, C∗, that is

maximal with respect to set inclusion:

e(S) ≤ e(C∗), ∀S ⊆ N, (19.43)

e(S) < e(C∗), ∀S such that C∗ ⊂ S ⊆ N. (19.44)

Since the imputation x is not in the core, there exists a coalition S such that v(S) > x(S),
i.e., e(S) > 0. Since e(C∗) is maximal,

ê(C∗) = max
P⊆C∗

e(P ) = e(C∗) > 0. (19.45)

Consider the game (C∗; ê), which is the restriction of the game (N ; ê) to the players in
C∗. This is a convex game, because it is a subgame of a convex game (Exercise 17.46 on
page 743). In particular, its core is not empty (Theorem 17.55 on page 719). Let y ∈
C(C∗; ê) be an imputation in the core of this game. This imputation satisfies

y(C∗) = ê(C∗) = e(C∗), (19.46)

y(R) ≥ ê(R) ≥ e(R), ∀R ⊂ C∗. (19.47)

In particular, for R = {i},
yi ≥ ê(i) = max{e(i), e(∅)} ≥ e(∅) = 0. (19.48)

In words, every imputation in the core of (C∗; ê) is nonnegative (in all its coordinates).
We will now show that there is a player k ∈ C∗ for whom (C∗, y) is a justified objection

against every player l �∈ C∗. Since y(C∗) = ê(C∗) > 0, there is a player k ∈ C∗ such
that yk > 0. By Equation (19.45) one has e(C∗) > 0 = e(N), and therefore C∗ �= N . In
particular, there exists a player l �∈ C∗. We will show that player k has a justified objection
against player l at x.

Let ε > 0 be sufficiently small such that

yk > (|C∗| − 1)ε. (19.49)

Define:

zi = xi + yi + ε, ∀i ∈ C∗ \ {k}, (19.50)

zk = xk + yk − (|C∗| − 1)ε. (19.51)

Then zi > xi for every i ∈ C∗, and by Equation (19.46)

z(C∗) = x(C∗) + y(C∗) = x(C∗) + e(C∗) = v(C∗). (19.52)

It follows that (C∗; z) is an objection of player k against player l. We will show that this
objection is justified. To do so, choose an arbitrary coalition D containing player l but not
player k. For a counterobjection, player l must give each player i in D ∩ C∗ at least zi ,
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and every player i in D \ C∗ at least xi . But this is impossible, since

z(D ∩ C∗) + x(D \ C∗) = z(D ∩ C∗) + x(D) − x(D ∩ C∗) (19.53)

≥ y(D ∩ C∗) + x(D) (19.54)

≥ ê(D ∩ C) + x(D) (19.55)

≥ e(D ∩ C∗) + x(D) (19.56)

≥ e(D) + e(C∗) − e(D ∪ C∗) + x(D) (19.57)

> e(D) + x(D) (19.58)

= v(D). (19.59)

Equation (19.54) holds by Equation (19.50) and since k �∈ D ∩ C∗, Equation (19.55) holds
because y ∈ C(C∗; ê) and ê(S) ≥ e(S) for every S ⊆ C∗, Equation (19.57) holds because
(C∗; e) is a convex game, and the inequality in Equation (19.58) holds because the choice
of C∗ necessarily implies that e(C∗) > e(D ∪ C∗) (since D ∪ C∗ ⊃ C∗, which follows
from player l being contained in D ∪ C∗ but not in C∗).

It follows that D cannot be used for a counterobjection. Since this is true for any
coalition D containing player l but not player k, the objection (C∗, y) is justified. We have
shown that the imputation x, which is not in the core, is also not in the bargaining set, and
therefore C(N ; v) ⊇ M(N ; v; {N}), which is what we wanted to show. �

19.5 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The following iterative procedure, which identifies an imputation in the bargaining set, is
due to Stearns [1968]. Let (N ; v) be a coalitional game such that X(N ; v) �= ∅. Start at an
arbitrary imputation x0 ∈ X(N ; v). If it is in the bargaining set, the procedure terminates
successfully. Otherwise, at x0 there exists a player who has a justified objection against
another player. It can be readily checked that if player k0 has a justified objection against
player l0, then there exists a minimal positive number δk0,l0 (x0) such that the transfer of
δk0,l0 (x0) from the payoff of player l0 to that of player k0 yields an imputation in which
player k0 no longer has a justified objection against player l0. Choose one of the justified
objections at x0, and implement such a transfer of payoffs. This leads to a new imputation
x1. Repeat the process on x1: if there are justified objections at this imputation, choose
one of them, say a justified objection of player k1 against player l1, and create a new
imputation x2 by transferring the sum δk1,l1 (x1) from the payoff of player l1 to that of
player k1, and so on.

If the process terminates successfully after a finite number of steps, we have found an
imputation in the bargaining set. It is possible, however, that the resulting sequence is
infinite. In such a case it can be shown that the sequence converges, but not necessarily
to an imputation in the bargaining set: for example, there may be Players 1, 2, and 3
who, throughout the iterative procedure, transfer smaller and smaller amounts of payoff
between each other, but Player 4 has a justified objection against Player 5 at every step of
the procedure that is never canceled by a transfer between them. If, however, we ensure
that in the above-described procedure there are an infinite number of times at which the
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transfers that are implemented are those where δkm,lm(xm) is maximal, then the sequence
(xm)∞m=1 converges to an imputation in the bargaining set.

This can be viewed as a dynamic justification for our interpretation of a justified
objection as a demand by one player to receive a “transfer payment” from another player.

19.6 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The first variant of the bargaining set was presented in Aumann and Maschler [1964]. The
variant of the bargaining set presented in this chapter first appeared in Davis and Maschler
[1967], who also proved that the bargaining set is nonempty relative to the coalitional
structure {N}. Peleg [1967] generalized this result to any coalitional structure.

Exercise 19.19 is from Peleg and Sudhölter [2003], page 74, Example 4.1.19.
Exercise 19.20 is a special case of a more general theorem proved in Solymosi [1999].

19.7 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

19.1 Prove Theorem 19.5 on page 785: for the coalitional structure {N} the core is the
set of all imputations in X(N ; v) at which no player has an objection against any
other player.

19.2 Prove Theorem 19.6 on page 785: for every coalitional structure B, when the core
relative to this coalitional structure is not empty, the core is the set of all imputations
in X(B; v) at which no player has an objection against any other player.

19.3 In this exercise, we show that Theorem 19.6 does not hold without the condition
that the core is nonempty. Let (N ; v) be a two-player coalitional game with payoff
function

v(1) = v(2) = 0, v(1, 2) = 1, (19.60)

and let B = {{1}, {2}}.
(a) Show that the core relative to the coalitional structure B is empty.
(b) Find an imputation in X(B; v) that is in the bargaining set M(N ; v;B).

19.4 Prove that if player k has a justified objection against player l at x , then player l

does not have a justified objection against player k at x.

19.5 Prove that in a three-player coalitional game (N ; v), if for an imputation x none of
the three equations in (19.16) holds, then Player 1 has a justified objection against
Player 2.

19.6 Prove that the bargaining set is covariant under strategic equivalence. In other
words, if (N ; v) and (N ; w) are two coalitional games with the same set of players,
and if there exist a > 0 and b ∈ RN such that

w(S) = av(S) + b(S), ∀S ⊆ N, (19.61)
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then for every coalitional structure B,

x ∈ M(N ; v;B) ⇐⇒ ax + b ∈ M(N ; w;B). (19.62)

19.7 Show that in Example 19.1 (page 782) for every coalitional structure the bargaining
set contains a single payoff vector, which is the corresponding payoff vector in the
table on page 787.

19.8 For N = {1, 2, 3}, compute the bargaining set of the coalitional game (N ; v) rel-
ative to the coalitional structure {{1, 2}, {3}}, for each of the following coalitional
functions:

(a) v(1) = v(2) = v(3) = 0, v(1, 2) = 40, v(1, 3) = 50, v(2, 3) = 60,

v(1, 2, 3) = 100.
(b) v(1) = v(2) = v(3) = 0, v(1, 2) = 80, v(1, 3) = 20, v(2, 3) = 30,

v(1, 2, 3) = 100.

19.9 Repeat Exercise 19.8 for the coalitional structure {N}.
19.10 Compute the bargaining set of the game “My Aunt and I” presented in

Exercise 20.21 on page 846 for the coalitional structure {{1, 2}, {3}, {4}, {5}},
where the Players 1 and 2 are my aunt and I, respectively.

19.11 Prove Theorem 19.16 on page 789: in a 0-monotonic three-player game, for the
coalitional structure {N}, the bargaining set coincides with the core if the core is
nonempty, and is a single point if the core is empty.

19.12 Prove that in Definition 19.7 (page 785), the inequality in Condition 4 can be
replaced by a strict inequality. In other words, if at x player k has a justified
objection against player l, then he has a justified objection against player l also if
in the definition of a justified objection the inequalities in Condition 4 are replaced
by strict inequalities. Note that the justified objection may be different, under the
different definitions.

19.13 Give an example in which the bargaining set is empty if strict inequalities are
required in Condition 3 of Definition 19.7 (page 785).

19.14 Let N = {1, 2, 3, 4}. Write down a list of conditions guaranteeing that in the
coalitional structure {N} Player 1 has no justified objection against Player 2.

Comment: The 12 permutations of this list of conditions, along with the require-
ment that the imputation be in X({N}; v), determine the bargaining set relative to
this coalitional structure.

19.15 The gloves game Two sellers go to the market. Each has a left-hand glove. At the
same time, three other sellers come to the market, each of whom has a right-hand
glove. Only pairs of gloves, each pair containing a right-hand glove and a left-hand
glove, can be sold to customers. The net profit from selling one pair of gloves is
$10.

(a) Write down this game’s coalitional function.
(b) Compute the bargaining set of this game relative to the coalitional

structure {N}.
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19.16 Consider the market game (as described in Exercise 16.12 on page 681) in which the
initial endowment of each member of N1 = {1, 2} is (1, 0), the initial endowment
of each member of N2 = {3, 4, 5} is (0, 1

2 ) and for each coalition S,

v(S) = min
{|S ∩ N1|, 1

2 |S ∩ N2|
}
. (19.63)

(a) Prove that (0, 0, 1
2 , 1

2 , 1
2 ) is the only vector in the core of this game relative to

the coalitional structure B = {N}.
(b) Prove that the bargaining set relative to the coalitional structure {N} is{

(α, α, β, β, β) : 0 ≤ α ≤ 3
4 , β = 1

2 − 2
3α

}
. (19.64)

(c) Explain why points in the bargaining set that are not in the core may be more
reasonable than points in the core, in this example.

19.17 Compute the core and the bargaining set relative to the coalitional structure {N}
in a game similar to the market game of Exercise 19.16, but where the initial
endowment of the members of N2 is (0, 1). What is the relationship between the
results obtained for market games in this exercise and Exercise 19.16, and the
results obtained for the gloves game in Exercise 19.15.

19.18 Find a game (N ; v), a coalitional structure, and an imputation x such that: (a)
1 x 3, (b) 1 ∼x 2, and (c) 2 ∼x 3, where the notation k ∼x l means that the
players k and l are members of the same coalition in the coalitional structure, and
neither of them has a justified objection against the other.

19.19 In the weighted majority game [3; 1, 1, 1, 1, 1, 0] with six players, Player 6 is a
null player. Prove that despite this, the vector ( 1

7 ,
1
7 , 1

7 ,
1
7 , 1

7 , 2
7 ) is in the bargaining

set relative to the coalitional structure {N}. What is the intuitive explanation for
the fact that a null player can obtain a positive payoff in the bargaining set?

19.20 A simple coalitional game (N ; v) is called a veto control game if there is a player i

such that v(S) = 0 for every coalition that does not contain i. Prove that given a
monotonic, veto control game, the core relative to the coalitional structure {N}
coincides with the bargaining set relative to the same coalitional structure (see also
Exercise 17.12 on page 737).

19.21 Prove Theorem 19.17 (page 790): in a coalitional game, for every coalitional
structure, the bargaining set is a finite union of polytopes.

19.22 The statement of Theorem 19.28 is formulated for the coalitional structure
B = {N}. Where was this used in the proof of the theorem?



20 The nucleolus

Chapter summary
This chapter is devoted to the study of the nucleolus, which is, like the Shapley value,
a single-point solution concept for coalitional games. The notion that underlies the
nucleolus is that of excess: the excess of a coalition at a vector x in RN is the difference
between the worth of the coalition and the total amount that the members of the
coalition receive according to x. When the excess is positive, the members of the
coalition are not content with the total amount that they together receive at x, which is
less than the worth of the coalition. Each vector x in RN corresponds to a vector of 2N

excesses of all coalitions. The nucleolus of a coalitional game relative to a set of vectors
in RN consists of the vectors in that set whose vector of excesses are minimal in the
lexicographic order. It is proved that the nucleolus relative to any compact set is
nonempty and if the set is also convex, then the nucleolus relative to that set consists of
a single vector.

The nucleolus of the game is the nucleolus relative to the set of imputations, that is,
the set of efficient and individually rational vectors. The prenucleolus of a coalitional
game is its nucleolus relative to the set of preimputations, that is, the set of all efficient
vectors. Both the nucleolus and the prenucleolus are defined for any coalition structure.

The prenucleolus of a coalitional game is characterized in Section 20.5 in terms of
balanced collections of coalitions. This characterization is used to prove that the
prenucleolus is a consistent solution concept; that is, it satisfies the Davis–Maschler
reduced game property. In Section 20.7 we show that for a weighted majority game, the
nucleolus is the unique representation of the game that satisfies some desirable
properties.

In Section 20.8 the nucleolus is applied to bankruptcy problems. The Babylonian
Talmud (a Jewish text that records rabbinic discussions held between the second and fifth
centuries AD) presents a solution concept for bankruptcy problems suggested by Rabbi
Nathan. We prove that for each bankruptcy problem one can define a coalitional game
whose nucleolus coincides with the Rabbi Nathan solution of the bankruptcy problem.

In this chapter we present the nucleolus, a solution concept for coalitional games that, like
the Shapley value, is a single-valued solution that exists for every coalitional game. The
nucleolus was first defined in Schmeidler [1969]. We consider coalitional games (N ; v)
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with a set of players N = {1, 2, . . . , n}. As before, for every vector x ∈ RN we denote{
x(S) := ∑

i∈S xi, ∅ ⊂ S ⊆ N,

x(∅) := 0.
(20.1)

20.1 Definition of the nucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Definition 20.1 For every vector x ∈ RN , and every coalition S ⊆ N ,

e(S, x) := v(S) − x(S) (20.2)

is called the excess of coalition S at x.

When xi is a payoff to player i, the excess e(S, x) measures how dissatisfied the members
of S are with the vector x. If the excess is positive, the members of S are not satisfied with
x, because they could band together to form S, obtain v(S), and then divide that sum in
such a way that each member of S receives more than he receives under x. The smaller
the excess, the less the members of S are dissatisfied. When the excess is negative, the
members of S, as a coalition, are satisfied with x, and the more negative the excess is, the
more satisfied they are, because collectively they are receiving at x more than they could
receive working together as a coalition.

Recall that the set of imputations of the coalitional game (N ; v) is the set X(N ; v)
defined by

X(N ; v) := {x ∈ RN : x(N) = v(N), xi ≥ v(i) ∀i ∈ N}. (20.3)

This is the set of vectors that are efficient, that is, satisfy x(N) = v(N), and individually
rational, that is, satisfy xi ≥ v(i) for every player i ∈ N . The core is the set of imputations
satisfying in addition coalitional rationality, that is, x(S) ≥ v(S) for every coalition S ⊆
N . This can be expressed using the notion of excess, as follows:

C(N ; v) = {x ∈ RN : x(N) = v(N), e(S, x) ≤ 0 ∀S ⊆ N}. (20.4)

When the core is empty, then given any imputation, there will be at least one coalition with
positive excess. In that case, we may wish to minimize the excesses as much as possible.
The nucleolus proposes a way of achieving this end. We proceed to define it.

Given a vector x ∈ RN , we compute the excess of all the coalitions at x, and we write
them in decreasing order from left to right,

θ(x) = (e(S1, x), e(S2, x), . . . , e(S2n , x)), (20.5)

where {S1, S2, . . . , S2n} are all the coalitions, indexed such that

e(S1, x) ≥ e(S2, x) ≥ . . . ≥ e(S2n , x). (20.6)

Two elements in this sequence are e(∅, x) and e(N, x). By definition v(∅) = 0 for every
coalitional game (N ; v), and x(∅) = 0 for every x ∈ RN . It follows that e(∅, x) = 0 for
every coalitional game (N ; v) and every vector x ∈ RN . Also, e(N, x) = 0 for every
efficient vector x ∈ RN .
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Note that this indexing of the coalitions is determined only up to equality of excesses.
If for example e(Sk, x) = e(Sl, x), then swapping Sk and Sl will not change the vector
θ(x). When passing to another vector θ(y), a different letter must be used to denote the
coalitions,

θ(y) = (e(R1, y), e(R2, y), . . . , e(R2n , y)), (20.7)

where the coalitions (Rk)2n

k=1 are ordered in decreasing excess order, and the ordering
is a permutation of the previous ordering. To avoid relabeling the coalitions every time
we consider a different imputation, denote the k-th coordinate of θ(x) by θk(x), without
writing explicitly the corresponding coalition at the k-th coordinate, and write the vector
θ(x) as

θ(x) = (θ1(x), θ2(x), . . . , θ2n(x)), (20.8)

where

θ1(x) ≥ θ2(x) ≥ . . . ≥ θ2n (x). (20.9)

We have thus defined 2n functions θk : RN → R for k ∈ {1, 2, . . . , 2n}, where θk(x) is the
k-th coordinate of θ(x). Note that there may be cases in which θ(x) = θ(y), even though
x �= y (explain why).

To minimize the excesses we compare any two vectors θ(x) and θ(y) lexicographically.

Definition 20.2 Let a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) be two vectors in Rd .
Then a �L b if either a = b, or there exists an integer k, 1 ≤ k ≤ d, such that ak > bk ,
and ai = bi for every 1 ≤ i < k. This order relation is termed the lexicographic order.

As usual, the strong order L derived from �L is a L b if a �L b and b ��L a. It follows
that a L b if a �= b and the first coordinate at which a differs from b is greater in a than
in b. Moreover, a ≈L b if and only if a = b.

The lexicographic relation is reflexive, transitive, and complete, but not continuous
(Exercise 20.4): there exists a sequence (an)n∈N of vectors in Rd converging to a (in the
Euclidean metric) and a vector b such that an ≺L b for all n ∈ N, but a L b.

Example 20.3 The gloves game (see Example 17.5, page 690) Consider the following three-player coali-

tional game, with the coalitional function given by

v(1) = v(2) = v(3) = v(1, 2) = 0, v(1, 3) = v(2, 3) = v(1, 2, 3) = 1. (20.10)

Computing the excesses with respect to the vectors x = ( 1
3 , 1

3 , 1
3 ), y = (0, 0, 1), z = ( 1

6 , 1
3 , 1

2 ), and
w = (− 1

3 , 1
3 , 1) yields the table shown in Figure 20.1



804 The nucleolus

S e(S, x ) e(S, y) e(S, z ) e(S, w)
� 0 0 0 0

{1} − 1
3 0 − 1

6
1
3

{2} − 1
3 0 − 1

3 − 1
3

{3} − 1
3 − 1 − 1

2 − 1

{1, 2} − 2
3 0 − 1

2 0
{1, 3} 1

3 0 1
3

1
3

{2, 3} 1
3 0 1

6 − 1
3

{1, 2, 3} 0 0 0 0

Figure 20.1 The excesses of all coalitions at x, y, z, and w

Writing the excesses in decreasing order gives

θ (x) = (
1
3 , 1

3 , 0, 0,− 1
3 ,− 1

3 ,− 1
3 ,− 2

3

)
, (20.11)

θ (y) = (0, 0, 0, 0, 0, 0, 0,−1) , (20.12)

θ (z) = (
1
3 , 1

6 , 0, 0,− 1
6 ,− 1

3 ,− 1
2 ,− 1

2

)
, (20.13)

θ (w) = (
1
3 , 1

3 , 0, 0, 0,− 1
3 ,− 1

3 ,−1
)
. (20.14)

Therefore,

θ (y) ≺L θ (z) ≺L θ (x) ≺L θ (w). (20.15)

It can be proved that the vector y satisfies θ (y) ≺L θ (u) for every imputation u ∈ X(N ; v)
(Exercise 20.7). �

Definition 20.4 Let (N ; v) be a coalitional game and let K ⊆ RN . The nucleolus of the
game (N ; v) relative to K is the set

N (N ; v; K) := {x ∈ K : θ(x) �L θ(y), ∀y ∈ K}. (20.16)

The nucleolus emerges as the solution that an arbitrator would recommend for dividing
the quantity v(N ) among the players if he uses the following procedure: he first seeks
the imputations x such that θ1(x) is minimal; since θ1(x) measures the magnitude of the
maximal complaint against x, the arbitrator wishes to minimize it. After accomplishing
this, from among the vectors minimizing the maximal complaint, the arbitrator turns to
seeking those vectors that minimize the second-highest complaint, θ2(x), and so on.

If the set K is not compact, there may not be a vector x in K that is minimal in the
lexicographic order, and therefore the nucleolus may be empty (Exercise 20.8). We will
later prove the converse direction; if K is compact, the nucleolus relative to K is not
empty (Corollary 20.10). In this section we study the nucleolus relative to some sets K

that are not necessarily compact, such as closed sets that may not be bounded. The first
set we will consider is the set of imputations X(N ; v), defined in Equation (20.3). If we
drop the requirement of individual rationality in Equation (20.3), we get the set X0(N ; v)
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of preimputations:

X0(N ; v) := {x ∈ RN : x(N) = v(N)}. (20.17)

This is an unbounded set that contains the set of imputations: X(N ; v) ⊂ X0(N ; v). We
can similarly define the sets of imputations and preimputations for any coalitional
structure B:

X(B; v) := {x ∈ RN : x(B) = v(B) ∀B ∈ B, xi ≥ v(i) ∀i ∈ N}, (20.18)

X0(B; v) := {x ∈ RN : x(B) = v(B) ∀B ∈ B}. (20.19)

Remark 20.5 Note that every vector x in either X(B; v) or X0(B; v) satisfies x(N) =∑
B∈B v(B): the sum of the coordinates is the same for all vectors in both sets. �

Definition 20.6 The nucleolus of a coalitional game (N ; v) is the nucleolus relative
to the set of imputations X(N ; v), that is, N (N ; v; X(N ; v)). The prenucleolus of a
game is the nucleolus relative to the set of preimputations X0(N ; v); i.e., it is the set
N (N ; v; X0(N ; v)). For every coalitional structure B, the nucleolus for B is the nucleolus
relative to the set of imputations X(B; v), i.e., N (N ; v; X(B; v)), and the prenucleolus for
B is the nucleolus relative to the set of preimputations X0(B; v), i.e., N (N ; v; X0(B; v)).

For the sake of simplifying the notation, we will henceforth write N (N ; v) in place
of N (N ; v; X(N ; v)), and call that the nucleolus of the game (N ; v). Similarly, we will
write PN (N ; v) in place of N (N ; v; X0(N ; v)) and call that the prenucleolus of the game
(N ; v). For every coalitional structure B, we will write N (N ; v;B) and PN (N ; v;B) in
place of N (N ; v; X(B; v)) and N (N ; v; X0(B; v)), and call them the nucleolus and the
prenucleolus, respectively, of the game (N ; v) for the coalitional structure B.

20.2 Nonemptiness and uniqueness of the nucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We start by showing that if the set K is compact, then the nucleolus is nonempty. To this
end we express θk(x) as the maximum of the minimum of the excesses.

Theorem 20.7 For every k, 1 ≤ k ≤ 2n,

θk(x) = max
different S1,...,Sk

min{e(S1, x), . . . , e(Sk, x)}. (20.20)

For k = 1, Equation (20.20) takes the following form,

θ1(x) = max
S⊆N

e(S, x), (20.21)

which is an expression of the fact that θ1(x) is the maximal excess at x. The interpre-
tation of the right-hand side of Equation (20.20) is that for every k different coalitions
S1, S2, . . . , Sk , we compute the minimum among all their excesses at x. This yields a list
of

(2n

k

)
numbers. The maximum among these numbers is θk(x) (the k-th element of θ(x)).

We will prove the theorem for the special case of k = 2. For k > 2 the proof is left to
the reader (Exercise 20.11).
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Proof: For k = 2, the statement of the theorem can be formulated more generally.
Let A be a finite set of real numbers. Then the second greatest element1 in A is
max{x,y∈A,x �=y} min{x, y}.

To see this, denote the elements of A as a1, a2, . . . , aK , and assume without loss of
generality that

a1 ≥ a2 ≥ a3 ≥ · · · ≥ aK. (20.22)

The second greatest element in A is a2. We will show that max{x,y∈A,x �=y} min{x, y} =
a2. Note that min{ai, aj } ≤ a2 for every pair of distinct elements ai, aj ∈ A, with equality
if and only if {ai, aj } = {a1, a2}. Thus, max{x,y∈A,x �=y} min{x, y} = a2, as claimed. �

Corollary 20.8 For every k = 1, 2, . . . , 2n, the function θk is continuous.

Proof: For every coalition S ⊆ N the function e(S, x) = v(S) − x(S) is linear in x,
and therefore in particular it is a continuous function. Since the minimum of a finite
number of continuous functions is a continuous function, we deduce that the function
x #→ min{e(S1, x), . . . , e(Sk, x)} is continuous for every set of k coalitions {S1, . . . , Sk}.
Since the maximum of a finite number of continuous functions is also a continuous
function, by Equation (20.20) θk is a continuous function. �

Theorem 20.9 For every coalitional game (N ; v) and any nonempty and compact set
K ⊆ RN , the nucleolus of the game (N ; v) relative to K is a nonempty compact set.

Proof: Since θ1 is a continuous function, the set

X1 :=
{
x ∈ K : θ1(x) = min

y∈K
θ1(y)

}
(20.23)

is compact and nonempty (Exercise 20.3). Define Xk for 2 ≤ k ≤ 2n inductively by

Xk :=
{
x ∈ Xk−1 : θk(x) = min

y∈Xk−1

θk(y)

}
. (20.24)

We prove by induction over k that the sets (Xk)2n

k=2 are compact and nonempty. Suppose
that the set Xk−1 is compact and nonempty. Since θk is a continuous function, by applying
the inductive hypothesis, we deduce that the set Xk is also compact and nonempty. To
conclude the proof, note that X2n is the nucleolus of the game. �

The set X(B; v) of imputations for the coalitional structureB is compact. It is nonempty
if v(B) ≥ ∑

i∈B v(i) for every coalition B ∈ B. We therefore have the following corollary.

Corollary 20.10 The nucleolus N (N ; v;B) of a coalitional game (N ; v) for any coali-
tional structure B is a compact set. If v(B) ≥ ∑

i∈B v(i) for every coalition B ∈ B, then
N (N ; v;B) is also nonempty.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Here we mean the weakly second-greatest element, i.e., when arranging the elements in decreasing order. It may
happen that the greatest element is equal to the second-greatest element.
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Theorem 20.11 Let (N ; v) be a coalitional game, and let K ⊆ RN be a nonempty closed
set satisfying the following property: there exists a real number c such that∑

i∈N

xi = c, ∀x ∈ K. (20.25)

Then N (N ; v; K) is a nonempty compact set.

A set K satisfying the property described by Equation (20.25) may not be bounded,
and therefore may not be compact. In particular, Equation (20.25) holds for the closed set
X0(B; v) of preimputations for any coalitional structure B (Remark 20.5), and we deduce
the following corollary.

Corollary 20.12 The prenucleolus of a coalitional game, for any coalitional structure, is
a nonempty compact set.

Proof of Theorem 20.11: The outline of the proof proceeds as follows. We will choose
a point y ∈ K , and use it to define a compact set K̃ that is contained in K , contains
y, and satisfies θ(y) ≺L θ(z) for every z ∈ K \ K̃ . Since K̃ is nonempty and compact,
the nucleolus relative to K̃ is a nonempty and compact set (Theorem 20.9). Since for
every x in the nucleolus relative to K̃ , the vector θ(x) is less than or equal to θ(y) in the
lexicographic order, which is less than θ(z), for all z ∈ K \ K̃ , it follows that the nucleolus
relative to K̃ equals the nucleolus relative to K , and therefore the latter is also nonempty
and compact.

We now turn to the construction of the set K̃ . Let y ∈ K , and denote

μ = θ1(y) = max
S⊆N

e(S, y). (20.26)

Define

K̃ =
{
x ∈ K : max

S⊆N
e(S, x) ≤ μ

}
. (20.27)

By definition, K̃ ⊆ K , and y ∈ K̃ , and hence the set K̃ is nonempty. If z ∈ K \ K̃ then
θ1(z) = maxT⊆N e(T , z) > μ = θ1(y), and hence θ(y) ≺L θ(z).

Finally, we show that the set K̃ is compact. Since K̃ is defined by weak linear inequal-
ities, it is a closed set. We will show that K̃ is also bounded. Let x ∈ K̃ . By the definition
of μ, one has e(S, x) ≤ μ for every coalition S ⊆ N . Setting S = {i} yields

μ ≥ e({i}, x) = v(i) − xi, (20.28)

and therefore xi ≥ v(i) − μ for every i ∈ N . On the other hand, since
∑

i∈N xi = c,

xi = c −
∑

{j : j �=i}
xj ≤ c −

∑
{j : j �=i}

(v(j ) − μ) = c + |N − 1|μ −
∑

{j : j �=i}
v(j ). (20.29)

To summarize, the set K̃ is contained in the following product of intervals:

K̃ ⊆ ×
i∈N

⎡⎣v(i) − μ, c + |N − 1|μ −
∑

{j : j �=i}
v(j )

⎤⎦ ; (20.30)

hence K̃ is a bounded set. �
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Theorem 20.13 Let (N ; v) be a coalitional game and let K ⊆ RN be a convex set. Then
N (N ; v; K) contains at most one point.

Proof: Let x and y be two points in the nucleolus. We will prove that x = y. Denote

θ(x) = (e(S1, x), e(S2, x), . . . , e(S2n , x)), (20.31)

θ(y) = (e(R1, y), e(R2, y), . . . , e(R2n , y)), (20.32)

and

θ

(
x + y

2

)
=

(
e

(
T1,

x + y

2

)
, e

(
T2,

x + y

2

)
, . . . , e

(
T2n ,

x + y

2

))
. (20.33)

Since x and y are in the nucleolus, by definition θ(x) ≈L θ(y), and therefore θ(x) = θ(y),
i.e.,

θk(x) = θk(y), 1 ≤ k ≤ 2n. (20.34)

Since K is a convex set, x+y

2 is also in K . For every coalition T ⊆ N

2e

(
T ,

x + y

2

)
= 2v(T ) − (x + y)(T ) = e(T , x) + e(T , y), (20.35)

and therefore

2θ

(
x + y

2

)
= (e(T1, x) + e(T1, y), e(T2, x) + e(T2, y), . . . , e(T2n , x) + e(T2n , y)).

(20.36)

Since S1 maximizes the excess at x we deduce that

e(T1, x) ≤ e(S1, x), (20.37)

and since R1 maximizes the excess at y,

e(T1, y) ≤ e(R1, y). (20.38)

Since e(S1, x) = e(R1, y) (Equation (20.34)), Equations (20.36), (20.37), and (20.38)
imply that

e

(
T1,

x + y

2

)
= e(T1, x) + e(T1, y)

2
≤ e(S1, x). (20.39)

If e(T1,
x+y

2 ) < e(S1, x), then θ( x+y
2 ) ≺L θ(x), contradicting the assumption that x is in

the nucleolus. It follows that e(T1,
x+y

2 ) = e(S1, x), and therefore

e(T1, x) + e(T1, y) = e(S1, x) + e(R1, y). (20.40)

Using Equations (20.37) and (20.38) we deduce that e(T1, x) = e(S1, x) and e(T1, y) =
e(R1, y), and therefore T1 maximizes the excess at x and at y; i.e, by changing the order
of the coalitions, one can write

θ(x) = (e(T1, x), e(S ′
2, x), . . . , e(S ′

2n , x)), (20.41)

and

θ(y) = (e(T1, y), e(R′
2, y), . . . , e(R′

2n , y)), (20.42)
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where T1, S
′
2, . . . , S

′
2n are obtained from S1, S2, . . . , S2n , by swapping S1 with T1. A

similar statement holds for T1, R
′
2, . . . , R

′
2n . Continuing by induction, for every k such

that 1 ≤ k ≤ 2n, we show that e(Tk, x) = e(Sk, x) and e(Tk, y) = e(Rk, y). In other words,

e(T , x) = e(T , y), ∀T ⊆ N. (20.43)

In particular setting T = {i}, we deduce that for every player i ∈ N ,

v(i) − xi = e({i}, x) = e({i}, y) = v(i) − yi, (20.44)

and therefore xi = yi . This means that x = y, which is what we needed to show. �

When K is not a convex set, the nucleolus may contain more than one point
(Exercise 20.14).

Corollary 20.14 For every coalitional structure, the prenucleolus of a coalitional game
(N ; v) for that coalitional structure consists of a single preimputation. If the set of impu-
tations for the coalitional structure is nonempty, then the nucleolus for this coalitional
structure consists of a single imputation as well.

Proof: Since the set X0(B; v) is convex for every coalitional structure B, the claim for
the prenucleolus follows from Corollary 20.12 and Theorem 20.13. Since the set X(B; v)
is convex for every coalitional structure B, the claim for the nucleolus follows from
Corollary 20.10 and Theorem 20.13. �

As the nucleolus contains a single vector if it is not empty, and the prenucleolus
always contains a single vector, we call these two vectors respectively “the nucleolus”
and “the prenucleolus” of the game, and view them as vectors in RN . The i-th coordinates
of these vectors are denoted by Ni(N ; v) and PN i(N ; v) respectively. Similarly, for
every coalitional structure B we call the single vector contained in the nucleolus (if it is
nonempty) and in the prenucleolus for B “the nucleolus for B” and “the prenucleolus for
B,” and we view them as vectors in RN .

The nucleolus and the prenucleolus may not coincide (Exercise 20.15). As the next
theorem states, when the prenucleolus of a game is an imputation, then the nucleolus and
the prenucleolus coincide.

Theorem 20.15 For every coalitional structure B, if the prenucleolus x∗ of a coalitional
game (N ; v) for B is individually rational, i.e., x∗

i ≥ v(i) for all i ∈ N , then x∗ is also the
nucleolus of (N ; v) for B.

Proof: Let x∗ be the prenucleolus of the game (N ; v) forB. Since by assumption this vector
is individually rational, it is in X(B; v). Because every imputation is also in particular a
preimputation, θ(x∗) �L θ(x) for every x ∈ X(N ; v). It follows that the vector x∗ is also
the nucleolus of the game (N ; v) for B. �

20.3 Properties of the nucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We have seen two single-valued solution concepts for coalitional games, the Shapley value
and the nucleolus (or prenucleolus). We will now study what these two solution concepts
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have in common, and what properties distinguish them. This analysis may prove useful in
determining which solution concept is more appropriate for each specific application.

Theorem 20.16 The nucleolus is covariant under strategic equivalence. That is, for every
coalitional game (N ; v), every set K ⊆ RN , every a > 0, and every b ∈ RN ,

N (N ; v; aK + b) = aN (N ; v; K) + b. (20.45)

This theorem, whose proof is left to the reader as an exercise (Exercise 20.17), par-
allels the covariance under strategic equivalence of the Shapley value (Claim 18.18,
page 755).

The next theorem states that for every coalitional structure B, symmetric players who
are members of the same coalition in B receive equal payoffs in the nucleolus and in
the prenucleolus for B. Recall that players i and j are symmetric players if v(S ∪ {i}) =
v(S ∪ {j}) for every coalition S that contains neither player i nor player j . This theorem
parallels the symmetry property of the Shapley value (Claim 18.18, page 755).

Theorem 20.17 Let (N ; v) be a coalitional game and let B be a coalitional structure,
and let i and j be symmetric players who are members of the same coalition in B. Then
Ni(N ; v;B) = Nj (N ; v;B) and PN i(N ; v;B) = PN j (N ; v;B).

Proof: Let i and j be symmetric players in the same coalition in B; i.e., there exists
a coalition B ∈ B such that i, j ∈ B. Denote x∗ = N (N ; v;B), and let y be the vector
obtained from x∗ by swapping the payoffs of players i by j :

yk =
⎧⎨⎩

x∗
i if k = j,

x∗
j if k = i,

x∗
k if k �∈ {i, j}.

(20.46)

Since players i and j are in the same coalition in B, and since x∗ ∈ X(B; v), it follows
that y ∈ X(B; v). We will show that θ(x∗) ≈L θ(y), and therefore y is also minimal in the
lexicographic order. In particular, y is also in the nucleolus. Since the nucleolus (or the
prenucleolus) contains a single vector, it must be that x∗ = y, and in particular x∗

i = x∗
j .

To show that θ(x∗) ≈L θ(y), define a bijection ϕ from the set of coalitions to itself:

ϕ(S) =

⎧⎪⎪⎨⎪⎪⎩
S, if i ∈ S, j ∈ S,

S, if i �∈ S, j �∈ S,

(S \ {i}) ∪ {j}, if i ∈ S, j �∈ S,

(S \ {j}) ∪ {i}, if i �∈ S, j ∈ S.

(20.47)

Since players i and j are symmetric, v(ϕ(S)) = v(S) for every coalition S ⊆ N . The def-
initions of ϕ and y imply that e(S, x∗) = e(ϕ(S), y) for every coalition S ⊆ N . Therefore
the sets of excesses with respect to x∗ and y are equal:

{e(S, x∗) : S ⊆ N} = {e(S, y) : S ⊆ N}. (20.48)

Thus, arranging the collections of excesses at x∗ and at y in decreasing order yields the
same vector, and hence θ(x∗) ≈L θ(y). �

Theorems 20.16 and 20.17 enable one to write explicitly a formula for the nucleolus of
two-player games.
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Theorem 20.18 Let (N ; v) be a two-player coalitional game. If v(1, 2) ≥ v(1) + v(2),
then the nucleolus is(

v(1, 2) + v(1) − v(2)

2
,
v(1, 2) − v(1) + v(2)

2

)
. (20.49)

This imputation is called the standard solution of the game. To prove Theorem 20.18 one
uses the fact that the nucleolus is symmetric and covariant under strategic equivalence.
The condition v(1, 2) ≥ v(1) + v(2) guarantees that the set of imputations X(N ; v) is
nonempty, thereby ensuring that the nucleolus is nonempty. Since the prenucleolus and
the Shapley value are also symmetric solution concepts that are covariant under strategic
equivalence, Equation (20.49) characterizes these two solution concepts in two-player
coalitional games. The condition v(1, 2) ≥ v(1) + v(2) is, however, not needed for their
characterizations, since they are defined for all coalitional games.

Theorem 20.19 Let i ∈ N be a null player in a coalitional game (N ; v). Then under
both the nucleolus and the prenucleolus, player i’s payoff is 0; i.e., Ni(N ; v) =
PN i(N ; v) = 0.

This theorem does not hold for general coalitional structures (Exercise 20.16).

Proof: Let i be a null player in the coalitional game (N ; v). We will first prove the claim
for the nucleolus x∗. Suppose by contradiction that x∗

i �= 0. Since x∗ ∈ X(N ; v), one has
x∗

i ≥ v(i) = 0, and since x∗
i �= 0, it follows that x∗

i > 0. We will show that by transferring
a small amount from player i to all the other players, it is possible to create an imputation
y satisfying θ(y) ≺L θ(x∗), thereby contradicting the assumption that x∗ is the nucleolus.
Since i is a null player, it follows that for every coalition T that does not contain i,

e(T ∪ {i}, x∗) = v(T ∪ {i}) − x∗(T ∪ {i}) (20.50)

= v(T ) − x∗(T ) − x∗
i (20.51)

= e(T , x∗) − x∗
i . (20.52)

Since e(N ; x∗) = 0, Equations (20.50)–(20.52) for T = N \ {i} imply that

θ1(x∗) ≥ e(N \ {i}, x∗) = e(N, x∗) + x∗
i = x∗

i > 0. (20.53)

Let y be the vector derived from x∗ by having player i transfer an amount x∗
i

n
to every

other player:

yj =
{

x∗
i

n
if j = i,

x∗
j + x∗

i

n
if j �= i.

(20.54)

Since x∗ is an imputation, it follows that y is also an imputation (why?). To prove
that θ(y) ≺L θ(x∗) we will show that θ1(y) < θ1(x∗). To this end we will prove that
e(T , y) < θ1(x∗) for every coalition T ⊆ N .

For the coalition T = ∅ we have

e(∅, y) = 0 < θ1(x∗). (20.55)
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For every nonempty coalition T that does not contain player i we have

e(T , y) = e(T , x∗) − |T |
n

x∗
i < e(T , x∗) ≤ θ1(x∗). (20.56)

From Equations (20.50)–(20.52) we deduce that e(T , y) = e(T \ {i}) − x∗
i for every coali-

tion T that contains player i, and, therefore,

e(T , y) = e(T , x∗) + n − |T |
n

x∗
i = e(T \ {i}, x∗) − |T |

n
x∗

i (20.57)

≤ θ1(x∗) − |T |
n

x∗
i < θ1(x∗). (20.58)

We thus proved that θ1(y) = maxT⊆N e(T , y) < θ1(x∗), thereby contradicting the fact that
x∗ is the nucleolus.

Suppose now that x∗ is the prenucleolus, and assume by way of contradiction that
x∗

i �= 0. If x∗
i > 0 we obtain a contradiction as in the case of the nucleolus. Suppose then

that x∗
i < 0. We will prove that in this case as well the vector y defined in Equation

(20.54) satisfies θ(y) ≺L θ(x∗). Since x∗
i < 0, the vector y is derived from x∗ by having

every other player transfer to player i the amount |x∗
i |
n

. Since x∗ is a preimputation, y is a
preimputation as well. Since player i is a null player,

θ1(x∗) ≥ e({i}, x∗
i ) = −x∗

i > 0. (20.59)

For the coalition T = N we have e(N, y) = 0 < θ1(x∗). For every coalition T that does
not contain player i we have |T | < n, and by Equations (20.50)–(20.52), we also have
e(T , x∗) = e(T ∪ {i}, x∗) + x∗

i . Therefore,

e(T , y) = e(T , x∗) − |T |
n

x∗
i = e(T ∪ {i}, x∗) + n − |T |

n
x∗

i < e(T ∪ {i}, x∗) ≤ θ1(x∗).

(20.60)

For every coalition T that contains player i and is not N we have

e(T , y) = e(T , x∗) + n − |T |
n

x∗
i < e(T , x∗) ≤ θ1(x∗). (20.61)

Therefore also in this case θ1(y) = maxT⊆N e(T , y) < θ1(x∗), contradicting the fact that
x∗ is the prenucleolus. �

The Shapley value is the only single-valued solution concept satisfying the properties of
efficiency, symmetry, null player, and additivity. Both the nucleolus and the prenucleolus
satisfy the properties of efficiency, symmetry, and null player. If we show that the Shapley
value differs from the nucleolus and the prenucleolus, then it will follow that the nucleolus
and prenucleolus do not satisfy additivity. Indeed, there are examples of coalitional games
in which the nucleolus and the prenucleolus differ from the Shapley value, such as the
gloves game (Examples 17.5 and 18.24), where the nucleolus and the prenucleolus are
(0, 0, 1), while the Shapley value is ( 1

6 ,
1
6 , 2

3 ).
An important property shared by the nucleolus and the prenucleolus is that both of them

are in the core, if the core is nonempty. This property does not hold for the Shapley value
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(Example 18.24, page 759), another proof that the Shapley value does not coincide with
the nucleolus and the prenucleolus.

Theorem 20.20 If the core of a coalitional game (N ; v) for the coalitional structure B is
nonempty, then the nucleolus for B is in the core, and it coincides with the prenucleolus
for B.

Proof: Let x be an imputation in the core of a coalitional game (N ; v) for the coalitional
structure B, and let x∗ be the prenucleolus for B. Since x is in the core, x(S) ≥ v(S) for
every coalition S, and therefore

e(S, x) = v(S) − x(S) ≤ 0, ∀S ⊆ N. (20.62)

This implies that θ1(x) ≤ 0. Since x∗ is the prenucleolus, θ(x∗) �L θ(x). Hence θ1(x∗) ≤
θ1(x) ≤ 0. By definition, θ1(x∗) = maxS⊆N e(S, x∗), and therefore for every coalition
S ⊆ N we have e(S, x∗) ≤ 0; i.e., x∗(S) ≥ v(S), and therefore x∗ is in the core.

Since x∗ is in the core, x∗
i ≥ v(i), and therefore x∗ ∈ X(N ; v). By Theorem 20.15, x∗

is also the nucleolus. �

As the next theorem shows, the nucleolus is also in the bargaining set (the bargaining
set is studied in Chapter 19).

Theorem 20.21 The nucleolus of a coalitional game (N ; v) for any coalitional structure
B is in the bargaining set for B:

N (N ; v;B) ∈ M(N ; v;B). (20.63)

Proof: If the core is nonempty, then Theorems 20.20 and 19.12 (page 786) imply that

N (N ; v;B) ∈ C(N ; v;B) ⊆ M(N ; v;B). (20.64)

Suppose that the core C(N ; v;B) is empty. Let x∗ = N (N ; v;B) be the nucleolus for
the coalitional structure B. In particular x∗ �∈ C(N ; v;B), and therefore θ1(x∗) > 0
(Exercise 20.26). If x∗ �∈ M(N ; v;B), then there is a player k who has a justified objection
at x∗ against player l, where players k and l are in the same coalition of B.

Since player k has an objection at x∗ against player l, there is a coalition S containing
player k and not player l with positive excess. Since S is a justified objection against
player l, all the coalitions containing player l but not player k have less excess (Theorem
19.14, page 787).

Order the coalitions by decreasing excess at x∗. Denote by a the maximal excess of
the coalitions containing player k and not player l. Denote by b the maximal excess of
the coalitions containing player l and not player k. All the coalitions whose excesses
are greater than a either contain both player k and player l, or contain neither k nor
l (Figure 20.2). Denote δ := min{a − b, x∗

l − v(l)}. As we showed previously, a > b.
Since player k has a justified objection against player l, it must be the case that x∗

l > v(l);
otherwise player l would have a counterobjection using the coalition {l}. We deduce
that δ > 0.
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a

b

θ(x)

Large excess

Small excess

Coalitions that contain both k and l, or neither k nor l

A coalition that contains k and not l appears for the first time

A coalition that contains l and not k appears for the first time

Figure 20.2 The coalitions and ordered excesses at x∗

Define a vector y derived from x∗ by transferring from player l to player k the amount
of δ

2 :

yi =
⎧⎨⎩

x∗
i if i �∈ {l, k},

x∗
i − δ

2 if i = l,

x∗
i + δ

2 if i = k.

(20.65)

We first prove that y is an imputation. Since y(N) = x∗(N) = v(N) it follows that y

is an efficient vector. Since the imputation x∗ is individually rational, yi ≥ x∗
i ≥ v(i) for

every player i �= l. As for player i = l, since by the definition of δ we have x∗
l ≥ v(l) + δ,

yl = x∗
l − δ

2
≥ v(l) + δ

2
> v(l). (20.66)

Hence y is also an individually rational vector, and therefore an imputation.
What is the relationship between θ(x∗) and θ(y)?

� The excess of the coalitions containing both k and l, and of the coalitions that contain
neither player k nor player l, do not change in passing from x∗ to y.

� The excesses of coalitions containing player k but not player l are reduced by δ
2 .

� The excesses of coalitions containing player l but not player k are increased by δ
2 .

The excesses of coalitions whose excess is above a in Figure 20.2 do not change. The
excess of at least one coalition at height a is reduced by a positive amount. The only
coalitions whose excesses can increase are those with excesses b or less. By the definition
of δ, these excesses do not exceed a. We conclude that this transfer has decreased the
vector of the excesses in lexicographic order: θ(y) ≺L θ(x∗). This contradicts the fact that
x∗ is the nucleolus. The contradiction follows from the assumption that x∗ �∈ M(N ; v;B),
and hence the claim that x∗ ∈ M(N ; v;B) is proved. �
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20.4 Computing the nucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we present a procedure for computing the nucleolus N (N ; v) by solving
a sequence of linear programs. The complexity of the algorithm is exponential in the
number n of players, and therefore it is useful only for small games. A brief review of
linear programming appears in Section 23.3 (page 945).

The procedure is based on the conditions an imputation must satisfy to be the nucleolus;
it finds an imputation x whose vector of excesses θ(x) is minimal in the lexicographic
order. In the first step, the procedure finds all the vectors whose maximal excess θ1(x) is
as small as possible. From among these the procedure finds all the vectors whose second-
largest excess is as small as possible, and so on. As the length of the vector of excesses is
finite, the procedure eventually halts and yields an imputation, which is the nucleolus.

Step 1: Minimizing the maximal excess
Solve the following linear program with unknowns x1, x2, . . . , xn, t .

Compute: min t,

subject to: e(S, x) ≤ t, ∀S ⊆ N,

x(N) = v(N),
xi ≥ v(i), ∀i ∈ N.

(20.67)

Denote by θ1 the value of this program, and by X1 the set of vectors at which the minimum
of the excesses is attained:

X1 := {x ∈ X(N ; v) : e(S, x) ≤ θ1, ∀S ⊆ N}. (20.68)

Denote by �1 the set of all coalitions at which the maximal excess θ1 is attained at all
x ∈ X1:

�1 := {S ⊆ N : e(S, x) = θ1, ∀x ∈ X1}. (20.69)

The set �1 is nonempty. To see this, note that by the definition of θ1, we have e(S, x) ≤ θ1

for every x ∈ X1, and for every coalition S. If �1 were empty, then for every coalition
S ⊆ N there would exist a vector xS ∈ X1 satisfying e(S, xS) < θ1. But then the aver-
age y := 1

2n

∑
S⊆N xS would satisfy e(S, y) < θ1 for every coalition S (Exercise 20.32),

contradicting the definition of θ1.

Step 2: Minimizing the second-largest excess
Solve the following linear program with unknowns x1, x2, . . . , xn, t :

Compute: min t,

subject to: e(S, x) = θ1, ∀S ∈ �1,

e(S, x) ≤ t, ∀S �∈ �1,

x(N) = v(N),
xi ≥ v(i), ∀i ∈ N.

(20.70)
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Denote the value of this program by θ2, by X2 the set of all vectors at which the minimum
is attained, and by �2 the set of all coalitions (a) that are not in �1, and (b) at which the
value θ2 is attained for all x ∈ X2. As before, �2 is not empty.

Continue implementing this procedure iteratively in a similar manner to define disjoint
collections of coalitions �3, �4, . . .. Since these collections are disjoint, there exists L > 0
such that �L is nonempty, and the union ∪L

l=1�l contains all the coalitions. The set of
imputations XL contains a single vector, the nucleolus of the game. The reader is asked
to prove that the algorithm indeed calculates the nucleolus in Exercise 20.31.

20.5 Characterizing the prenucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section, we prove a theorem that can be used to check whether a preimputation x is
the prenucleolus of a coalitional game (N ; v) by considering only the vector of excesses
θ(x), without comparing it to θ(y) for y �= x.

Definition 20.22 A system of equalities and inequalities is tight if it has at least one
solution, and at every solution of the system every inequality obtains as an equality.

Example 20.23 The following system of inequalities is tight:

x + y ≤ 7, (20.71)

x + 2y ≥ 7, (20.72)

x ≥ 7, (20.73)

because the only solution of this system is x = 7, y = 0, and in this solution all inequalities hold
as equalities. In contrast, the following system is not tight:

x + y ≤ 7, (20.74)

x + 2y ≥ 7, (20.75)

x ≥ 6, (20.76)

because x = 7, y = 0 is a solution of the system at which the third inequality does not obtain as an
equality. �

The next theorem characterizes balanced collections of coalitions using tight sys-
tems of equations. We first recall the definition of a balanced collection of coalitions
(Definition 17.11, page 693).

Definition 20.24 A collection D of coalitions is balanced if there exist positive numbers
(δS)S∈D satisfying ∑

{S∈D : i∈S}
δS = 1, ∀i ∈ N. (20.77)

The vector (δS)S∈D is called a vector of balancing weights of D.
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Theorem 20.25 A collection D of subsets of N is a balanced collection if and only if the
following system of equations, with |N | unknowns (yi)i∈N , is tight:{

y(N) = 0,

y(S) ≥ 0, ∀S ∈ D.
(20.78)

Example 20.26 Suppose that N = {1, 2, 3}. The system of equations (20.78) corresponding to the balanced

collection D = {{1, 2}, {1, 3}, {2, 3}} is

y1 + y2 + y3 = 0, (20.79)

y1 + y2 ≥ 0, (20.80)

y1 + y3 ≥ 0, (20.81)

y2 + y3 ≥ 0. (20.82)

The only solution of this system is y1 = y2 = y3 = 0 (verify!), in which the inequalities obtain as
equalities, and hence this system is tight.

The system of equations corresponding to the balanced collection D = {{1}, {2, 3}} is

y1 + y2 + y3 = 0, (20.83)

y1 ≥ 0, (20.84)

y2 + y3 ≥ 0. (20.85)

All the solutions of this system are of the form y1 = 0, y3 = −y2 (verify!), in which the inequalities
obtain as equalities, and hence this system is tight as well.

The system of equations corresponding to the collection D = {{1, 2}, {1, 2, 3}} is

y1 + y2 + y3 = 0, (20.86)

y1 + y2 ≥ 0, (20.87)

y1 + y2 + y3 ≥ 0. (20.88)

One solution to this system is y1 = y2 = 1, y3 = −2 (verify!). In this solution not all the inequalities
hold as equalities (since y1 + y2 > 0), and hence the system is not tight. Indeed, the collection D
is not balanced (verify), in accordance with Theorem 20.25. �

We now present the proof of Theorem 20.25, which uses the Duality Theorem from the
theory of linear programming (Theorem 23.46, page 950).

Proof of Theorem 20.25: Suppose first that D is a balanced collection, and that (δS)S∈D
is a vector of balancing weights of D. We will show that the system of equations (20.78)
is tight.

The zero vector (yi = 0 for all i) is a solution of the system of equations (20.78), and
the system therefore has at least one solution. We will show that at every solution y of this
system, all inequalities obtain as equalities. Let y be a vector in RN satisfying the system
of equations (20.78). By Lemma 17.16 (page 696),∑

S∈D
δSy(S) = y(N) = 0. (20.89)
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Since δS > 0 and y(S) ≥ 0 for every coalition S ∈ D, it follows that y(S) = 0 for every
S ∈ D. Thus, the system of equations is tight.

Next, suppose that the system of equations (20.78) is tight. We will show that the
collection D is a balanced collection of coalitions. Consider the following linear program
with unknowns (βS)S∈D, γ, δ:

Compute: ZP := max 0,

subject to:
∑

{S∈D : i∈S} βS + γ − δ = ∑
{S∈D : i∈S}(−1), ∀i ∈ N,

βS ≥ 0, ∀S ∈ D,

γ ≥ 0,

δ ≥ 0.

(20.90)

To construct a vector of balancing weights for D we will use the optimal solution to
program (20.90). Since the objective function is the zero function, showing the existence
of an optimal solution only requires showing that there exists a solution to this linear
program. This is achieved by checking the dual linear program. The dual linear program
is the following program with unknowns (yi)i∈N (verify!):

Compute: ZD := min
∑

S∈D(−y(S)),
subject to: y(S) ≥ 0, ∀S ∈ D,

y(N) ≥ 0,

−y(N) ≥ 0.

(20.91)

Since y = �0 is a solution of the dual linear program (20.91), the set of possible solutions
of that linear program is nonempty. The system of constraints of program (20.91) is system
(20.78). Since system (20.78) is tight, at every solution of the dual linear program the
constraints obtain with equality, and therefore ZD = 0. By the Duality Theorem (Theorem
23.46, page 950) the set of possible solutions of program (20.90) is nonempty (and
ZP = ZD = 0). Let ((βS)S∈D, γ, δ) be a solution of the primal linear program (20.90).
Write the first constraint in this program as∑

{S∈D : i∈S}
(1 + βS) = δ − γ, ∀i ∈ N. (20.92)

Since βS ≥ 0 for every S ∈ D, the left-hand side of this equation is positive (for all i ∈ N),
and therefore the right-hand side is also positive, that is, δ − γ > 0. Define

λS := 1 + βS

δ − γ
, ∀S ∈ D. (20.93)

Then (λS)S∈D is a vector of positive numbers satisfying∑
{S∈D : i∈S}

λS = 1, ∀i ∈ N, (20.94)

which implies that the collection D is balanced with the vector of balancing weights
(λS)S∈D. �

Definition 20.27 Let (N ; v) be a coalitional game, and let x ∈ X0(N ; v) be a preimputa-
tion. For every α ∈ R, denote byD(α, x) the collection of nonempty coalitions S satisfying
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e(S, x) ≥ α:

D(α, x) := {S ⊂ N : S �= ∅, e(S, x) ≥ α} . (20.95)

The collection of coalition D(α, x) is related to the vector θ(x) in the following way.
Denote the different values of the excesses at x by a1, a2, . . . , ap, where a1 > a2 > · · · >

ap . Then,

θ(x) = (a1, a1, . . . , a1, a2, . . . , a2, . . . , ap, . . . , ap). (20.96)

Note that since e(N, x) = e(∅, x) = 0 we necessarily have ap ≤ 0. In this notation,

D(a1, x) ⊂ D(a2, x) ⊂ · · · ⊂ D(ap, x) = {S : S ⊂ N, S �= ∅}, (20.97)

the collection D(a1, x) contains all coalitions with maximal excess at x (that is, with
excess a1), the collection D(a2, x) contains all coalitions whose excess at x is either a1 or
a2, etc. For every α for which this collection is nonempty, this collection is one of the p

collections (D(ak, x))pk=1, since

D(α, x) =
⎧⎨⎩
∅ α > a1,

D(ak, x) ak+1 < α ≤ ak,

{S : S ⊂ N, S �= ∅} α ≤ ap.

(20.98)

Theorem 20.28 If x∗ is the prenucleolus of a coalitional game (N ; v), then for every
α ∈ R such that the collection D(α, x∗) is nonempty, the following system of equations is
tight:

y(N) = 0, (20.99)

y(S) ≥ 0, ∀S ∈ D(α, x∗). (20.100)

Conversely, if for the vector x ∈ X0(N ; v), and for every α ∈ R for which the collection
D(α, x) is nonempty, the following system of equations is tight:

y(N) = 0, (20.101)

y(S) ≥ 0, ∀S ∈ D(α, x), (20.102)

then x is the prenucleolus of the game.

Proof:
Step 1: If x∗ is the prenucleolus, then the system (20.99)–(20.100) is tight, for every α

such that D(α, x∗) �= ∅.
Suppose that x∗ is the prenucleolus, and let α ∈ R satisfy D(α, x∗) �= ∅. To show that
the system (20.99)–(20.100) is tight, define for every ε > 0 and every solution y of the
system (20.99)–(20.100) a vector zε ∈ RN by

zε := x∗ + εy. (20.103)

Since y(N ) = 0,

zε(N ) = x∗(N) + εy(N) = x∗(N) = v(N), (20.104)
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and therefore zε ∈ X0(N ; v). Since limε→0 zε = x∗ it follows that for every coalition S ⊆
N we have limε→0 e(S, zε) = e(S, x∗). If S ∈ D(α, x∗) and T �∈ D(α, x∗), then e(S, x∗) ≥
α > e(T , x∗). It follows that for ε > 0 sufficiently small, e(S, zε) > e(T , zε). Choose ε to
be small enough for the inequality e(S, zε) > e(T , zε) to hold for all S ∈ D(α, x∗) and all
T �∈ D(α, x∗). Since y(S) ≥ 0 for every coalition S ∈ D(α, x∗), the excess of every such
coalition S satisfies

e(S, zε) = v(S) − (x∗(S) + εy(S)) = e(S, x∗) − εy(S) ≤ e(S, x∗). (20.105)

We have therefore shown that for ε > 0 sufficiently small,

e(S, zε) ≤ e(S, x∗), ∀S ∈ D(α, x∗), (20.106)

e(T , zε) < e(S, zε), ∀S ∈ D(α, x∗), T /∈ D(α, x∗). (20.107)

If one of the inequalities in Equation (20.106) were a strict inequality, then θ(zε) ≺L θ(x∗)
would hold, which is impossible since x∗ is the prenucleolus. This leads to the conclusion
that every inequality in (20.106) holds as an equality, and this and Equation (20.105) imply
that y(S) = 0 for every coalition S ∈ D(α, x∗). In particular, the system of equations
(20.99)–(20.100) is tight.

Step 2: If the system of equations (20.101)–(20.102) is tight for every α such thatD(α, x) �=
∅, then x is the prenucleolus.
Let x ∈ X0(N ; v) satisfy the property that the system of equations (20.101)–(20.102) is
tight for every α such that D(α, x) �= ∅. Let x∗ be the prenucleolus. We need to prove that
x = x∗. We will show that θ(x∗) = θ(x), which, by the uniqueness of the prenucleolus,
implies that x = x∗.

Denote the excesses of the coalitions at the preimputation x by a1, a2, . . . , ap, where
a1 > a2 > · · · > ap. In other words,

θ(x) = (a1, a1, . . . , a1, a2, . . . , a2, . . . , ap, . . . , ap). (20.108)

In this notation, D(a1, x) ⊂ D(a2, x) ⊂ · · · ⊂ D(ap, x) = {S ⊂ N, S �= ∅}. Let a0 > a1.
Then D(a0, x) = ∅. We will prove by induction over t that D(at , x) = D(at , x

∗) for
every t = 0, 1, . . . , p, and e(S, x) = e(S, x∗) for every S ∈ D(at , x). Since D(ap, x) =
{S ⊂ N, S �= ∅}, e(∅, x) = 0 = e(∅, x∗), and e(N, x) = 0 = e(N, x∗), this implies that
θ(x) = θ(x∗).

The case t = 0:
D(a0, x) = ∅, because a0 > a1. Since x∗ is the prenucleolus, it follows that for every
coalition S,

e(S, x∗) ≤ θ1(x∗) ≤ θ1(x) = a1 < a0, (20.109)

and therefore D(a0, x
∗) = ∅ = D(a0, x).

The case t ≥ 1:
Assume as the induction hypothesis that D(at−1, x) = D(at−1, x

∗), and that e(S, x) =
e(S, x∗) for every coalition S ∈ D(at−1, x).

Denote by lt−1 the number of coalitions inD(at−1, x), and by l̂t the number of coalitions
S satisfying e(S, x) = at . By the induction hypothesis, the first lt−1 coordinates of θ(x)
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equal the first lt−1 coordinates of θ(x∗), and the next l̂t coordinates in the vector θ(x) equal
at . Since θ(x∗) �L θ(x), it follows that e(S, x∗) ≤ at for every coalition S that is not in
D(at−1, x

∗).
Define y := x∗ − x ∈ RN . Then for every coalition S ⊆ N ,

e(S, x) − e(S, x∗) = (v(S) − x(S)) − (v(S) − x∗(S)) = x∗(S) − x(S) = y(S).

(20.110)

Moreover, since both x∗ and x are preimputations,

y(N ) = x∗(N) − x(N) = v(N) − v(N) = 0. (20.111)

Consider the following system of equations:

y(N) = 0, (20.112)

y(S) ≥ 0, ∀S ∈ D(at , x). (20.113)

This system of equations is the system (20.101)–(20.102) for α = at , and therefore it is
tight. The vector y = x∗ − x is a solution of this system of equations. To see this, note that
by the induction hypothesis, e(S, x) = e(S, x∗) for every coalition S ∈ D(at−1, x), and by
Equation (20.110), y(S) = 0 for every such coalition. As we saw earlier, e(S, x) = at ≥
e(S, x∗) for every S ∈ D(at , x) \D(at−1, x). Finally, y(N) = 0 by Equation (20.111).
Because system (20.112)–(20.113) is tight, y(S) = 0 for every coalition S ∈ D(at , x),
and therefore using Equation (20.110) one has

0 = y(S) = e(S, x) − e(S, x∗), ∀S ∈ D(at , x). (20.114)

This implies that D(at , x) ⊆ D(at , x
∗), and that

θlt−1+1(x∗) = θlt−1+2(x∗) = · · · = θlt−1+̂lt
(x∗) = at . (20.115)

It remains to prove that D(at , x) = D(at , x
∗). Since θlt−1+̂lt+1(x) = at+1, and since

θ(x∗) �L θ(x), we deduce that

θlt−1+̂lt+1(x∗) ≤ θlt−1+̂lt+1(x) = at+1 < at, (20.116)

which implies that the set of coalitions whose excesses at x equal at equals the set
of coalitions whose excesses at x∗ equal at . We conclude that D(at , x) = D(at , x

∗),
completing the proof of the inductive step, and the proof of Theorem 20.28. �

The next theorem is an immediate corollary of Theorems 20.25 and 20.28.

Theorem 20.29 (Kohlberg) A necessary and sufficient condition for x∗ to be the prenu-
cleolus of a coalitional game (N ; v) is for D(α, x) to be a balanced collection for every
α ∈ R for which this collection is nonempty.

With regard to the nucleolus, Kohlberg’s Theorem is more complicated. We present the
theorem here without proof.

Theorem 20.30 Denote by D0 = {{i} : i ∈ N} the collection of all coalitions containing
only one player. A necessary and sufficient condition for x∗ to be the nucleolus of a
coalitional game (N ; v) is that, for every α such that D(α, x∗) is nonempty, the collection
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D(α, x∗) ∪D0 is a weakly balanced collection of coalitions2 with positive coefficients for
the coalitions in D(α, x∗).

The nucleolus and the prenucleolus coincide in a large class of games that includes
most games studied in applications.

Definition 20.31 A coalitional game (N ; v) is 0-monotonic if its 0-normalization is a
monotonic game, or equivalently (Exercise 16.27, page 683), if

v(S ∪ {i}) ≥ v(S) + v(i), ∀S ⊂ N, ∀i �∈ S. (20.117)

Every superadditive game (Definition 16.8, page 671), as well as every convex game
(Definition 17.51, page 717), is a 0-monotonic game.

Theorem 20.32 In 0-monotonic games, the nucleolus and the prenucleolus coincide.

To prove this last theorem, we need the following theorem.

Theorem 20.33 Let i ∈ N be a player, and let D be a balanced collection of coalitions
such that player i is a member of every coalition in D. ThenD contains only one coalition,
namely, D = {N}.
Proof: Let (δD)D∈D be a vector of balancing weights of D. Then

∑
{S∈D : j∈S} δD = 1 for

each player j ∈ N . Since player i is a member of every coalition in D, by setting j = i

we deduce that
∑

S∈D δD = 1. Let j be any player in N . Since all the weights (δD)D∈D
are positive,

1 =
∑

{S∈D : j∈D}
δD ≤

∑
S∈D

δD = 1. (20.118)

It follows that
∑

{S∈D : j∈D} δD = ∑
S∈D δD, and since all the weights are positive, {S ∈

D : j ∈ D} = D; that is, every player j is a member of every coalition in D. Since every
coalition in the collection may appear only once, D = {N}, as claimed. �

Proof of Theorem 20.32: Let (N ; v) be a 0-monotonic game, and let x∗ be its prenucleolus.
We will show that the prenucleolus is individually rational: x∗

i ≥ v(i) for every i ∈ N ,
and it therefore coincides with the nucleolus (Theorem 20.15, page 809).

Suppose by contradiction that there exists a player i for whom x∗
i < v(i). Then for

every S ⊆ N \ {i},
e
(
S ∪ {i} , x∗) = v (S ∪ {i}) − x∗(S ∪ {i}) (20.119)

= v (S ∪ {i}) − x∗(S) − x∗
i (20.120)

≥ v(S) + v(i) − x∗(S) − x∗
i (20.121)

= e(S, x∗) + (v(i) − x∗
i ) (20.122)

> e(S, x∗). (20.123)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Recall that a collection D of coalitions is weakly balanced if there are nonnegative numbers (αS)S∈D such that∑
S∈D αSχS = χN .
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Equation (20.121) holds because the game is 0-monotonic, and Equation (20.123) holds
because by assumption x∗

i < v(i). Thus, player i is a member of every coalition with
maximal excess. Let D be the set of all such coalitions. By Kohlberg’s Theorem (Theorem
20.29), this is a balanced collection, and player i is a member of every coalition in it.
By Theorem 20.33, D = {N}. However, since x∗ is the prenucleolus, it satisfies v(N) =
x∗(N ), and therefore e(N, x∗) = 0. Since D contains the coalitions with maximal excess,
the excesses of all the other coalitions must be strictly less than 0. In particular,

0 > e({i}, x∗) = v(i) − x∗
i , (20.124)

which contradicts the assumption that x∗
i < v(i). This contradiction proves that x∗

i ≥ v(i)
for every player i, which is what we wanted to show. �

20.6 The consistency of the nucleolus
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Chapter 18, we showed that the Shapley value satisfies the property of consistency
with respect to the Hart–Mas-Colell reduced game. In this section, we prove that the
prenucleolus satisfies the property of consistency, with respect to the other notion of
reduced game, the Davis–Maschler reduced game, which we discussed in Chapter 17. We
begin by recalling the definition of a Davis–Maschler reduced game, and the definition of
consistency.

Definition 20.34 Let (N ; v) be a coalitional game, let S be a nonempty coalition, and
let x ∈ RN be a preimputation. The Davis–Maschler reduced game to coalition S at x,
denoted by (S; wx

S), is the coalitional game with the set of players S, and a coalitional
function wx

S defined by

wx
S(R) =

⎧⎨⎩
maxQ⊆Sc (v(R ∪ Q) − x(Q)) ∅ �= R ⊂ S,

x(S) R = S,

0 R = ∅.

(20.125)

Definition 20.35 A solution concept ϕ satisfies the Davis–Maschler reduced game prop-
erty if for every game coalitional (N ; v), for every nonempty coalition S ⊆ N , and for
every vector x ∈ ϕ(N ; v),

(xi)i∈S ∈ ϕ
(
S; wx

S

)
. (20.126)

Theorem 20.36 The prenucleolus satisfies the Davis–Maschler reduced game property.

Proof: Let (N ; v) be a coalitional game, let x∗ be the prenucleolus of the game (N ; v),
and let S be a nonempty coalition. Denote the restriction of x∗ to the coalition S by

x∗
S := (x∗

i )i∈S. (20.127)

These are the coordinates of the members of S in the prenucleolus. For each coalition
R ⊆ S, denote by e(R, x∗; v) the excess of coalition R at x∗ in the game (N ; v), and by
e(R, x∗

S ; wx∗
S ) the excess of this coalition at x∗

S in the reduced game (S; wx∗
S ).
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To check that x∗
S is the prenucleolus of the reduced game (S; wx∗

S ), we must first
ascertain that x∗

S is a preimputation of this game. By the definition of the reduced game
wx∗

S (S) = x∗(S), and therefore x∗
S ∈ X0(S; wx∗

S ).
For every α ∈ R, define

DS
w(α, x∗

S) := {
R ⊂ S : R �= ∅, e

(
R, x∗

S ; wx∗
S

) ≥ α
}
. (20.128)

The collection of coalitions DS
w is the analogue, in the reduced game, to the collection of

coalitions whose excess at x∗ in the original game is greater than or equal to α, which is

Dv(α, x∗) = {R ⊂ N : R �= ∅, e(R, x∗; v) ≥ α}. (20.129)

We now compare DS
w(α, x∗

S) and Dv(α, x∗
S). For every coalition R in DS

w

(
α, x∗

S

)
, R /∈

{∅, S},
e
(
R, x∗

S ; wx∗
S

) = wx∗
S (R) − x∗(R) (20.130)

= max
Q⊆Sc

(v(R ∪ Q) − x∗(Q)) − x∗(R) (20.131)

= e(R ∪ QR, x∗; v). (20.132)

Here, QR ⊆ Sc is the coalition at which the maximum of Equation (20.131) is attained.
Therefore, if DS

w(α, x∗
S) is nonempty, then Dv(α, x∗) is also nonempty, because if R ∈

DS
w(α, x∗

S), then R ∪ QR ∈ Dv(α, x∗).
In the other direction, suppose that T ∈ Dv(α, x∗). Denote R = T ∩ S. Then T =

R ∪ (T \ S). If R is neither the empty set nor the set S, then

e
(
R, x∗

S ; wx∗
S

) = wx∗
S (R) − x∗(R) (20.133)

= max
Q⊆Sc

(
v(R ∪ Q) − x∗(Q)

)− x∗(R) (20.134)

≥ v(R ∪ (T \ S)) − x∗(T \ S) − x∗(R) (20.135)

= e(R ∪ (T \ S), x∗; v) (20.136)

= e(T , x∗; v) ≥ α, (20.137)

where Equation (20.135) holds because Q = T \ S is one of the coalitions in the maxi-
mization in Equation (20.134). In particular, R ∈ DS

w(α, x∗
S). Summarizing what we have

proved so far: for every α ∈ R,

� if R ∈ DS
w(α, x∗

S), there exists a coalition T containing R satisfying T ∈ Dv(α, x∗) and
T ∩ S = R;

� if T ∈ Dv(α, x∗), and if ∅ �= T ∩ S ⊂ S, then T ∩ S ∈ DS
w(α, x∗

S) (and if T ∩ S is empty
or equal to S, then e(T ∩ S, x∗

S ; wx∗
S ) = 0).

By the above, the collection DS
w(α, x∗

S) is derivable from the collection Dv(α, x∗) by
removing players who are not members of S from every coalition. This act of removing
players may leave only the coalition S, or the empty coalition, and in those cases these
coalitions must be removed, because by definition DS

w(α, x∗
S) does not contain these

coalitions. It may happen, of course, that a coalition R emerges several times during this
process. In that case, only one copy of that coalition is included in DS

w(α, x∗
S).

By Kohlberg’s Theorem (Theorem 20.29), since x∗ is the prenucleolus, Dv(α, x∗) is
a balanced collection for every α ∈ R for which the collection Dv(α, x∗) is not empty.
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Removing players who are not in S from the balanced collection Dv(α, x∗) leaves either
an empty collection or a nonempty collection that is also balanced (as follows from
Definition 20.24). It follows that DS

w(α, x∗
S) is a balanced collection, for every α ∈ R, if

it is not empty, and then Kohlberg’s Theorem implies that x∗
S is the prenucleolus of the

reduced game. �

The consistency of the nucleolus is a more complex issue than the consistency of the
prenucleolus. First of all, in a game reduced to a coalition S with respect to the nucleolus,
the set of imputations may be empty, in which case the nucleolus is also empty.

Example 20.37 Consider the three-player simple majority game (N ; v); i.e, N = {1, 2, 3} and the coalitional

function is

v(S) =
{

1 |S| ≥ 2,

0 |S| ≤ 1.
(20.138)

Since every pair of players is symmetric, the nucleolus is x∗ = ( 1
3 , 1

3 , 1
3 ). The Davis–Maschler

reduced game to the coalition S = {1, 2} at the nucleolus x∗ is the game (S; wx∗
S ) where

wx∗
S (1) = wx∗

S (2) = wx∗
S (1, 2) = 2

3 (20.139)

(check that this is true). Since wx∗
S (1) + wx∗

S (2) > wx∗
S (1, 2), the set of imputations X(S; wx∗

S ) is
empty, and the nucleolus of the game (S; wx∗

S ) is therefore empty. �

Example 20.37 shows that the nucleolus does not satisfy the Davis–Maschler reduced
game property over the family of all games. For the reduced game property to be mean-
ingful in this context, we need to restrict our attention to coalitional games (N ; v) that
satisfy X(S; wx∗

S ) �= ∅ for every nonempty coalition S, where x∗ is the nucleolus of the
game.

By Theorem 20.32, in 0-monotonic games the prenucleolus and the nucleolus coincide.
The following theorem states that the nucleolus satisfies the Davis–Maschler reduced
game property over the family of 0-monotonic games that satisfy the condition that for
every nonempty coalition S, the game (S; wx∗

S ) is also 0-monotonic.

Theorem 20.38 Let (N ; v) be a 0-monotonic game, with nucleolus x∗. If for each coalition
S ⊆ N the Davis–Maschler reduced game (S; wx∗

S ) is 0-monotonic, then x∗
S is the nucleolus

of the game (S; wx∗
S ).

Proof: By Theorem 20.32, x∗ is the prenucleolus of the game (N ; v). By Theorem 20.36,
x∗

S is the prenucleolus of the reduced game (S; wx∗
S ). Since this game is 0-monotonic, by

Theorem 20.32 x∗
S is also the nucleolus of the reduced game. �

20.7 Weighted majority games
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we study the nucleolus in a large class of simple games, the class of
weighted majority games, which are pervasive in the study of elections and committee
decision-making. We start by recalling the definition of a simple game.
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Definition 20.39 A coalitional game (N ; v) is a simple game if the worth of every coalition
is 0 or 1; i.e., v(S) ∈ {0, 1} for every coalition S ⊆ N .

Definition 20.40 In a simple game (N ; v):

� A coalition S is a winning coalition if v(S) = 1.
� A coalition S is a losing coalition if v(S) = 0.
� A coalition S is a minimal winning coalition if it is a winning coalition, and every one

of its proper subcoalitions is a losing coalition.

A simple game is monotonic if v(S) = 1 and T ⊇ S implies that v(T ) = 1. When a
game is simple and monotonic, it is determined by the set of its minimal winning coalitions,
which we denote by Wm.

Definition 20.41 A coalitional game (N ; v) is a constant-sum game if it satisfies

v(S) + v(Sc) = v(N), ∀S ⊆ N. (20.140)

In this section, we concentrate on a subclass of the class of simple games: the class of
simple strong games.

Definition 20.42 A simple game (N ; v) is strong if it is monotonic, constant sum, and
satisfies v(N) = 1.

By Equation (20.140), in a simple strong game the complement of a winning coalition is
a losing coalition, and vice versa.

The class of weighted majority games is a proper subclass of the class of simple games.

Definition 20.43 A simple game (N ; v) is a weighted majority game if there exist non-
negative numbers q, w1, w2, . . . , wn such that

v(S) = 1 ⇐⇒ w(S) ≥ q, (20.141)

v(S) = 0 ⇐⇒ w(S) < q, (20.142)

where w(S) = ∑
i∈S wi . The quantity q is the quota, and wi is the weight of

player i, for every i ∈ N . We denote the weighted majority game by [q; w], where
w = (w1, w2, . . . , wn), and call [q; w] a representation of the game (N ; v).

By definition, a weighted majority game is simple and monotonic, but not every simple and
monotonic game is a weighted majority game, even if it is constant sum (see the example
of a projective game, Exercise 16.10 on page 680). As mentioned in Chapter 16, weighted
majority games are generally the appropriate type of games to use for modeling elections
or majority decision-making. The players in these models may be political parties, where
the weight of each player is the fraction of the seats in the parliament occupied by that
party. The quota is determined by the specific rules used for adopting a decision. For
example, if a majority of 2

3 is required to pass a decision, then q is 2
3 of the members

of parliament. If only a simple majority is required, then q is the smallest integer that is
greater than half the number of members of parliament.
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By multiplying the quota and all the weights by the same positive constant, we obtain
another representation of the same game; such a multiplication does not affect the coali-
tional function v of the game. A weighted majority game therefore has many possible
representations. The next example shows that a game may also have different representa-
tions that cannot be derived from each other by multiplication by a positive constant.

Example 20.44 Consider the following simple majority game (N ; v) in which N = {1, 2, 3} and the coali-

tional function is given by

v(1) = v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1. (20.143)

This game has many possible representations, such as, for example, [3; 2, 2, 2], [5; 4, 4, 1], and
[6; 3, 4, 5] (check that each of these is indeed a representation of the game). Which of these
representations seems the most “natural”? Since the game is symmetric, one may regard the
representation [3; 2, 2, 2] as the most natural. This representation has the property that the total
weight of the members of every minimal winning coalition is the same (in this case, this total weight
is 4). �

This property of a natural representation can be generalized as follows.

Definition 20.45 A representation [q; w1, w2, . . . , wn] of a weighted majority game
(N ; v) is a homogeneous representation if the sum

∑
i∈S wi is the same for every minimal

winning coalition S ∈ Wm.

In Example 20.44, the representation [3; 2, 2, 2] is homogeneous, while the represen-
tations [5; 4, 4, 1] and [6; 3, 4, 5] are not homogeneous. The representation [4; 2, 2, 2] is
yet another homogeneous representation of the same game.

Not every weighted majority game has a homogeneous representation. For exam-
ple, the game [5; 2, 2, 2, 1, 1, 1] is a game without a homogeneous representation
(Exercise 20.41).

Definition 20.46 A weighted majority game (N ; v) is homogeneous if it has a homoge-
neous representation.

The goal of this section is to prove that in every constant-sum weighted majority
game, the nucleolus is a set of weights for a representation of the game, and in fact that
representation is homogeneous if the game is homogeneous.

Definition 20.47 A representation [q; w] of a weighted majority game (N ; v) is normal-
ized if

∑n
i=1 wi = 1.

If a game has a representation, it has a normalized representation. Normalizing the three
representations of the game in Example 20.44 shows that a game may have several
normalized representations. Note that if [q; w] is a homogeneous representation of a
game, then its normalization is also a homogeneous representation of the same game.
It follows, in particular, that every homogeneous game has a normalized homogeneous
representation. A homogeneous game can have several normalized representations. For
example, for every q ∈ ( 1

3 , 2
3 ], [q; 1

3 ,
1
3 , 1

3 ] is a normalized representation of the coalitional
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game in Example 20.44. As the following example shows, a game may have different
normalized homogeneous representations that differ from each other by their weights.

Example 20.48 Dictator game Let (N ; v) be a simple strong game, and suppose that there is a player i such

that v(i) = 1. Since the game is both monotonic and constant sum,

v(S) = 1 ⇐⇒ i ∈ S. (20.144)

The only minimal winning coalition of the game is {i}: Wm = {{i}}.
The game has several normalized homogeneous representations: for every q ∈ ( 1

2 , 1], every
representation [q; w] satisfying (a) wi = q and (b)

∑
j∈N wj = 1 is a normalized homogeneous

representation of the game. In such a game, all the players in the set N \ {i} are null players. The
only normalized vector of weights in which the weight of each null player is zero is

wj =
{

1 if j = i,

0 if j �= i.
(20.145)

Therefore, all the normalized homogeneous representations of the game have the form [q; w], where
q ∈ (0, 1]. The vector of weights w is both the Shapley value and the nucleolus of the game, since
under both solution concepts null players receive 0. This is also the only vector in the core. �

Let [q; w1, w2, . . . , wn] be a constant-sum weighted majority game. If we increase the
quota to min

S∈Wm
w(S), we get another representation of the same game, different from the

original one when q �= min
S∈Wm

w(S) (Exercise 20.43). This is the maximal quota that does

not change the set of winning coalitions. This motivates the following definition.

Definition 20.49 Let (N ; v) be a simple game, and let w ∈ RN be a vector. Define

q(w) := min
S∈Wm

w(S). (20.146)

Note that q(w) depends on the coalitional function v, since v determines the set of minimal
winning coalitions. Since the quota q(w) is determined by the weights, when we say that
w is a representation of the game, we will mean that [q(w); w] is a representation. When
[q(w); w] is a homogeneous representation, then w(S) = q(w) for every minimal winning
coalition S.

Given a simple strong game (N ; v), every imputation x ∈ X(N ; v) defines a weighted
majority game [q(x); x]. As a weighted majority game, this game is simple and monotonic
but not necessarily a constant-sum game (Exercises 20.44 and 20.45). In particular, the
weighted majority game [q(x); x] is not necessarily a representation of the game (N ; v)
with which we started. We would like to know for which imputations the weighted majority
game [q(x); x] is a representation of the original game (N ; v).

Theorem 20.50 Let (N ; v) be a simple strong game, and let x ∈ X(N ; v). Then [q(x); x]
is a representation of (N ; v) if and only if q(x) > 1

2 .

Proof: Since x ∈ X(N ; v), it follows in particular that x(N) = ∑
i∈N xi = v(N) = 1.

Suppose first that [q(x); x] is a representation of (N ; v). In other words, a coalition is a
winning coalition if and only if the total weight of its members is greater than or equal to
q(x). We will show that q(x) > 1

2 . Let S∗ be a minimal winning coalition in which q(x)
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is attained, i.e., x(S∗) = q(x). Since S∗ is a winning coalition, and since a simple strong
game is a constant-sum game, the complementary coalition Sc

∗ is a losing coalition and
hence x(Sc

∗) < q(x). One deduces from this that

q(x) > x(Sc
∗) = 1 − x(S∗) = 1 − q(x), (20.147)

and therefore q(x) > 1
2 , as we wanted to show.

Suppose next that q(x) > 1
2 . We will show that [q(x); x] is a representation of (N ; v).

For this, we need to show that v(S) = 1 if and only if x(S) ≥ q(x). If S is a winning
coalition, then it must contain a minimal winning coalition, and hence x(S) ≥ q(x). On
the other hand, if S is a losing coalition, since the game is constant sum, Sc is a winning
coalition, hence x(Sc) ≥ q(x), and then

x(S) = x(N) − x(Sc) = 1 − x(Sc) ≤ 1 − q(x) < 1
2 < q(x). (20.148)

We proved that if S is a losing coalition, then x(S) < q(x), and therefore if x(S) ≥ q(x)
then v(S) = 1, as required. �

Theorem 20.51 Let (N ; v) be a simple strong game and let x∗ = N (N ; v) be the nucle-
olus of the game. Then q(x∗) ≥ q(x) for all x ∈ X(N ; v).

Proof: Let x ∈ X(N ; v). Since x∗ is the nucleolus, θ1(x∗) ≤ θ1(x), i.e,

max
S⊆N

e(S, x∗) ≤ max
S⊆N

e(S, x). (20.149)

Now,

max
S⊆N

e(S, x) = max

{
max

{S : v(S)=1}
e(S, x), max

{S : v(S)=0}
e(S, x)

}
(20.150)

= max
{S : v(S)=1}

e(S, x) (20.151)

= max
{S : v(S)=1}

(1 − x(S)) (20.152)

= max
S∈Wm

(1 − x(S)) (20.153)

= 1 − min
S∈Wm

x(S) (20.154)

= 1 − q(x). (20.155)

Equation (20.151) holds because max
{S : v(S)=1}

(v(S) − x(S)) ≥ 0 (since N is a winning coali-

tion with excess 0), and on the other hand max
{S : v(S)=0}

e(S, x) ≤ 0 (since for a losing coalition

v(S) = 0 and x(S) ≥ 0, because x ∈ X(N ; v)). Equation (20.153) holds because xi ≥ 0
for all players (since x ∈ X(N ; v)), and therefore maximizing 1 − x(S) over all winning
coalitions is equivalent to maximizing this quantity over all minimal winning coalitions.
By setting x = x∗ in Equations (20.150)–(20.155) we get max

S⊆N
e(S, x∗) = 1 − q(x∗). By

Equation (20.149) we obtain

q(x∗) = 1 − max
S⊆N

e(S, x∗) ≥ 1 − max
S⊆N

e(S, x) = q(x), (20.156)

as claimed. �
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The next theorem states that the nucleolus is a normalized representation of strong
weighted majority games.

Theorem 20.52 Let (N ; v) be a strong weighted majority game, and let x∗ be its nucleolus.
Then [q(x∗); x∗] is a normalized representation of the game (N ; v).

Proof: Let [q; w] be a normalized representation of (N ; v). Then q(w) > 1
2 by Theorem

20.50, and q(x∗) ≥ q(w) by Theorem 20.51; hence q(x∗) > 1
2 . Since x∗(N) = v(N) = 1,

we may again use Theorem 20.50, to conclude that [q(x∗); x∗] is a normalized represen-
tation of the game. �

Theorem 20.53 Let (N ; v) be a homogeneous weighted majority game satisfying v(N) =
1. Then it has a homogeneous representation in which the weight of each null player is 0.

Proof: Let [q; w] be a homogeneous representation of the game. Then q(w) = w(S) for
every minimal winning coalition S. Let D be the set of null players. Define a quota q̂ and
a vector of weights ŵ in which the weight of null players is 0 as follows:

q̂ := q(w), (20.157)

ŵi :=
{

wi i �∈ D,

0 i ∈ D.
(20.158)

We will ascertain that [̂q; ŵ] is a homogeneous representation of the game. To this end, we
will check that ŵ(S) = q̂ for every minimal winning coalition S. Indeed, since a minimal
winning coalition cannot contain a null player, it follows that for every minimal winning
coalition S,

ŵ(S) =
∑
i∈S

wi = q(w) = q̂. (20.159)

�

Theorem 20.54 Let (N ; v) be a homogeneous and constant-sum weighted majority game
satisfying v(N) = 1. Then the nucleolus is the only homogeneous normalized representa-
tion in which the weight of every null player is 0.

Proof: If there is a player i such that v(i) = 1, then i is a dictator (explain why). As we
saw in Example 20.48, the nucleolus in that case is the only normalized representation in
which the weight of every null player is 0. We will therefore consider the case in which
v(i) = 0 for every player i.

Since v(i) = 0 for each player i, and since v(N) = 1, the set of imputations X(N ; v) is
nonempty, and hence, by Corollary 20.14, the nucleolus is a nonempty set that contains a
single vector x∗.

Denote by D the set of all the null players in the game. Since the game is homogeneous,
it has a homogeneous representation. By Theorem 20.53, the game has a homogeneous
representation in which the weight of every null player is 0. Denote that representation
by [q(y); y]. Then y(S) = q(y) for every minimal winning coalition S ∈ Wm. Define a
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polytope P as follows:3

P := {x ∈ Rn : xi ≥ v(i), ∀i ∈ N, x(N) = v(N),

x(S) ≥ q(y) ∀S ∈ Wm, xi = 0 ∀i ∈ D}. (20.160)

The first two conditions in the definition of P guarantee that P is contained in X(N ; v).
Since the game is a weighted majority game, if x ∈ P then x(S) ≥ q(y) for every winning
coalition S ⊆ N . Since y is a homogeneous representation in which the weight of every
null player is 0, y ∈ P , and in particular y ∈ X(N ; v).

We next show that the nucleolus, x∗, is also in P . Since x∗ ∈ X(N ; v), the vector x∗

satisfies the first two conditions in the definition of P . By Theorem 20.52, the nucleolus is
a representation of the game. By Theorem 20.51 one has x∗(S) ≥ q(x∗) ≥ q(y) for every
S ∈ Wm. Finally, since the nucleolus satisfies the null player property (Theorem 20.19,
page 811), x∗

i = 0 for every player i ∈ D, thus proving that indeed x∗ ∈ P .
We will now show that the set P contains only one vector, and that in particular y = x∗.

This will imply that the nucleolus is the unique homogeneous representation in which the
weight of every null player is 0. If the set P contains at least two imputations, then in
particular it has at least two extreme points, and one of them, z, must be distinct from y. This
then implies that some of the inequalities defining P that did not obtain as equalities for
y obtain as equalities for z. Since for y, all inequalities of the form x∗(S) ≥ q(y) obtain
as equalities, at least one of the inequalities xi ≥ v(i) obtains as an equality for z and
as a strict inequality for y. This necessarily occurs for i �∈ D, since yi = 0 = v(i) for
every i ∈ D.

Let j be a player who is not in D, and for whom zj = 0. Since j is not a null player,
there is a coalition S such that v(S) = 0 and v(S ∪ {j}) = 1. Let S0 be a minimal coalition
(with respect to set inclusion) such that this property holds. Then S0 ∪ {j} ∈ Wm (verify
this). Since the coalition S0 is a losing coalition, and since the game is constant sum, the
complementary coalition Sc

0, containing j , is a winning coalition. Hence

q(y) ≤ z
(
Sc

0

) = 1 − z(S0) = 1 − z(S0 ∪ {j}) ≤ 1 − q(y). (20.161)

The first inequality holds because z(T ) ≥ q(y) for every winning coalition T , and Sc
0 is a

winning coalition. The last inequality holds for the same reason, and because S0 ∪ {j} is a
winning coalition. The second equality holds because zj = 0. Equation (20.161) implies
that q(y) ≤ 1

2 , contradicting Theorem 20.50. The contradiction proves that P contains a
single imputation, as we wanted to show. �

20.8 The bankruptcy problem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Many legislators have contended with the issue of the best way to divide the assets of a
bankrupt entity among the creditors, given that the total sum of the debts owed by the
bankrupt entity is greater than the available assets. To date, various bankruptcy rules apply

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 Recall that a polytope in Rn is the convex hull of a finite number of points in Rn.
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in different societies. In the Babylonian Talmud,4 in Chapter Ten of Tractate Kethubot,
the following item appears, attributed to Rabbi Nathan:

If a man who was married to three wives died, and the kethubah5 of one was a maneh,6 of the other
two hundred zuz, and of the third three hundred zuz, and the estate [was worth] only one maneh,
[the sum] is divided equally. If the estate [was worth] two hundred zuz [the claimant] of the maneh
receives fifty zuz [and the claimants respectively] of the two hundred and three hundred zuz [receive
each] three gold denarii.7 If the estate [was worth] three hundred zuz, [the claimant] of the maneh
receives fifty zuz and [the claimant] of the two hundred zuz [receives] a maneh, while [the claimant]
of the three hundred zuz [receives] six gold denarii.

The Talmud’s prescription of division of the estate (in units of zuz) is summarized in
the following table. To simplify the analysis, we will call the first wife Anne, the second
wife Betty, and the third wife Carol.

The Estate

Anne Betty Carol
Debt: 100 200 300

100 33 1
3 33 1

3 33 1
3

200 50 75 75
300 50 100 150

The idea behind this seemingly strange division of the estate appears to be unclear.
When the size of the estate is small, the creditors divide the assets equally among them;
when the size of the estate is large, the creditors divide the assets proportionally to their
claims; and when the size of the estate is intermediate, the division seems inexplicable.

In this section, we relate the above Talmudic bankruptcy division recommendation
to the nucleolus of an appropriate game in coalitional form. We begin by considering
yet another passage from the Babylonian Talmud, appearing in Tractate Baba Metzia,
Chapter 1, Mishnah 1:

Two [persons appearing before a court] hold a garment. One of them says, “I found it,” and the
other says “I found it”; one of them says “it is all mine” and the other says, “it is all mine.” Then
the one shall swear that his share in it is not less than half, and the other shall swear that his share
in it is not less than half, and [the value of the garment] shall then be divided between them. If one
says “it is all mine” and the other says “half of it is mine,” he who says “it is all mine” shall swear
that his share in it is not less than three quarters, and he who says “half of it is mine” shall swear
that his share in it is not less than a quarter. The former then receives three quarters.

In other words, the Talmud here is recommending that if two parties each claim one
hundred percent ownership of an asset, the asset should be divided among them equally.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 The Babylonian Talmud is a Jewish text that records rabbinic discussions on Jewish law, ethics, customs, and philos-
ophy held between the second and fifth centuries AD. The quotations below are taken from The Babylonian Talmud,
translated and edited by Rabbi Dr. Isidore Epstein, Soncino Press, London. Available at: http://www.halakhah.com.

5 The kethubah is the traditional Jewish wedding document, and it specifies promises the groom makes to the bride,
including the amount of money to be given to her in the event of the annulment of the marriage, either by the death
of the husband or divorce.

6 The basic monetary unit in this passage is zuz, which was an ancient Near Eastern silver coin. One maneh is
equivalent to 100 zuz.

7 The denarium (plural denarii) was an ancient Roman coin. One gold denarium was equivalent to 25 zuz. Therefore,
3 gold denarii were equivalent to 75 zuz, and 6 gold denarii were equivalent to 150 zuz.
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If one party claims one hundred percent ownership of an asset, and the other party claims
only fifty percent ownership, then the division should be 3

4 : 1
4 .

The logic behind this Talmudic passage is clear. If both parties have an equal claim to
the asset, by symmetry they should divide it equally. If, in contrast, one party claims all
the asset, and the second party claims only half of the asset, then in effect both parties
agree that at least one half of the asset belongs to the first party, and therefore there can
be no dispute that the first party should get at least half of the asset. With respect to the
second half of the asset, the claimants are symmetric, and therefore that half should be
divided equally.

In the general case, if a person claims that his share in an asset is p, while another
person claims that his share of the same asset is q (where 0 ≤ p ≤ 1, 0 ≤ q ≤ 1 and
p + q > 1), the first person receives, by this reasoning, (1 − q) + p+q−1

2 of the asset, and
the second person8 receives (1 − p) + p+q−1

2 . This solution for two-creditor bankruptcy
problems is called the “contested garment” solution.

20.8.1 The model
Definition 20.55 A bankruptcy problem is given by:

1. a set of players N = {1, 2, . . . , n},
2. for each player i ∈ N , a nonnegative real number di ∈ R+,
3. and a nonnegative real number E ∈ R+ such that E <

∑
i∈N di .

We interpret N to be a set of creditors, E to be the total worth of the assets of a bankrupt
entity, and di to be the amount of money that the bankrupt entity owes creditor i. Under
this interpretation, the condition E <

∑
i∈N di states that the debtor lacks sufficient capital

to repay his debts. If this inequality does not hold, then the debtor can pay all that he owes,
and he cannot justifiably be declared bankrupt. A bankruptcy problem will be denoted by
[E; d1, . . . , dn], or by [E; d] for short, where d = (d1, d2, . . . , dn).

Definition 20.56 An allocation for a bankruptcy problem [E; d1, . . . , dn] is a vector
x ∈ RN

+ satisfying x(N ) = E.

An allocation is thus a suggested way of dividing the assets of the bankrupt entity among
the creditors.

Definition 20.57 A solution concept for bankruptcy problems is a function ϕ associating
every bankruptcy problem [E; d1, . . . , dn] with an allocation.

20.8.2 The case n = 2

The Babylonian Talmud, in its passage on the “contested garment,” suggests a solution for
every two-creditor bankruptcy problem [E; d1, d2]. Suppose, without loss of generality,
that d2 ≥ d1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 There is another passage in the Babylonian Talmud (Tractate Yevamoth, page 38) in which this reasoning is applied.
There, one party claims 50% of an asset, and a second party claims 66 2

3 % of the same asset. The Talmud then

instructs the first party to yield 50% of the asset to the second party, and instructs the second party to yield 33 1
3 %

of the asset to the first party, with the two parties then dividing the remainder equally between them.
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f1 (E ; 50, 100)
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f2 (E ; 50, 100)

Figure 20.3 The functions E #→ f1(E; 50, 100) and E #→ f2(E; 50, 100)

If d1 ≥ E, then each creditor is in effect claiming that the entire asset belongs to him,
and the asset should therefore be divided equally between them. This yields the allocation(

E

2
,
E

2

)
. (20.162)

If d1 ≤ E ≤ d2, then the first creditor agrees that E − d1 of the estate belongs to the
second creditor, with both creditors claiming ownership over the remainder. This yields
the allocation (

d1

2
, E − d1

2

)
. (20.163)

Finally, we analyze the case where d1 ≤ d2 ≤ E (and d1 + d2 > E). In this case, the first
creditor agrees that E − d1 belongs to the second creditor, and the second creditor agrees
that E − d2 belongs to the first creditor. That leaves the remainder under dispute, i.e.,

E − (E − d1) − (E − d2) = d1 + d2 − E, (20.164)

which is then divided equally between the creditors. The resulting allocation is thus(
E + d1 − d2

2
,
E + d2 − d1

2

)
. (20.165)

This discussion can be summarized as follows. Define a function f associating a vector
in R2 to every two-creditor bankruptcy problem [E; d1, d2] as follows:

f (E; d1, d2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
E
2 , E

2

)
if E ≤ d2, d1,(

d1
2 , E − d1

2

)
if d1 ≤ E ≤ d2,(

E − d2
2 , d2

2

)
if d2 ≤ E ≤ d1,(

E+d1−d2
2 , E+d2−d1

2

)
if d2, d1 ≤ E.

(20.166)

The Babylonian Talmud, in Tractate Baba Metzia, states that if the debt owed to the two
creditors is d1 and d2 respectively, and the assets of the bankrupt entity sum to E, the
first creditor receives f1(E; d1, d2), and the second creditor receives f2(E; d1, d2). Note
that f1(E; d1, d2) + f2(E; d1, d2) = E for every d1 and d2. The function f is continuous
in E, d1, d2. Moreover, for fixed d1 and d2 the functions E #→ f1(E; d1, d2) and E #→
f2(E; d1, d2) are monotonic and nondecreasing (see the example in Figure 20.3).
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d1 / 2

d2 / 2

d2 / 2

Figure 20.4 A physical manifestation of the “contested garment” solution

Figure 20.4 depicts an implementation of the function f using “communicating vessels”
composed of containers and pipes. The claims of the creditors (i.e., the debts owned by
the bankrupt entity) are depicted by containers of unit base area, where the claim of di is
represented by two containers of height di

2 , one “on the ground,” and the other “hanging
from the ceiling”; the two containers are connected by a dimensionless pipe, with the two
containers touching the ground also connected by a dimensionless pipe.

To compute f1(E; d1, d2) and f2(E; d1, d2), we let a volume of liquid equal to E flow
into the system. By the communicating vessels law, the height of the liquid on both sides
of the system must be equal. The volume of liquid on the left side represents the payment
given to the first creditor, and the volume of liquid on the right side represents the payment
given to the second creditor. When the volume of liquid flowing is at most d1, the amount
of liquid is divided equally between the two sides. After a volume of d1 has entered the
system, every additional volume of liquid flowing in, up to the amount d2 − d1, will be
added only to the right side. After a volume of d2 has entered the system, every additional
volume of liquid flowing in will be divided equally between the two sides of the system.

20.8.3 The case n > 2

When there are more than two creditors, we will find a solution concept based on the
“contested garment” solution, using the principle of consistency. This principle relates
to the following situation. Suppose that n creditors, faced with a bankruptcy problem
[E; d1, . . . , dn], divide the estate between them using the solution concept ϕ. Creditor i

and creditor j can now unite their shares ϕi(E; d1, . . . , dn) + ϕj (E; d1, . . . , dn), and divide
this sum between them using the “contested garment” solution. A solution concept ϕ is
consistent with the “contested garment” solution if for every two creditors i and j , after
uniting their shares and applying the “contested garment” solution to the two-creditor
problem that involves the two of them, they end up with the same shares allocated to them
originally, namely, ϕi(E; d1, . . . , dn) and ϕj (E; d1, . . . , dn).

Consider the example of the three widows mentioned in the Babylonian Talmud’s
Tractate Kethubot. When the estate is 200, Anne, Betty, and Carol receive 50, 75, and 75
respectively. Together, Anne and Betty receive 125. If they divide this sum between them
according to the “contested garment” solution (Equation (20.166)), then Anne gets

f1(125; 100, 200) = 50, (20.167)
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Figure 20.5 A physical implementation of the consistent solution

and Betty gets

f2(125; 100, 200) = 75. (20.168)

These sums are identical to the sums that the women receive according to the Talmud. If
Betty and Carol were to divide the 150 that they have together received according to the
“contested garment” solution Betty gets

f1(150; 200, 300) = 75, (20.169)

and Carol gets

f2(150; 200, 300) = 75. (20.170)

A similar result is obtained if we change the value of the estate to 300 or decrease it to
100. We therefore see that the Talmud’s recommended division of the estate of the man
with three wives is consistent with the “contested garment” solution.

We are now ready to give a formal definition of the principle of consistency with the
“contested garment” solution.

Definition 20.58 A solution concept ϕ is consistent with the “contested garment” solution
if for every bankruptcy problem [E; d1, . . . , dn] and every two creditors i and j , i �= j ,

f1(x; di, dj ) = ϕi(E; d1, . . . , dn), (20.171)

where x = ϕi(E; d1, . . . , dn) + ϕj (E; d1, . . . , dn).

Theorem 20.59 There exists a unique solution concept that is consistent with the “con-
tested garment” solution.

The unique solution concept satisfying Theorem 20.59 is called the Rabbi Nathan
solution.

Proof:

Step 1: There exists at least one solution concept consistent with the “contested garment”
solution.
Suppose, without loss of generality, that d1 ≤ d2 ≤ · · · ≤ dn. We will construct a system
of containers similar to the one constructed in Figure 20.4, with the containers ordered by
increasing size from left to right (see Figure 20.5).
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Pour liquid of volume E into this system of containers. Denote by xi the amount of liquid
in container i (in both its parts), i ∈ {1, 2, . . . , n}. Then x1 + x2 + · · · + xn = E, and this
system therefore defines a solution (x1, x2, . . . , xn) to the bankruptcy problem, which we
will call the “containers solution.” If we restrict ourselves to two of the containers, i and
j , the amount xi + xj is divided between the two containers in accordance with the case
n = 2, which is the physical implementation of the “contested garment” solution. The
containers solution therefore defines a solution concept consistent with the “contested
garment” solution, which is what we needed to show.

Step 2: There is at most one solution concept consistent with the “contested garment”
solution.
Let ϕ be a solution concept to the bankruptcy problem consistent with the “contested
garment” solution. We will show that ϕ coincides with the above-described containers
solution. Let [E; d1, . . . , dn] be a bankruptcy problem, and consider the corresponding
system of containers (see Figure 20.5). Disconnect all horizontal pipes between containers
and pour into container i a volume of liquid equal to ϕi(E; d1, . . . , dn). Since the solution
concept ϕ is consistent with the “contested garment” solution, it follows that for every pair
of containers, the liquid attains the same height. To see this, note that consistency with the
“contested garment” solution implies that for every pair of containers i and j , if we con-
struct a system containing only the containers i and j connected by a horizontal pipe (as in
Figure 20.4), into which we pour liquid of volume ϕi(E; d1, . . . , dn) + ϕj (E; d1, . . . , dn),
the height of the liquid in both containers will be identical, the amount of liquid in container
i being ϕi(E; d1, . . . , dn), and the amount of liquid in container j being ϕj (E; d1, . . . , dn).

It follows that the height of the liquid is the same in all n containers; hence if we open
the horizontal pipes the height of the liquid in the containers will remain the same. After
doing so, we arrive at the system depicted in Figure 20.5. In other words, ϕi(E; d1, . . . , dn)
equals the amount creditor i receives in the containers solution, and therefore ϕ coincides
with the containers solution. In particular, the containers solution is the unique solution
concept that is consistent with the “contested garment” solution. �

Using the physical system described above in the proof of the theorem, and considering
money to be a continuous variable, we can describe the Rabbi Nathan solution to a
bankruptcy problem [E; d] as follows:

� Divide (in a continuous manner) the money equally only among the creditors who have
not yet received half of their claims; a creditor who has already received half of his
claim stops receiving any more money until all creditors receive half of their claims.

� Once each creditor has received half of his claim, we continue to give money (in a
continuous manner) to the creditor with the maximal remaining claim, until there are
two creditors left with maximal remaining claims.

� We continue to give money (in a continuous manner) to the two creditors with the
maximal remaining claims, until there are three creditors left with maximal remaining
claims, and so on.

Exercise 20.53 provides an explicit formula for the Rabbi Nathan solution.
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20.8.4 The nucleolus of a bankruptcy problem
For every nonempty set of creditors S, denote by d(S) := ∑

i∈S di the sum of their claims
according to d, and set d(∅) := 0. For every bankruptcy problem [E; d1, d2, . . . , dn] define
a game (N ; v) where the set of players is the set of creditors, and the coalitional function
is defined as follows:

v(S) := max
{
E − d(Sc), 0

}
, ∀S ⊆ N. (20.172)

The quantity v(S) is the part of E that is not in dispute, i.e, the part of E that remains
to the members of S if every member of Sc = N \ S gets his whole claim. If d(Sc) ≥ E,
then nothing remains for the members of S that is under dispute, and then v(S) = 0. Note
that v(N ) = E and v(∅) = 0.

Example 20.60 The case of two creditors Let [E; d1, d2] be a bankruptcy problem with two creditors. The

game corresponding to this problem is

v(1) = 0, v(2) = 0, v(1, 2) = E if E ≤ d1, d2,

v(1) = E − d2, v(2) = 0, v(1, 2) = E if d2 < E ≤ d1,

v(1) = 0, v(2) = E − d1, v(1, 2) = E if d1 < E ≤ d2,

v(1) = E − d2, v(2) = E − d1, v(1, 2) = E if d1, d2 < E.

(20.173)

The nucleolus of this game (as given in Theorem 20.18, page 811) coincides with the “contested
garment” solution, which we computed in Section 20.8.2 on page 833 (verify!). �

The conclusion of Example 20.60 is summarized in the following theorem.

Theorem 20.61 When n = 2, the “contested garment” solution coincides with the nucle-
olus of the coalitional game (N ; v) defined in Equation (20.172).

The rest of this section is devoted to proving that when the number of creditors is
greater than two, the nucleolus coincides with the Rabbi Nathan solution. The proof is
conducted in several steps. We first prove that the game defined in Equation (20.172) is
0-monotonic (Theorem 20.62). Then we prove that for every imputation x in the game
(N ; v), and for every nonempty coalition T , the game corresponding to the bankruptcy
problem [x(T ); (di)i∈T ] in which the set of creditors is T and the estate is x(T ) is the
Davis–Maschler reduced game of the game (N ; v) (Theorem 20.63). By Theorem 20.38
(page 825), it follows that the nucleolus is a consistent solution concept in the set of
coalitional games corresponding to a bankruptcy problem. Since in two-player games
the nucleolus and the Rabbi Nathan solution coincide, it follows that these two solution
concepts coincide in every coalitional game corresponding to a bankruptcy problem.

Theorem 20.62 For every bankruptcy game [E; d], the coalitional game (N ; v) defined
by Equation (20.172) is 0-monotonic.

Proof: To prove that the game (N ; v) is 0-monotonic, we need to prove that for every
coalition S ⊂ N and every player i �∈ S,

v(S ∪ {i}) ≥ v(S) + v(i). (20.174)
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Transforming into a game

Transforming into a game

Restricted problem to

coalition T with estate x(T)

Reduced game

to coalition T at x

[E; d]

[x(T); (di ) i ∈T ]

(N; v)

(T, w) = (T; wx
T
)

Figure 20.6 The commutative diagram according to Theorem 20.63

By the definition of the coalitional function v, the game (N ; v) is monotonic (verify!). If
v(i) = 0 or v(S) = 0, then by the monotonicity of the game (N ; v) it follows that Equation
(20.174) holds. Suppose therefore that v(i) > 0 and v(S) > 0. In particular,

0 < v(i) = E − d(N \ {i}) < di, (20.175)

where the right-hand side inequality follows from the assumption that d(N) > E, and

0 < v(S) = E − d(N \ {S}). (20.176)

Therefore

v(S ∪ {i}) ≥ E − d((S ∪ {i})c) (20.177)

= E − d(Sc) + di (20.178)

> v(S) + v(i), (20.179)

where Equation (20.177) holds9 by the definition of v, and Equation (20.179) holds by
Equations (20.175) and (20.176). �
Theorem 20.63 Let (N ; v) be the coalitional game corresponding to a bankruptcy prob-
lem [E; (di)i∈N ]. Let x be a vector satisfying x(N) = E and 0 ≤ xi ≤ di for every i ∈ N ,
and let T ⊆ N be a nonempty coalition. Let [x(T ), (di)i∈T ] be the bankruptcy problem
restricted to T with estate x(T ), and let (T ; w) be the corresponding coalitional game.
Then (T ; w) = (T ; wx

T ), where (T ; wx
T ) is the Davis–Maschler reduced game of (N ; v) to

coalition T at x.

The theorem implies that the diagram in Figure 20.6 is commutative.
In words, the same game (T ; w) is derived under both of the following procedures: (a)

converting the bankruptcy problem [E; d] to a game, and then reducing it to the coalition
T at x; (b) restricting the bankruptcy problem to the coalition T , with estate Ê = x(T ),
and then converting that bankruptcy problem to a game.

Proof of Theorem 20.63: We want to prove that wx
T = w holds for the coalition T , i.e.,

wx
T (R) = w(R) for every coalition R ⊆ T .

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 Actually, since 0 < v(S) ≤ v(S ∪ {i}), Equation (20.177) holds with equality.
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N

TT c

R Q

Figure 20.7 A depiction of the equality N \ Q = R ∪ (N \ (R ∪ Q))

Step 1: wx
T (T ) = w(T ) and wx

T (∅) = w(∅).
For every c ∈ R, denote c+ = max{c, 0}, and note that

a+ − b+ ≤ (a − b)+. (20.180)

In this notation, v(S) = max{E − d(Sc), 0} = (E − d(Sc))+ for every coalition S ⊆ N ,
and w(R) = (x(T ) − d(T \ R))+, for every coalition R ⊆ T .

Since (T ; w) is the game corresponding to a reduced bankruptcy problem,

w(T ) = x(T ), w(∅) = 0. (20.181)

The equality w(∅) = 0 holds because xi ≤ di for every i, and therefore w(∅) = (x(T ) −
d(T ))+ = 0. Since (T ; wx

T ) is a Davis–Maschler reduced game to T at x,

wx
T (T ) = x(T ), wx

T (∅) = 0. (20.182)

From Equations (20.181) and (20.182) one obtains

w(T ) = wx
T (T ), w(∅) = wx

T (∅), (20.183)

which is what we wanted to show.

Step 2: wx
T (R) ≤ w(R) for every coalition R ⊂ T .

Let Q be a coalition contained in T c at which the maximum in the definition of wx
T (R) is

attained,

wx
T (R) = v(R ∪ Q) − x(Q) = (E − d(N \ (R ∪ Q)))+ − x(Q). (20.184)

Since R ⊂ T and Q ⊆ T c one has that N \ Q = R ∪ (N \ (R ∪ Q)) (see Figure 20.7).
x(Q) ≥ 0 implies that x(Q) = (x(Q))+, and therefore by Equations (20.184) and

(20.180),

wx
T (R) = (E − d(N \ (R ∪ Q)))+ − x(Q)+ (20.185)

≤ (E − d(N \ (R ∪ Q)) − x(Q))+ (20.186)

= (x(N) − d(N \ (R ∪ Q)) − x(Q))+. (20.187)

Because x(N ) − x(Q) = x(N \ Q) = x(T ) + x(T c \ Q), along with d(N \ (R ∪ Q)) =
d(T \ R) + d(T c \ Q), one has

wx
T (R) ≤ (x(T ) + x(T c \ Q) − d(T \ R) − d(T c \ Q))+. (20.188)
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Since xi ≤ di for every player i, the difference x(T c \ Q) − d(T c \ Q) is nonpositive;
therefore,

wx
T (R) ≤ (x(T ) − d(T \ R))+ = w(R). (20.189)

Step 3: wx
T (R) ≥ w(R) for every coalition R ⊂ T .

Let R ⊂ T be a coalition. By the definition of the reduced game, for Q = N \ T ,

wx
T (R) ≥ v(R ∪ (N \ T )) − x(N \ T ) (20.190)

= (E − d(T \ R))+ − x(N \ T ) (20.191)

= (E − d(T \ R))+ − x(N) + x(T ) (20.192)

= (E − d(T \ R))+ − E + x(T ) (20.193)

≥ E − d(T \ R) − E + x(T ) (20.194)

= x(T ) − d(T \ R). (20.195)

By the definition of the reduced game, for Q = ∅,

wx
T (R) ≥ v(R) = (E − d(N \ R))+ ≥ 0. (20.196)

By Equations (20.195) and (20.196),

wx
T (R) ≥ (x(T ) − d(T \ R))+ = w(R). (20.197)

We deduce that wx
T (R) = w(R) for every coalition R ⊆ T , thus concluding the

proof. �

Theorem 20.64 Let (N ; v) be the coalitional game corresponding to a bankruptcy prob-
lem [E; d], and let x∗ be its nucleolus. Then for every coalition T ⊆ N the Davis–Maschler
reduced game to the coalition T relative to x∗, i.e., the game (T ; wx∗

T ), is 0-monotonic.

Proof: We first show that 0 ≤ x∗
i ≤ di for all i ∈ N . The game (N ; v) is a convex game

(Exercise 20.55), and in particular its core is nonempty (Theorem 17.55, page 719). It
follows that the nucleolus x∗ lies in the core of the game (Theorem 20.20, page 813).
Therefore,

x∗
i ≥ v(i) = (E − d(N \ {i}))+ ≥ 0. (20.198)

Since x∗(N) = E, and since x∗ is in the core, it follows that for every player i,

E − x∗
i = x∗(N \ {i}) ≥ v(N \ {i}) = (E − di)+ ≥ E − di, (20.199)

yielding the conclusion x∗
i ≤ di , as claimed.

By Theorem 20.63 it follows that (T ; wx∗
T ) is the game corresponding to the bankruptcy

problem [x∗(T ); (di)i∈T ] and therefore by Theorem 20.62 this is a 0-monotonic game. �

By Theorem 20.38 (page 825), the previous results deliver the following corollary,
which states that the nucleolus satisfies the reduced game property over the family of
games corresponding to the bankruptcy problem.
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Corollary 20.65 Let (N ; v) be the coalitional game corresponding to the bankruptcy
problem [E; d], let x∗ be its nucleolus, and let T ⊆ N be a nonempty coalition. Then
(x∗)i∈T is the nucleolus of the game (T ; wx∗

T ).

We are ready to formulate and prove the central theorem of this section:

Theorem 20.66 Let [E; d1, d2, . . . , dn] be a bankruptcy problem, and let (N ; v) be the
coalitional game defined by Equation (20.172). Then the Rabbi Nathan solution to the
bankruptcy problem coincides with the nucleolus of the game (N ; v).

Proof: Define a solution concept ϕ to the bankruptcy problem as follows. For every
bankruptcy problem [E; d], ϕ(E; d) is the nucleolus of the game (N ; v) corresponding to
[E; d]. We have to prove that ϕ coincides with the Rabbi Nathan solution.

By Corollary 20.65, for every coalition T = {i, j}where i and j are distinct players, the
nucleolus of the game (T ; wx∗

T ) is (x∗
i , x

∗
j ). By Theorem 20.61, (x∗

i , x
∗
j ) is the “contested

garment” solution of the problem [x(T ); di, dj ]. It follows that the solution concept ϕ

is consistent with the “contested garment” solution. Since the Rabbi Nathan solution
is the only solution concept for the family of bankruptcy problems consistent with the
“contested garment” solution, the nucleolus of the game (N ; v) coincides with the Rabbi
Nathan solution. This concludes the proof of the theorem. �

20.9 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the chapter on the Shapley value, we proved that the Shapley value is the only single-
valued solution concept satisfying the properties of efficiency, symmetry, covariance under
strategic equivalence, and consistency relative to the Hart–Mas-Colell reduced game
(Theorem 18.39, page 771). Sobolev [1975] shows that the same principles characterize
the prenucleolus, if we replace Hart and Mas-Colell’s notion of the reduced game by that
of Davis and Maschler.10 This shows that an arbitrator who is thinking of recommending
the Shapley value or the prenucleolus as a solution concept should first consider both the
Davis–Maschler reduced game and the Hart–Mas-Colell reduced game, and see which
one is more appropriate for the given situation.

For defining the coalitional game corresponding to a bankruptcy problem, it is possible
to consider other coalitional functions than that given in Equation (20.172), as for example

w(S) := E −
∑
i∈Sc

di, ∀S ⊆ N. (20.200)

This coalitional function is appropriate for situations in which the debt must be paid, and
creditors might pay out of their own pocket other creditors who have higher claims. It can
be shown (Exercise 20.56) that in this case, if x is the Shapley value of the game, then
the Hart–Mas-Colell reduced game (S; wx

S) coincides with the game corresponding to the
restricted bankruptcy problem [x(S); (di)i∈S]. Therefore, in such situations, it may be more
appropriate to use the Shapley value. In summary, the system of properties characterizing

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

10 Sobolev used the property of anonymity (independence from changing the names of the players), which is a
stronger assumption than symmetry. Orshan [1993] showed that assuming symmetry is sufficient for the result.
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single-valued solution concepts can be of use in deciding which solution is appropriate in
a given situation.

A solution for the bankruptcy problem is consistent if, after some of the creditors leave
the game, taking with them the amounts allocated to them under the solution, and the rest
of the creditors then contend with the resulting restricted bankruptcy problem where the
amount to be divided is what remains after the other creditors have left, they discover that
the solution to the restricted problem gives each of them exactly what he received under
the original problem.

Definition 20.67 A solution concept for a bankruptcy problem ϕ is consistent if for every
bankruptcy problem [E; d], and every set of creditors T ⊆ N ,

ϕi(E; d) = ϕi(x; (dj )j∈T ), ∀i ∈ T , (20.201)

where x = ∑
j∈T ϕj (E; d).

The Rabbi Nathan solution is consistent (Exercise 20.57), and several other consistent
solutions exist (such as the proportional division solution). Kaminski [2000] proves that
every consistent solution for bankruptcy problems can be described by a system of con-
tainers of various sizes, and that the converse also holds; i.e., every system of containers
defines a consistent solution.

20.10 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The procedure presented in this chapter for computing the nucleolus was suggested by
Bezalel Peleg, and first appeared in Kopelowitz [1967]. The results in Section 20.5 (page
816) are from Kohlberg [1971]. The proof of Theorem 20.25 (page 817) presented here is
from Peleg and Sudhölter [2003].

Weighted majority games were first defined in von Neumann and Morgenstern [1944].
That book also presents an example of a game without a homogeneous representation.
Isbell [1959] posed the question of whether it is possible to choose, among all the repre-
sentations of a weighted majority game, one normalized representation that is, in a certain
sense, the most “natural” representation. Isbell did not formally define the term “natural
representation,” but required the following property that such a representation should sat-
isfy: if a game is homogeneous, then the “natural” representation thus chosen must be
homogeneous. The answer to this question, appearing in Theorem 20.54 (page 830), was
given by Peleg [1968], and extended to a larger class of games by Sudhölter [1996].

The explanation of the Talmudic passages presented in this chapter is based on Aumann
and Maschler [1985]. The implementation of the solution using a system of containers
was first suggested by Kaminski [2000], although the use of systems of containers for
finding equilibria goes back as far as Fisher [1891].

Exercise 20.16 is Example 5.6.3 in Peleg and Sudhölter [2003]. The game “My Aunt
and I,” as presented in Exercise 20.21, first appeared in Davis and Maschler [1965].
That article includes a report on correspondence that Davis and Maschler conducted with
several researchers on the question “how will my aunt and one of my brothers divide the
profit that will accrue to them if they form the coalition {aunt, brother}?” Various answers
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were given to this question. The game was included in an empirical study of twelve games,
with the results of that study appearing in Selten and Schuster [1968]. Exercise 20.28 is
based on Maschler, Peleg, and Shapley [1979].

20.11 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

20.1 Is the function x #→ ∑
S⊆N e(S, x) constant on the set of preimputations X0(N ; v)?

Prove this claim, or show that it is incorrect.

20.2 Prove that the lexicographic relation is transitive.

20.3 Let K ⊆ Rn, and let f : Rn → R be a function. Denote the set of points in K at
which the minimum of f is attained by

argminx∈Kf (x) =
{
y ∈ K : f (y) = min

z∈K
f (z)

}
. (20.202)

Prove that if K is a compact set and f is a continuous function, then the set
argminx∈Kf (x) is compact and nonempty.

20.4 Find a sequence of vectors (xn)∞n=1 in R2 converging to x, and a vector y ∈ R2

such that (a) xn L y for all n ∈ N, but (b) x ≺L y.

20.5 Consider the three-player coalitional game with the following coalitional function:

v(1) = 0, v(2) = 1, v(3) = 4, v(1, 2) = 2, v(1, 3) = 6,

v(2, 3) = −1, v(1, 2, 3) = 5. (20.203)

(a) Compute θ((1, 1, 3)), θ((1, 3, 1)) and θ((3, 1, 1)).
(b) Arrange the three vectors in decreasing lexicographic order.

20.6 Let x, y ∈ X(N ; v) be imputations, and suppose that θ(x) �L θ(y). Denote
z = 1

2x + 1
2y. Is it necessarily true that θ(x) �L θ(z) �L θ(y)? Either prove this

statement, or provide a counterexample.

20.7 (a) Prove that in the gloves game (Example 20.3) the imputation y = (0, 0, 1)
satisfies θ(y) ≺L θ(u) for every u ∈ X(N ; v), u �= y.

(b) Prove that this imputation also satisfies θ(y) ≺L θ(u) for every u ∈ X0(N ; v),
u �= y.

20.8 (a) Find a two-player coalitional game (N ; v), and a bounded set K that is not
closed, such that the nucleolus N (N ; v; K) is the empty set.

(b) Find a two-player coalitional game (N ; v), and a closed and unbounded set K ,
such that the nucleolus N (N ; v; K) is the empty set.

20.9 Let (N ; v) be a coalitional game satisfying the following property: there is an
imputation x ∈ X(N ; v) such that all the excesses at x are nonnegative.

(a) Prove that x is the only imputation in the game, and in particular it is the
nucleolus.
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(b) Is x necessarily also the prenucleolus? Either prove this statement, or provide
a counterexample.

20.10 Player i in a coalitional game (N ; v) is a dummy player if

v(S ∪ {i}) = v(S) + v(i), ∀S ⊆ N \ {i}. (20.204)

Prove that if player i is a dummy player in a game (N ; v) then under both the
nucleolus and the prenucleolus, player i’s payoff is v(i), that is, Ni(N ; v) = v(i)
and PN i(N ; v) = v(i).

20.11 Complete the proof of Theorem 20.7 (page 805): prove that for every k, 2 ≤ k ≤ 2n,

θk(x) = max
different S1,...,Sk

min{e(S1, x), . . . , e(Sk, x)}. (20.205)

20.12 Compute the nucleolus of the three-player coalitional game with the following
coalitional function:

v(1) = v(2) = v(3) = v(2, 3) = 0, v(1, 2) = v(1, 3) = v(1, 2, 3) = 1.

(20.206)

20.13 Compute the prenucleolus of the three-player coalitional game with the following
coalitional function:

v(1) = v(2) = v(3) = v(2, 3) = 0, v(1, 2) = v(1, 3) = v(1, 2, 3) = −1.

(20.207)

20.14 Let (N ; v) be the three-player coalitional game with the following coalitional
function:

v(S) = 0 ⇐⇒ |S| ≤ 1, (20.208)

v(S) = 1 ⇐⇒ |S| ≥ 2. (20.209)

Let K be the triangle in R3 whose vertices are (1, 0, 0), (0, 1, 0), and (0, 0, 1), and
let K0 be its boundary. Compute the nucleolus of the game (N ; v) relative to K

and relative to K0.

20.15 Compute the nucleolus and the prenucleolus of the three-player coalitional game
(N ; v) in which v(1, 2) = 1 and v(S) = 0 for every other coalition S. Does the
nucleolus coincide with the prenucleolus?

20.16 Let (N ; v) be a five-player coalitional game with the following coalitional function:

v(S) =
⎧⎨⎩

1 if S = {1, 2} or S = {1, 2, 5},
2 if S = {3, 4} or S = {3, 4, 5},
0 for any other coalition S.

(20.210)

Answer the following questions:

(a) Are there null players in this game? If so, which players are null players?
(b) Prove that the nucleolus and the prenucleolus for the coalitional structure

B = {{1, 2, 5}, {3}, {4}} are

N (N ; v) = PN (N ; v) = (0, 0, 0, 0, 1). (20.211)
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20.17 Prove that the nucleolus is covariant under strategic equivalence: for every coali-
tional game (N ; v), for every set K ⊆ RN , for every a > 0, and every set b ∈ RN ,

N (N ; av + b; aK + b) = aN (N ; v; K) + b. (20.212)

20.18 Find a two-player coalitional game (N ; v), and a V -shaped set K , i.e., a set that is
the union of two line segments sharing an edge point, such that the nucleolus of
(N ; v) relative to K is the two edge points of K .

20.19 Compute the nucleolus of the weighted majority game [q; 2, 2, 3, 3] for every
quota q > 0.

20.20 Compute the nucleolus of the coalitional game (N ; v) where N = {1, 2, 3, 4} and
the coalitional function v is given by

v(S) =
{

i if S = {i},
0 otherwise.

(20.213)

20.21 My Aunt and I Auntie Betty can complete a certain job together with me or with
any of my three brothers, with the payment for the work being $1,000, but she
must choose one of the four of us. All four of us brothers together (without Auntie
Betty) can also complete the same job.

(a) Describe this situation as a coalitional game.
(b) Compute the nucleolus of the game for the coalitional structure B = {N}.
(c) Compute the nucleolus of the game for the coalitional structure

B = {{Auntie Betty, Me}, {Brother A}, {Brother B}, {Brother C}} . (20.214)

20.22 Define the nucleolus of a cost game (N ; c).

20.23 Compute the core and the nucleolus of the following spanning tree game (see
Section 16.1.7, page 666). v0 is the central point to which Players I, II, and III, who
are physically located at the vertices of a triangle (as depicted in the next figure),
wish to connect. The cost associated with every edge in the figure is one unit.

I

II III

v0

11

1
11

1

1

1

1

20.24 Let (N ; v) be a coalitional game, and let B be a coalitional structure. For every
α > 0, and every imputation x ∈ RN , define

f (x, α) =
2n∑

k=1

αkθk(x). (20.215)
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Prove that for α > 0 sufficiently small, the minimum of the function x #→ f (x, α)
in the set X(B; v) is attained at the nucleolus. Formally, there exists α0 > 0 such
that for every α ∈ (0, α0), the minimum of the function x #→ f (x, α) is attained at
the nucleolus.

20.25 Let K ⊆ RN be a closed set satisfying the following property: there exists a real
number c such that

∑
i∈N xi ≤ c for all x ∈ K . Prove that the nucleolus relative to

K is nonempty.

20.26 Prove that the vector x ∈ X(B; v) is in the core C(N ; v;B) if and only if θ1(x) ≤ 0.

20.27 Prove that if the ε-core Cε(N ; v) is nonempty, then N (N ; v) ⊆ Cε(N ; v). Deduce
that the nucleolus is contained in the minimal core, and that if the core is nonempty,
then the nucleolus is contained in the core. For the definition of Cε(N ; v) and the
minimal core, see Exercise 17.33 on page 740.

20.28 The nucleolus of a three-player coalitional game can be computed as follows.11

First, find the minimal core of the game (see Exercise 17.33 on page 740). The
minimal core is defined by linear inequalities corresponding to the various coali-
tions. The inequality corresponding to the coalition S corresponds to the line HS .
Changing the value of ε then corresponds to parallel displacement of these lines.
In the process of reducing the value of ε, some of the lines HS cannot be displaced
without causing the ε-core to become empty. These lines are then left unmoved in
the process, while other lines are moved as the value of ε is reduced. Every time
a line is encountered such that continuing to move it will cause the ε-core to be
empty, that line is no longer moved. This process is continued until only one point
remains, which is the nucleolus.

For example, in the game in Exercise 17.33 (page 740) the minimal core is on
the line defined by x1 = 1, and the boundary points of the minimal core are located
at (1, 5, 3) and (1, 2, 6). Move the constraints x1 + x3 and x1 + x2 (and x1 and x2)
another unit and a half, until they meet, yielding the nucleolus (1, 31

2 , 4 1
2 ).

(a) Prove that this process indeed finds the nucleolus.
(b) Compute, using this process, the nucleolus in the games in Exercise 17.33

(page 740).

20.29 Suppose that (N ; v) is a coalitional game such that the set of imputations X(N ; v)
is nonempty, and such that the nucleolus x∗ differs from the prenucleolus x̂. Prove
that the nucleolus is located on the boundary of the set X(N ; v).
Hint: Show that if the nucleolus is not on the boundary of X(N ; v), then there
is a point z = αx∗ + (1 − α)̂x ∈ X(N ; v), where α ∈ (0, 1), and use the ideas
presented in the proof of Theorem 20.13 (page 808).

20.30 Prove that the nucleolus is independent of the names given to the players; i.e., if
π : N → N is a permutation of N , and the coalitional games (N ; v) and (N ; w)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

11 The procedure presented here can be generalized to an arbitrary number of players, but the generalization is
beyond the scope of this book.
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satisfy w(S) = v (π(S)) for every S ⊆ N , and if x∗v and x∗w are the nucleoli of
these games, then xw

i = xv
π(i) for every player i ∈ N .

20.31 Prove that the algorithm described in Section 20.4 (page 815) is well defined (i.e.,
show that there exists L for which the sets �1, �2, . . . , �L are nonempty and the
union ∪L

l=1�l contains all the coalitions), and show that XL contains only one
point, which is the nucleolus.
Guidance: show that the nucleolus is contained in each of the sets X1, X2, . . ., XL.

20.32 Let x1, x2, . . . , xL be imputations in the game (N ; v). Suppose that θ1(xl) = θ1(xl′)
for every l, l′ satisfying 1 ≤ l, l′ ≤ L, and denote �1 := {S ⊆ N : e(S, xl) =
θ1(xl) ∀l ∈ {1, 2, . . . , L}}. Prove that the collection of coalitions �1 is nonempty.

20.33 Give an example of a monotonic game that is not 0-monotonic.

20.34 Show that a simple, constant-sum game need not be 0-monotonic.

20.35 Prove that every convex game is 0-monotonic.

20.36 Show that every null player is a dummy player, but there are dummy players that
are not null players.

20.37 Using Theorem 20.29 (page 821), prove that the imputation x = ( 1
3 ,

1
3 , 1

3 ) is not
the prenucleolus of the gloves game that appears in Example 20.3 and that the
prenucleolus of this game is y = (0, 0, 1).

20.38 Eilon contacts Michael, claiming that the second direction in the proof of Theorem
20.28 on page 819 (if the system of equations given by Equations (20.99)–(20.100)
is tight for x, then x is the nucleolus) does not hold: “Denote the nucleolus by x∗,
and let x be an imputation,” explains Eilon. “Denote y = x∗ − x. Then y(N) = 0.
Let α1 be the greatest value of the excesses at θ(x∗). Then for every coalition S,

y(S) = (x∗ − x)(S) = e(S, x) − e(S, x∗). (20.216)

Since x∗ is the nucleolus, and since α1 is the greatest value of the excesses, it must
be the case that e(S, x) ≥ 0 for every coalition S ∈ D(α1, x

∗). In other words,
y(S) ≥ 0 for every such coalition. Since in the first part of the theorem, it is proved
that relative to the nucleolus, the system of equations is tight, one deduces that
y(S) = 0 for every S ∈ D(α1, x

∗). Continuing by induction to the next level, one
concludes that y(S) = 0 for every coalition S, which implies that x = x∗. But this
cannot hold since x was chosen arbitrarily.”

Is Eilon correct? If not, where is the flaw in his argument?

20.39 Find a weighted majority game that is not constant sum, and satisfies the property
that if S is a winning coalition, then Sc is a losing coalition.

20.40 Find a weighted majority game that is not constant sum, satisfying the property
that if S is a losing coalition, then Sc is a winning coalition.

20.41 Prove that the game [5; 2, 2, 2, 1, 1, 1] does not have a homogeneous representa-
tion.
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20.42 Prove that if [q; w1, w2, . . . , wn] and [̂q; ŵ1, ŵ2, . . . , ŵn] are two representations
of the same simple game, then [q + q̂; w1 + ŵ1, w2 + ŵ2, . . . , wn + ŵn] is also a
representation of that game.

20.43 Prove that if [q; w] is a representation of a weighted majority game (N ; v), then
[q(w); w] is also a representation of that game.

20.44 Let (N ; v) be a simple strong game, and let x ∈ X(N ; v) be an imputation. Recall
that q(x) := minS∈Wm x(S). Answer the following questions:

(a) Show by example that the game [q(x); x] is not necessarily a simple strong
game. Which property in the definition of a simple strong game may not hold?

(b) Denote by Wm
x the set of minimal winning coalitions in the game [q(x); x].

Prove that Wm ⊆ Wm
x .

(c) Give an example showing that the inclusion Wm ⊆ Wm
x can be strict.

20.45 Let (N ; v) be a coalitional game with N = {1, 2, 3} and a coalitional function given
by

v(S) =
{

1 |S| ≥ 2,

0 |S| ≤ 1.
(20.217)

Answer the following questions:

(a) Is the game (N ; v) a simple strong game?
(b) For which imputations x ∈ X(N ; v) is [q(x); x] a simple strong game?
(c) For which imputations x ∈ X(N ; v) does the game [q(x); x] represent the game

(N ; v)?

20.46 Find the Rabbi Nathan solution of the following bankruptcy problems:

(a) There are four wives, who are owed 100, 200, 300, and 400, respectively, out
of an estate of 350.

(b) There are four wives, who are owed 100, 200, 300, and 400, respectively, out
of an estate of 720.

(c) There are five wives, who are owed 60, 120, 180, 240, and 300, respectively,
out of an estate of 600.

20.47 Prove directly that the function f defined in Equation (20.166) is continuous, its
first coordinate is monotonically nondecreasing in d1 for every fixed d2, and its
second coordinate is monotonically nondecreasing for in d2 for every fixed d1.

20.48 Which of the following properties are satisfied by the Rabbi Nathan solution to
bankruptcy problems? (For each property, provide either a proof or a counter-
example.)

(a) Symmetry (creditors with identical claims receive identical payments).
(b) Null player (a creditor with a claim of 0 receives nothing).
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(c) Covariance under strategic equivalence: for every a > 0 and every b ∈ RN that
satisfy adi + bi > 0 for every i ∈ N we have

ϕ

(
aE +

∑
i∈N

bi ; ad1 + b1, . . . , adn + bn

)
= aϕ(E; d1, . . . , dn) + b.

(20.218)

(d) Additivity:

ϕ(E; d1, . . . , dn) + ϕ(Ẽ; d̃1, . . . , d̃n) = ϕ(E + Ẽ; d1 + d̃1, . . . , dn + d̃n).

(20.219)

20.49 Jeff owes Sam $140, and owes Harry $80. Jeff declares bankruptcy, because he
has only $100, and the decision of how to divide his $100 between Harry and Sam
comes before a court.

The court is composed of a three-judge panel, John, Clarence, and Ruth. John is
convinced that the most proper division is [40: 60], using the following reasoning.
“There is no dispute over the first $20,” he claims, “because both agree that they
go to Sam. Regarding the remaining 80, both parties have legitimate claims, and
they must therefore divide that sum equally between them.”

Clarence, in contrast, claims that the most proper division is [20: 80], explain-
ing: “Suppose each of them could take the amount owed to him, $80 to Harry
and $140 to Sam. That would lead to a deficit of $120. This deficit should be
divided equally between the creditors; i.e., each of them should yield $60 of what
he claims.”12

Ruth claims that the most proper division is [44.44: 55.55], since “The total sum
should be divided proportionally to the debts owed: Harry should get 80

80+140 × 100,
not a penny more or less.”

For each judge, describe a solution concept to bankruptcy problems with n

creditors that is consistent with his or her solution for the bankruptcy problem with
two creditors.

20.50 Define the following solution concept ϕ to bankruptcy problems by

ϕi(E; d1, d2, . . . , dn) := d1

d1 + d2 + · · · + dn

× E. (20.220)

This is the proportional division between the creditors.

(a) Construct a system of containers that implements this solution.
(b) Prove that this is a consistent solution concept.
(c) Which of the properties listed in Exercise 20.48 are satisfied by this solution?

20.51 Repeat Exercise 20.50, using the following solution concept: divide the estate
in a continuous manner equally between the creditors, until one (or more) of the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

12 Note that under this procedure, a situation may develop in which a creditor may need to pay. For example, if
E = 20, the debt to Sam is $10, and the debt to Harry is $100, under Clarence’s procedure Sam needs to pay $35,
and Harry receives $55.
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creditors has received his or her entire claim. Continue to divide the remaining
amount of money between the remaining creditors, until one (or more) of the
creditors has received his or her entire claim, and so on, until all the money in the
estate runs out.

20.52 Let ϕ be a solution concept to the bankruptcy problem. The dual solution of ϕ is
the solution concept ϕ∗ defined as follows:

ϕ∗
i (E; d) = di − ϕi(D − E, d), ∀i ∈ N, (20.221)

where D := ∑n
i=1 di is the sum of the claims. Since D − E is the sum that the

debtor cannot pay the creditors, ϕ∗ divides the loss between the players in the
same way that ϕ divides the profits.

(a) Prove that ϕ∗ is a solution concept.
(b) Prove that the Rabbi Nathan solution is self-dual, i.e., satisfies ϕ∗ = ϕ.
(c) Find the dual solution to proportional division defined in Exercise 20.50.
(d) Find the dual solution to the solution proposed by Clarence in Exercise 20.49.

20.53 Let [E; d1, d2, . . . , dn] be a bankruptcy problem, where d1 ≤ d2 ≤ · · · ≤ dn.
Denote D := ∑n

i=1 di , and for every i ∈ N , denote Di := ∑i
j=1 dj . In particular,

D = Dn. Show that the Rabbi Nathan solution to the problem [E; d] is given by
the following function ϕ:

ϕ(E; d) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
E
n
, E

n
, . . . , E

n

)
, if E ≤ nD1

2 ,(
d1
2 , . . . , di

2 , E−Di

n−i
, . . . , E−Di

n−i

)
, if 1 ≤ i < n and Di

2 + (n − i) di

2

< E ≤ Di

2 + (n − i − 1) di+1

2 ,

d − ϕ(D − E; d), if D
2 < E ≤ D.

(20.222)

Remark: For the case D
2 < E ≤ D, use Exercise 20.52.

20.54 Consider the following situation. A corporation has regular shareholders, and
preferred share holders. If the corporation goes bankrupt, every shareholder is
supposed to get the value of the shares he holds. During the division of the assets
of the bankrupt corporation, preferred shareholders take precedence: they first
receive the value of the shares they hold, and only afterwards do the regular
shareholders receive what is left of the money.

Formally, a corporate bankruptcy problem is given by:

� E: the total worth of the assets of the corporation.
� n: the number of preferred shareholders.
� m: the number of regular shareholders.
� d1, . . . , dn: the values of the shares of the preferred shareholders.
� dn+1, . . . , dn+m: the values of the shares of the regular shareholders.

A solution concept for the corporation bankruptcy problem is a function
associating every corporate bankruptcy problem [E; d1, . . . , dn; dn+1, . . . , dn+m]
with a vector of nonnegative numbers (x1, . . . , xn+m) satisfying:
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�

∑n+m
i=1 xi = E.

� If d1 + · · · + dn ≤ E, then xn+1 + · · · + xn+m = 0.
� If d1 + · · · + dn ≥ E, then xi = di for every 1 ≤ i ≤ n.

A solution concept for the corporate bankruptcy problem is consistent with
the “contested garment” solution if for every corporate bankruptcy problem
[E; d1, . . . , dn; dn+1, . . . , dn+m], and every pair of players i and j , if i and j hold
the same class of shares, then

ϕi(E; d1, . . . , dn; dn+1, . . . , dn+m) = f1(x; di, dj ), (20.223)

where

x = ϕi(E; d1, . . . , dn; dn+1, . . . , dn+m) + ϕj (E; d1, . . . , dn; dn+1, . . . , dn+m),

(20.224)

and f1 is the first coordinate of the function defined in Equation (20.166) on
page 834.

(a) Construct a system of containers implementing a solution to the corporate
bankruptcy problem that is consistent with the “contested garment” solution.

(b) Prove that there exists at most one solution concept to the corporate bankruptcy
problem that is consistent with the “contested garment” solution.

20.55 Let [E; d1, d2, . . . , dn] be a bankruptcy problem satisfying
∑n

i=1 di > E. Prove
that the game (N ; v) defined by

v(S) := max

⎧⎨⎩E −
∑
i �∈S

di, 0

⎫⎬⎭ (20.225)

is convex.

20.56 Prove that if one associates a bankruptcy problem [E; d1, d2, . . . , dn] with the
coalitional game (N ; w) where w(S) = E − ∑

i∈Sc

di , and if x̃ is the Shapley value

of this game, then the Hart–Mas-Colell reduced game
(
S; wx̃

S

)
is the coalitional

game corresponding to the bankruptcy problem [̃x(S); (di)i∈S].
For the definition of the Hart–Mas-Colell reduced game, see Definition 18.33

on page 768.

20.57 Prove that the Rabbi Nathan solution is consistent according to Definition 20.67
(page 843).
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Chapter summary
In this chapter we present a model of social choice, which studies how a group of
individuals makes a collective choice from among a set of alternatives. The model
assumes that each individual in the group holds a preference relation over a given set of
alternatives, and the problem is how to aggregate these preferences to one preference
relation that is supposed to represent the preference of the group. A function that maps
each vector of preference relations to a single preference relation is called a social
welfare function. The main result on this topic is Arrow’s Impossibility Theorem, which
states that every social welfare function that satisfies two properties, unanimity and
independence of irrelevant alternatives, is dictatorial.

This impossibility result is then extended to social choice functions. A social choice
function assigns to every vector of preference relations of all individuals in the group a
single alternative, interpreted as the alternative that is most preferred by the group.

A social choice function is said to be nonmanipulable if no individual can manipulate
the group’s choice and obtain a better outcome by reporting a preference relation that
is different from his true preference relation. Using the impossibility result for social
choice functions we prove the Gibbard–Satterthwaite Theorem, which states that any
nonmanipulable social choice function that satisfies the property of unanimity is
dictatorial.

Groups of decision makers are often called upon to choose between several possible
alternatives: citizens are called upon to choose between political candidates on election
day; union members select committees; family members need to choose which television
program they will watch together. In any such example, each individual has his or her
own preference ordering with respect to the different alternatives, and all the individuals
together need to come to a collective decision that serves as the entire group’s “most
preferred” alternative. How are such decisions arrived at? In a dictatorship, the choice
is made by the “dictator” (the national leader or the head of the family). In democratic
countries the choice is usually made by some variation of majority vote. The following
example, Example 21.1, shows one way to generalize majority vote to cases in which
there are more than two alternatives. Example 21.2 reveals that problems may arise in
such generalizations. The following example, due to Borda [1784],1 points to difficulties
in using majority vote for collective decisions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 Jean-Charles Chevalier de Borda (1733–99) was a French mathematician, physicist, social scientist and sailor.
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Example 21.1 A committee composed of 21 people needs to select one individual from among three

candidates named A, B, and C. The committee members’ preferences are given in the following
table:

No. of committee members First choice Second choice Third choice
1 A B C

7 A C B

7 B C A

6 C B A

In words, one committee member ranks the candidates in the order A first, B second, and C third;
seven committee members share the preference ordering A first, C second, and B third; another
seven share the ordering B first, C second, and A third; and six members rank the candidates by
the order C first, B second, and A third. Which candidate will be chosen? The answer, obviously,
depends on which voting system is used.

Since we are used to the idea of selecting candidates by majority vote, it seems natural to check
whether there is a candidate who would defeat every other candidate by majority vote in a head-
to-head competition. Such a candidate is called a “Condorcet winner,”and if one exists, it seems
reasonable to choose him as the collective choice of the committee. In our example, candidate C is
a Condorcet winner, since he would defeat A by a vote of 13 to 8 if the two of them were the sole
candidates, and similarly would win by 13 votes to 8 votes against B. �

One problem with this “voting method” is that there might not always be a Condorcet
winner, as can be seen in Example 21.2, which is due to Condorcet [1785].2 In this case,
the above voting method will not tell us who to choose.

Example 21.2 A 60-member committee needs to select one individual from candidates A, B, and C. The

committee members’ preferences are given in the following table:

No. of committee members First choice Second choice Third choice
23 A B C

2 B A C

17 B C A

10 C A B

8 C B A

In head-to-head pairwise competition, A defeats B by 33 − 27, B trounces C by 42 − 18, and C

wins against A by 35 − 25. In other words, there is no Condorcet winner: the preference ordering
given by pairwise majority voting is not transitive. This leads to several implications. First of all,
the order in which voting between candidates is conducted can affect the result – that is, if we first
pit two candidates against each other and then have the winner between them compete against the
third candidate, the order in which this is done may be crucial. If A and B compete head-to-head

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 Marie Jean Antoine Nicolas Caritat (Marquis de Condorcet, 1743–94) was a French philosopher and mathematician
who wrote about political science.
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with the winner going up against C, then C will be selected. But if we first have A and C compete
against each other with the winner squaring off against B, then B ends up being selected. And if B

competes against C with the winner between them pitted against A, then A is the ultimate selection.
The order of voting is absolutely critical.

Another consequence of the fact that the preference relation is not transitive is that in any voting
method that generalizes majority vote between two candidates to a greater number of candidates,
the results may depend on the presence or absence of a candidate who is not even the winner! For
example, suppose that a certain voting method, which for two candidates chooses the winner by
majority vote, leads to the selection of A. If B were to decline to participate, A and C would instead
compete directly against each other – and then C would win by majority vote. In other words, B’s
presence as a candidate can affect the results, even though B does not win when he competes. A
similar phenomenon would exist if the voting method were to select B or C.

The condition that the presence or absence of a candidate that is not selected by the procedure
should not affect the results of a voting method is called the “independence of irrelevant alternatives.”
The above example shows that it is not true that every voting system that in the presence of two
candidates chooses one of them using majority vote satisfies independence of irrelevant alternatives.
This fact forms the basis of the results developed in this chapter. �

Another problem with pairwise majority voting is that even when a Condorcet winner
exists, it is not always clear that he is the candidate who should be selected (see Exer-
cise 21.5). We can check whether or not several well-known voting methods select the
Condorcet winner when such a candidate exists. One popular method is to have each com-
mittee member vote for his or her most-preferred candidate, with the candidate receiving
the most votes winning.3 If this method were to be adopted in Example 21.1, then A

would receive 8 votes, B would get 7 votes and C only 6 votes, leading to the selection of
candidate A and not the Condorcet winner C.

Another method chooses the winning candidate in a two-round process:4 in round one,
every committee member votes for his or her most-preferred candidate. The two candidates
who received the greatest number of votes in round one go on to compete against each
other in round two, with the candidate garnering the most votes in round two ultimately
selected as the winner. In Example 21.1, this method would lead to candidates A and
B proceeding to a head-to-head competition in round two, where B would defeat A by
13 votes to 8; once again the Condorcet winner, candidate C, fails to be selected.

Election results, therefore, are extremely sensitive to which voting method is adopted,
and as we have seen, two very popular voting methods by-pass the Condorcet winner,
when such a candidate exists, and may well end up selecting another candidate.

In addition, the two methods discussed above can be subject to manipulation, in the
sense that committee members have incentives to misrepresent their preferences in order
to change the results. To see that, note that in Example 21.1, under the voting system in
which each committee member votes for only one candidate, and the candidate with the
greatest number of votes is chosen, if the committee members who prefer C to B and B

to A vote for B instead of C, then B, whom they prefer to A, will win instead of A. In

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 This is a method used by many committees, including committees selecting candidates for public service positions
in Britain.

4 This is the method used to elect the President of France.
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the same example with a two-round voting method, if the committee members who rank
A over C and C over B vote for C instead of A in the first round, them C and B will be
the candidates competing in the second round, with C, whom they prefer to B, ultimately
winning. The subject of voting manipulation will be discussed again later in this chapter.

In all the examples so far, the main question was choosing one alternative (one candidate)
from a set of alternatives (candidates). We will return to this question later in the chapter,
but we will first consider a more general issue. Suppose that every individual in a given
population has a preference ordering (or ranking) over a set of alternatives, and society in
general seeks to derive, out of all the individual rankings, a single ranking representing
society’s collective preferences among the alternatives: society’s first choice among the
alternatives, society’s second choice, and so forth. In other words, the question before us
is how to “aggregate” all the individual preference rankings into one preference ranking
that can be interpreted as that of society’s.

For example, suppose several teachers are asked to rank the students in a class by
academic achievement. Each teacher ranks the students based on their performance in the
subject that he or she teaches, and it is quite reasonable that different teachers will produce
different rankings. The teachers may want to find a way to aggregate their rankings into
one collective ranking listing the students in order from the “best” student to the “weakest”
student.

We will show that, surprisingly, there is no rule producing an aggregate preference
ordering that satisfies three very natural-sounding democratic conditions. One of those
conditions is that there should be no dictator. If we dispense with this condition, then
the only rule that satisfies the other two conditions is dictatorship.

After that we will explore situations in which there is no need to rank all of the
possible choices, because it is only necessary to select society’s top choice. There are
many examples of such situations: selecting a committee chairman, electing a president,
the board of directors of a corporation choosing among different investment opportunities,
army officers selecting a military course of action, and, in our above example, picking the
best student in the class in the collective opinion of the teachers. We will see that in this
case as well, there is no selection rule that satisfies three natural democratic conditions,
and that the only rule that satisfies two of the conditions is dictatorship.

21.1 Social welfare functions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Let A be a nonempty finite set of alternatives, and N = {1, 2, . . . , n} be a finite set of
individuals (“voters” or “decision makers”). In Chapter 2, which deals with utility theory,
we defined a preference relation over the set A as a subset of A × A, and assumed that
the preference relations of the players over the set of outcomes are complete, reflexive,
and transitive. In this chapter we will consider preference relations that are complete and
transitive but not necessarily reflexive. For simplicity, we will include these properties as
part of the definition: a preference relation will from here on be a complete, reflexive, and
transitive binary relation, and a strict preference relation will be a complete, irreflexive,
and transitive binary relation.
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Definition 21.3 A preference relation �Pi
of player i over a set A is a binary rela-

tion5 satisfying the following properties:

� For every pair of elements a, b ∈ A, either a �Pi
b or b �Pi

a (the relation is complete).
� a �Pi

a (the relation is reflexive).
� If a �Pi

b and b �Pi
c then a �Pi

c (the relation is transitive).

A strict preference relation Pi
of player i over A is a binary relation satisfying the

following properties:

� For every pair of distinct elements a, b ∈ A, either a Pi
b or b Pi

a.
� a �Pi

a (the relation is irreflexive).
� If a Pi

b and b Pi
c then a Pi

c (the relation is transitive).

When P ∗ is a preference relation, if a �P ∗ b and b �P ∗ a then we will say that a and
b are equivalent under the preference relation P ∗, and denote this by a ≈P ∗ b. As the
following example shows, it is possible for a ≈P ∗ b even though a �= b.

If the set of alternatives A = {−m,−m + 1, · · · , m} is a finite set of natural numbers,
the relation ≥ is a preference relation, and the relation > is a strict preference relation.
The relation �Pi

defined by a �Pi
b if and only if |a| ≥ |b| is also a preference relation.

Note that k ≈Pi
−k. The lexicographic relation �L defined as follows is also a preference

relation: the set A is the following set of pairs of positive integers, A = {(n, m) : 1 ≤ n ≤
N, 1 ≤ m ≤ M, n ∈ N, m ∈ N}, and the relation �L is defined by î(n, m) �L (̂n, m̂) if
and only if n > n̂, or n = n̂ and m ≥ m̂.

Denote by P∗(A) the set of all preference relations over A and by P(A) the set of all
strict preference relations over A.

Definition 21.4 A strict preference profile is a list P N = (Pi)i∈N of strict preferences,
one per individual. The collection of all strict preference profiles is the Cartesian product

(P(A))N = P(A) × P(A) × · · · × P(A). (21.1)

A strict preference profile describes how each individual in society ranks all the alterna-
tives. The problem before us is how to “aggregate” all the preferences in a strict preference
profile into one preference relation, “the social preference relation.”

Definition 21.5 A social welfare function is a function F that maps each strict preference
profile P N = (Pi)i∈N ∈ (P(A))N to a preference relation in P∗(A) (which is denoted by
F (P N )).

In other words, a social welfare function summarizes the opinions of everyone in
society: given the strict preference relations PN = (Pi)i∈N of all the individuals, society
as a collective ranks the alternatives in A by way of the preference relation F (P N ). If
society ranks a above b, that is, if a �F (P N ) b, we will say that society (weakly) prefers a

to b.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 In the chapter on utility theory (Chapter 2) we studied a preference relation of an individual i and denoted it by
�i . In this chapter we may want an individual i to have different preference relations Pi , P̂i , and so on. We will
therefore label a relation � not by the name of the individual but by his preference relation, i.e., �Pi

, �P̂i
, and so

on.
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Note that we are assuming that every individual has a strict preference relation, meaning
that no one is indifferent between any pair of alternatives. But the social preference
relation, on the other hand, may exhibit indifference. The following example clarifies
why we choose this definition. Recall that for every finite set X we denote the number of
elements in X by |X|.

Example 21.6 Simple majority rule, |A| = 2 Suppose there are only two alternatives A = {a, b}. For each

strict preference profile P N we will denote the number of individuals who prefer a to b by:

m(P N ) = ∣∣{i ∈ N : a Pi
b}∣∣ . (21.2)

The simple majority rule is the social welfare function F defined by:

� If m(P N ) > n
2 then society as a whole prefers a to b: a F (P N ) b.

� If m(P N ) < n
2 then society as a whole prefers b to a: b F (P N ) a.

� If m(P N ) = n
2 then society as a whole is indifferent between a and b: a ≈F (P N ) b. �

If we do not permit society to be indifferent between alternatives, then, for this to be a
social welfare function, it would need to rank a versus b even when m(P N ) = n

2 . To avoid
a situation in which arbitrary rankings are assigned, we accept indifference in the social
preference, even when there is no indifference at the individual level.

Despite this, the theorems presented in this chapter obtain even when the preferences
of the individuals are not necessarily strict preferences, but weakening the assumption of
strict preference may require using different proofs.

A dictatorship is a simple social welfare function: if the dictator prefers a to b, society
must prefer a to b.

Definition 21.7 A social welfare function F is dictatorial if there is an individual i ∈ N

such that F (P N ) = Pi for every profile of strict preferences P N . In other words, for every
pair of alternatives a, b ∈ A, and every strict preference profile P N

a Pi
b =⇒ a F (P N ) b. (21.3)

In this case, individual i is called a dictator.

The simple majority rule (see Example 21.6) is not a dictatorial social welfare function,
because every individual in society may find himself part of the minority, in which case
social preference between a and b will be contrary to his preference.

The approach we adopt for studying social welfare functions is the “normative” (or
“axiomatic”) approach. This means we ask which “reasonable” properties do we want
the social welfare function to satisfy, and which mathematical conclusions can we draw
regarding functions satisfying those properties.

A reasonable property one may want a social welfare function to satisfy is that if all
individuals in society prefer alternative a to alternative b, society also prefers a to b.
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Definition 21.8 A social welfare function F satisfies the property of unanimity if F

satisfies the following condition: for every two alternatives a, b ∈ A, and every strict
preference profile P N = (Pi)i∈N , if a Pi

b for every individual i ∈ N , then a F (P N ) b.

A second property one might wish a social welfare function to satisfy is that the way
society determines whether alternative a is preferable to alternative b depends solely on
the way the individuals compare a to b.

Definition 21.9 A social welfare function F satisfies the independence of irrelevant alter-
natives (IIA) Property if for every pair of alternatives a, b ∈ A, and every pair of strict
preference profiles P N and QN

a Pi
b ⇐⇒ a Qi

b, ∀i ∈ N, (21.4)

implies that

a �F (P N ) b ⇐⇒ a �F (QN ) b. (21.5)

In other words, if every individual answers identically in both P N and in QN to the
question “which do you prefer between a and b?” the social preference between a and b

should be identical according to both F (PN ) and F (QN ).
In the example presented above of the teachers ranking the pupils in a class, if the

weighted rankings of all the teachers indicate that Ann is ranked higher than Dan, and
then Tanya’s grades are changed (because she retook an exam), this should have no effect
on (i.e., be irrelevant to) the relative ranking of Ann and Dan: Ann should still be ranked
higher than Dan.

A dictatorial social welfare function satisfies the properties of unanimity and indepen-
dence of irrelevant alternatives (prove this). Similarly, when |A| = 2, the simple majority
rule (Example 21.6) satisfies the properties of unanimity and independence of irrelevant
alternatives (prove this). Can the simple majority rule be extended to any number of
alternatives to yield a social welfare function that satisfies unanimity and independence
of irrelevant alternatives? As the following surprising theorem shows, the answer to this
question is negative.

Theorem 21.10 (Arrow [1951]) If |A| ≥ 3, then every social welfare function satisfying
the properties of unanimity and independence of irrelevant alternatives is dictatorial.

An equivalent formulation of the theorem is given by considering nondictatorship to be
a desired property.

Definition 21.11 A social welfare function F satisfies the property of nondictatorship if
it is not dictatorial.

Theorem 21.12 If |A| ≥ 3, there does not exist a social welfare function satisfying the
properties of unanimity, independence of irrelevant alternatives, and nondictatorship.

Theorem 21.12 is called Arrow’s Impossibility Theorem. The significance of the theorem
is that when we seek a social welfare function defined over the set of all preference
profiles, if dictatorship is not something we desire, we must give up either unanimity or
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independence of irrelevant alternatives, or restrict the domain of preference profiles over
which the function is defined.

Example 21.13 Three individuals, three alternatives Suppose there are three individuals N = {1, 2, 3},
and three alternatives A = {a, b, c}. The social welfare function F is defined as follows:

� To determine society’s most-preferred alternative, first check if there is an alternative that is ranked
highest by at least two individuals. If such an alternative exists, this is society’s most-preferred
alternative.

� If no such alternative exists, check if there is one alternative that is ranked highest or second-
highest by all three individuals. If such an alternative exists, this is society’s most-preferred
alternative.

� If the above two checks fail to determine a most-preferred alternative for society, society is
indifferent between the three alternatives.

� After the most-preferred alternative is chosen using the above rules, we use majority vote to
determine the ranking of the other two alternatives.

The following table depicts several strict preference profiles, along with the social preference
relation corresponding to each preference profile according to the social welfare function F :

Individual 1 Individual 2 Individual 3 Society
1 c P1 b P1 a c P2 b P2 a c P1 b P3 a c F (P N ) b F (P N ) a

2 c P1 b P1 a c P2 b P2 a b P3 c P3 a c F (P N ) b F (P N ) a

3 c P1 b P1 a a P2 b P2 c b P3 c P3 a b F (P N ) c F (P N ) a

4 c P1 b P1 a b P2 a P2 c a P3 c P3 b c ≈F (P N ) b ≈F (P N ) a

5 c P1 b P1 a b P2 a P2 c c P3 a P3 b c F (P N ) b F (P N ) a

This social welfare function is not dictatorial, because if two individuals share the same strict
preference relation, that preference relation is also society’s preference relation (check that this is
true). It satisfies the unanimity property: if all the individuals prefer a to b, then either a is society’s
most-preferred alternative (if at least two individuals rank a highest), or c is ranked first by society
and a is ranked second (if at most one individual ranks a highest according to his preference
relation). In either case, society prefers a to b.

Theorem 21.10 then implies that this social welfare function cannot satisfy the independence of
irrelevant alternatives property. Indeed, if we compare preference profiles 4 and 5 above, we see
that in both of them b P1 a, b P2 a, a P3 b, but in the fourth profile b ≈F (P N ) a, while in the
fifth profile b F (PN ) a. �

In proving Theorem 21.10 we will make use of several definitions and denotations:

Definition 21.14 A coalition is a set of individuals S ⊆ N .

Definition 21.15 Let F be a social welfare function, and let a, b ∈ A be two different
alternatives. A coalition S ⊆ N is called decisive for a over b (relative to F ) if for every
P N ∈ (P(A))N satisfying:

1. a Pi
b for every i ∈ S,

2. b Pj
a for every j �∈ S,
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one has a F (P N ) b. The coalition S is called decisive (relative to F ) if there exists a pair
of alternatives for which it is decisive.

In words, a set of individuals S is decisive for a over b if when every member of S

prefers a to b, and all the other individuals prefer b to a, society prefers a to b. For
example, it is possible for the President, the Secretary of the Treasury, and the Chairman
of the Federal Reserve to be a decisive coalition for matters pertaining to economic policy;
when issues of national defense require a decision, the President, the Secretary of Defense,
and the National Security Adviser may be a decisive coalition.

Before we turn our attention to the characteristics of decisive coalitions, we will check
whether there always exists at least one decisive coalition. The definition of the unanimity
property leads to the following theorem (Exercise 21.11).

Theorem 21.16 Let F be a social welfare function satisfying the unanimity property. For
every a, b ∈ A, the coalition N is decisive for a over b and the empty coalition ∅ is not
decisive for a over b.

The next theorem shows that when a social welfare function satisfies the property of
independence of irrelevant alternatives, it is easy to check whether a particular coalition
is decisive for a given pair of alternatives.

Theorem 21.17 Let F be a social welfare function satisfying the independence of irrel-
evant alternatives property, and let a, b ∈ A be two alternatives. A coalition S ⊆ N is
decisive for a over b, if and only if there exists a strict preference profile P N satisfying:

(a1) a Pi
b for all i ∈ S,

(a2) b Pj
a for all j �∈ S,

(a3) and a F (P N ) b.

It follows that if a coalition S is not decisive for a over b, and if a strict preference profile
P N satisfies:

(b1) a Pi
b for all i ∈ S,

(b2) b Pj
a for all j �∈ S,

then b �F (P N ) a.

In other words, the theorem states that if the function F satisfies the independence
of irrelevant alternatives property, then the condition “for all P N ∈ (P(A))N · · · ” in
Definition 21.15 can be replaced by the condition “there exists P N ∈ (P(A))N · · · .”

Proof: Start with the first direction: suppose that S is decisive for a over b. Let P N be
a strict preference profile satisfying (a1) and (a2) (give an example of such a preference
profile). Since the coalition S is decisive for a over b, (a3) is satisfied, and PN therefore
satisfies (a1)–(a3), as required.

For the other direction, we need to show that if there exists a strict preference profile
P N satisfying the three conditions, then S is decisive for a over b. In other words, we need
to show that every strict preference profile QN that satisfies the first two conditions also
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satisfies the third condition. But that follows from the fact that F satisfies the independence
of irrelevant alternatives property.

The second part of the statement follows from the first part �
The next theorem states that if a coalition is decisive for a∗ over b∗, then it is decisive

for all pairs of alternatives.

Theorem 21.18 Suppose that |A| ≥ 3 and that F satisfies the unanimity and indepen-
dence of irrelevant alternatives properties. If coalition V is decisive for a∗ over b∗, then
V is decisive for any pair of alternatives in A.

Proof: Let a and b be a pair of alternatives.

Part 1: If V is decisive for a over b then V is decisive for a over c, for any alternative
c ∈ A \ {a}.
If c = b the claim follows by assumption. Otherwise c ∈ A \ {a, b}. Consider the follow-
ing strict preference profile P N :{

a Pi
b Pi

c i ∈ V,

b Pi
c Pi

a i �∈ V.
(21.6)

All the other alternatives in A are ordered by each individual arbitrarily.
As V is decisive for a over b, it follows that a F (P N ) b. Since F satisfies the unanim-

ity property, b F (P N ) c. Since F (P N ) is a transitive ordering relation, we deduce that
a F (P N ) c. Theorem 21.17 then implies that V is decisive for a over c.

Part 2: If V is decisive for a over b then V is decisive for b over c, for any c ∈ A \ {a, b}.
Let c ∈ A \ {a, b}. Consider the following strict preference profile P N :{

b Pi
a Pi

c i ∈ V,

c Pi
b Pi

a i �∈ V.
(21.7)

All the other alternatives in A are ordered by each individual arbitrarily.
From Part 1 it follows that V is decisive for a over c, and therefore a F (P N ) c. Since F

satisfies the unanimity property, b F (P N ) a. Since F (P N ) is a transitive ordering relation,
we deduce that b F (P N ) c. Theorem 21.17 then implies that V is decisive for b over c.

Part 3: The first two parts are sufficient for proving Theorem 21.18.
Let a �= b be any pair of alternatives in A. We will prove that V is decisive for a over b.
Recall that V is decisive for a∗ over b∗.

� If a = a∗, from Part 1 and the fact that V is decisive for a∗ over b∗, we deduce that V

is decisive for a over b.
� If a �= a∗ and b �= a∗, from Part 1 and the fact that V is decisive for a∗ over b∗, one has

that V is decisive for a∗ over a. That in turn implies from Part 2 that V is decisive for a

over b.
� If a �= a∗ and b = a∗, then there exists an alternative c ∈ A \ {a, b} since A contains

at least three alternatives (it is possible for c = b∗). From Part 1, and the fact that V is
decisive for a∗ over b∗, one has that V is decisive for b over c. From Part 2, this then
implies that V is decisive for c over a. Finally, Part 2 implies that V is decisive for a

over b.
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j U

WV

N

Figure 21.1

This concludes the proof of Theorem 21.18. �

We next prove Theorem 21.10.

Proof of Theorem 21.10 (Arrow’s Theorem): Let F be a social welfare function satisfying
the properties of unanimity and independence of irrelevant alternatives. We show that there
exists a decisive coalition containing a single individual, who is a dictator.

Claim 21.19 There exists a decisive coalition V containing a single individual.

Proof: Let V be a nonempty decisive coalition containing a minimal number of individ-
uals. Since by Theorem 21.16 the coalition N is decisive and the empty coalition ∅ is not
decisive, there must exist such a coalition V . If V contains a single individual, there is
nothing more to prove. Suppose that V contains at least two individuals; we will show
that this leads to a contradiction.

Let j ∈ V . Denote U = V \ {j} and W = N \ V (see Figure 21.1). Since V contains
at least two individuals, the coalition U is nonempty. Since by definition, V contains a
minimal number of individuals among the nonempty decisive coalitions, the coalition U

is nondecisive, and the coalition {j} is nondecisive.
Since |A| ≥ 3, we can choose three distinct alternatives a, b, c. Consider the strict

preference profile P N = (Pi)i∈N defined as follows:⎧⎨⎩
a Pi

b Pi
c i = j,

c Pi
a Pi

b i ∈ U,

b Pi
c Pi

a i ∈ W.

(21.8)

The other alternatives in A are ordered by each individual arbitrarily.
Since V is decisive, it is decisive for any pair of alternatives (Theorem 21.18). In

particular, it is decisive for a over b. Since a Pi
b, for every individual i ∈ V = U ∪ {j}

and b Pi
a for every individual i ∈ N \ V = W , one has a F (P N ) b. Since U is not

decisive, it is not decisive for c over b. Since c Pi
b for every individual i ∈ U and b Pi

c

for every individual i ∈ N \ U = W ∪ {j}, Theorem 21.17 implies that b �F (P N ) c. Since
F (P N ) is a transitive ordering relation, we deduce that a F (P N ) c.
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Note that a Pi
c for i = j , and c Pi

a for all i �= j . By Theorem 21.17 we conclude
that {j} is a decisive coalition for a over c, and it is therefore a decisive coalition, contra-
dicting the assumption that {j} is not a decisive coalition. This contradiction establishes
that |V | = 1. �

Let V = {j} be a decisive coalition containing a single individual. We next prove that
j is a dictator.

Claim 21.20 Individual j is a dictator, i.e., F (P N ) = Pj for every P N = (Pi)i∈N ∈
(P(A))N .

Proof: Let P N be a strict preference profile, and let a, b ∈ A be two different alternatives
such that a Pj

b. We wish to show that a F (P N ) b.
Since A contains at least three alternatives, there exists an alternative c ∈ A \ {a, b}.

Consider the following strict preference profile QN :⎧⎨⎩
a Qi

c Qi
b i = j,

c Qi
a Qi

b i �= j, a Pi
b,

c Qi
b Qi

a i �= j, b Pi
a.

(21.9)

The other alternatives in A are ordered by each individual arbitrarily. Since V = {j} is
decisive for any two alternatives, it is in particular decisive for a over c, and therefore
a F (QN ) c. Since F satisfies the unanimity property, it follows that c F (QN ) b. Since
F (QN ) is a transitive ordering relation, we deduce that a F (QN ) b.

Now, individual j prefers a over b, both according to Pj , and according to Qj , and
every individual i �= j prefers a over b according to Pi if and only if he prefers a over
b according to Qi . Since F satisfies the independence of irrelevant alternatives property,
and since a F (QN ) b, we deduce that a F (P N ) b, as required. �

We have proved that there exists a decisive coalition containing a single individual, and
that this individual is a dictator. The proof of Theorem 21.10 is complete. �

One might imagine that the conclusion of the theorem holds because we asked for too
much: we want a social welfare function to rank all the alternatives. The next section,
however, shows that a similar negative result holds even if all we ask is for society to
choose its most-preferred alternative.

21.2 Social choice functions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In many cases, society is not required to rank all possible alternatives, because it suffices
to choose only one alternative. Examples of such situations include the election of a
president, congressman, or committee chairman. An additional example is the selection
by policymakers of the “best possible” political or economic policy, from a range of
alternative policies. In this section, we study the question of associating every strict
preference profile with one alternative that is most preferred by society, and striving
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to ensure that the process of choosing the most-preferred alternative satisfies desirable
properties without being dictatorial.

Definition 21.21 A social choice function is a function G : (P(A))n → A.

A social choice function associates every strict preference profile with one alternative,
which is called society’s “most-preferred alternative.” By this definition, society cannot
choose two different alternatives as most preferred, and it is not possible to choose the
most-preferred alternative by tossing a coin.

It is reasonable to require that a social choice function be monotonic; if P N and QN

are two preference profiles in which, for each individual i, the ranking of a in Qi is not
lower that its ranking in P i , and if F (P N ) = a, then F (QN ) = a as well.

Definition 21.22 A social choice function G is called monotonic if for every pair of strict
preference profiles P N and QN satisfying

a Pi
c =⇒ a Qi

c, ∀c �= a, ∀i ∈ N, (21.10)

if G(PN ) = a, then G(QN ) = a.

Dictatorship is a simple social choice function:

Definition 21.23 A social choice function G is dictatorial if there is an individual i such
that for every strict preference profile P N , G(P N ) is the preferred alternative of individual
i. Such an individual i is called a dictator.

A dictatorial social choice function is monotonic (prove this).

Example 21.24 Simple majority rule, |A| = 2 Denote A = {a, b}. When n is odd, the social choice

function defined by majority rule is monotonic and nondictatorial (prove this).
When n is even, the social choice function defined by majority rule, where alternative a is chosen

in case of a tied vote, is monotonic and nondictatorial. �

Example 21.25 Order the alternatives according to: A = {1, 2, . . . , K}, where K is the number of alter-

natives. From among the alternatives that at least one individual most prefers, choose the one of
minimal index:

F (P N ) = min {k ∈ A : there exists i ∈ N such that k Pi
b for all b ∈ A \ {k}}. (21.11)

This social choice function is neither dictatorial nor monotonic (Exercise 21.19). �

As for social welfare functions, it is reasonable to require that social choice functions
satisfy the property that if every individual prefers a to every other alternative, then society
as a whole should prefer alternative a.

Definition 21.26 A social choice function G satisfies the property of unanimity if for
every alternative a ∈ A, and every strict preference profile P N = (Pi)i∈N : if a Pi

b for
every individual i ∈ N and every alternative b �= a, then G(PN ) = a.
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The elements of R: Ordered according to P

The elements of A\ R: Ordered according to Q

Figure 21.2 The preference relation Z(P, Q; R)

If G satisfies unanimity, the range of G is A: for every alternative a ∈ A, there
exists a strict preference profile P N satisfying G(P N ) = a (give an example of such a
profile).

Theorem 21.27 If |A| ≥ 3, all social choice functions satisfying the properties of una-
nimity and monotonicity are dictatorial.

Before proving this theorem, we need several definitions and properties of monotonic
social choice functions.

Let P and Q be two strict preference relations over a set of alternatives A, and let R be
a subset of the set of alternatives A. Define a strict preference relation over A as follows:
place the elements of R prior to the elements that are not in R; the strict preference relation
over the elements of R is given by P , and the strict preference relation over the elements
that are not in R is given by Q (see Figure 21.2). This strict preference relation is denoted
Z(P, Q; R).

The formal definition is as follows:

Definition 21.28 Let P and Q be strict preference relations, and let R ⊆ A be a subset
of alternatives. Denote by Z(P, Q; R) the following strict preference relation:

� Z(P, Q; R) is identical with P over R: if a, b ∈ R then

a Z(P,Q;R) b ⇐⇒ a P b. (21.12)

� Z(P, Q; R) is identical with Q over A \ R: if a, b �∈ R then

a Z(P,Q;R) b ⇐⇒ a Q b. (21.13)

� The alternatives in R are preferred to the alternatives not in R: if a ∈ R and b �∈ R,
then a Z(P,Q;R) b.
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Example 21.29 Suppose that the set of alternatives is A = {a1, a2, a3, a4}, and R = {a1, a4}. Furthermore,

suppose that two strict preference relations P and Q are given by

a1 P a2 P a3 P a4,

a2 Q a4 Q a1 Q a3.
(21.14)

The relation Z(P,Q; R) is given by

a1 Z(P,Q;R) a4 Z(P,Q;R) a2 Z(P,Q;R) a3. (21.15)
�

The analogue to Definition 21.28 for strict preference relations is the following:

Definition 21.30 Let P N and QN be two strict preference profiles, and let R ⊆ A be a
subset of alternatives. Denote by Z(P N, QN ; R) the strict preference profile in which the
strict preference of individual i is Z(Pi, Qi ; R), for each i ∈ N .

Let a ∈ R be an alternative in R, and suppose that G(P N ) = a. Compared to the strict
preference profile P N , in the strict preference relation Z(Pi, Qi ; R) the ranking of the
alternatives in R are improved relative to the alternatives not in R. If the social choice
function is monotonic, one would expect that after this improvement, society chooses a.
This property is expressed in the next theorem, whose proof is left as an exercise to the
reader (Exercise 21.25).

Theorem 21.31 Let G be a monotonic social choice function, let P N and QN be two strict
preference profiles, and let R ⊆ A. If a ∈ R, and G(P N ) = a, then G(Z(P N, QN ; R)) =
a. Equivalently, if G(Z(P N, QN ; R)) �= a and a ∈ R, then G(P N ) �= a.

Theorem 21.32 Let G be a monotonic social choice function satisfying the property of
unanimity, let PN be a strict preference profile, and let a, b ∈ A. If

a Pi
b, ∀i ∈ N, (21.16)

then G(PN ) �= b.

In words, under the conditions of the theorem, if there is an alternative b that is ranked by
all of the individuals below a, then alternative b is not chosen by society.

Proof: Define QN := Z(P N, P N ; {a}). Under the preference profile QN , all individuals
rank a highest. Since G satisfies unanimity, G(QN ) = a. Suppose, by contradiction, that
G(P N ) = b. Since all the individuals prefer a to b according to both P N and QN , and
since the preference relations of all the individuals over the set of alternatives A \ {a}
according to both P N and QN are identical, it follows that for each individual i,

b Pi
c, ⇐⇒ b Qi

c, ∀c �= b. (21.17)

Since G is monotonic, we deduce that G(QN ) = b, contradicting G(QN ) = a. This con-
tradiction shows that the original supposition was wrong, and therefore G(P N ) �= b. �
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Under the strict preference profile Z(P N, QN ; R), every individual prefers every result
in R to every result not in R. This leads to the following corollary of Theorem 21.32.

Corollary 21.33 Let G be a monotonic social choice function satisfying unanimity, let
P N and QN be two strict profile preferences, and let R ⊆ A. If R is nonempty, then
G(Z(P N, QN ; R)) ∈ R.

Proof of Theorem 21.27: We will prove that a monotonic social choice function G satisfy-
ing the unanimity property is dictatorial. Towards this end, using the social choice function
G we will construct a social welfare function F . We will show that if G is monotonic and
satisfies the unanimity property then F satisfies unanimity and independence of irrelevant
alternatives. Using Theorem 21.10 (page 859) we will then deduce that F is dictatorial.
In conclusion, we will show that the dictator in the social welfare function F is also the
dictator in the social choice function G.

Let WN ∈ (P(A))N be a strict preference profile. Fix this profile throughout the rest of
the proof.

Step 1: Defining the function F .
For every strict preference profile P N , define a binary relation F (P N ) as follows. For
every pair of distinct alternatives a, b ∈ A,

G(Z(P N, WN ; {a, b})) = a =⇒ a F (P N ) b, (21.18)

G(Z(P N, WN ; {a, b})) = b =⇒ b F (P N ) a. (21.19)

For this relation to be reflexive, define, in addition,

a �F (P N ) a, ∀a ∈ A. (21.20)

We will prove that F is a social welfare function, by showing that the binary relation
F (P N ) is complete and transitive.

By Corollary 21.33, G(Z(P N, WN ; {a, b})) ∈ {a, b}. Equations (21.18)–(21.19) then
imply that for every pair of distinct alternatives a, b in A, either a F (P N ) b, or b F (P N ) a,
i.e., F (P N ) is a complete preference relation over R. Note that the relation F (P N )
expresses no indifference: either society strictly prefers a to b, or it strictly prefers b to a.

Step 2: F (P N ) is a transitive relation.
Suppose by contradiction that for a, b, c ∈ A one has a F (P N ) b, b F (P N ) c, but c F (P N )

a. It is not possible that a = c, since if a = c one deduces that both a F (P N ) b and
b F (P N ) a, which is impossible. It follows that a, b, and c are distinct alternatives.

Since a F (P N ) b, one has G(Z(P N, WN ; {a, b})) = a. Note that the following identity
holds:

Z(P N, WN ; {a, b}) = Z(Z(P N, P N ; {a, b, c}), WN ; {a, b}). (21.21)

To see this, over the complement of {a, b} the preference relation is determined in both
cases by WN , while over {a, b}, the preference relation is determined in both cases by
P N .

Equation (21.21) and a F (P N ) b imply that

G(Z(Z(P N, P N ; {a, b, c})), WN ; {a, b}) = a. (21.22)
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In particular:

G(Z(Z(P N, P N ; {a, b, c})), WN ; {a, b}) �= b. (21.23)

Theorem 21.31 implies that

G(Z(PN, P N ; {a, b, c})) �= b. (21.24)

We have therefore shown that

a F (P N ) b =⇒ G(Z(P N, P N ; {a, b, c})) �= b. (21.25)

Similarly, since b F (P N ) c, we deduce that

G(Z(P N, P N ; {a, b, c})) �= c, (21.26)

and since c F (P N ) a we get

G(Z(P N, P N ; {a, b, c})) �= a. (21.27)

Equations (21.24), (21.26) and (21.27) imply that

G(Z(P N, P N ; {a, b, c})) �∈ {a, b, c}. (21.28)

On the other hand, by Corollary 21.33, G(Z(P N, P N ; {a, b, c})) ∈ {a, b, c}, contradicting
Equation (21.28). We deduce that the assumption that the relation F (P N ) is not transitive
is false.

We have shown that F (P N ) is a complete and transitive relation, and therefore F is a
social welfare function.

Step 3: The social welfare function F satisfies the unanimity property.
Let a �= b be two alternatives in A, and let P N be a strict preference profile satisfying
a Pi

b for every i ∈ N . This means that for every i ∈ N , the alternative a is most
preferred under the strict preference relation Z(Pi, Wi ; {a, b}) . Theorem 21.32 implies
that G(Z(PN, WN ; {a, b})) = a, and by Equation(21.18) one has a F (P N ) b.

Step 4: The social welfare function F satisfies the independence of irrelevant alternatives
property.
Let a, b ∈ A be two distinct alternatives, and let P N, QN be two strict preference profiles
satisfying

a Pi
b ⇐⇒ a Qi

b, ∀i ∈ N. (21.29)

It follows that for every i ∈ N ,

Z(Pi, Wi ; {a, b}) = Z(Qi, Wi ; {a, b}). (21.30)

To see this, in both strict preference relations, the alternatives {a, b} are preferred to all the
other alternatives; the strict preference relation over the alternatives that are not in {a, b}
is determined in both cases by Wi , and by Equation (21.29), the ranking between a and b

is identical in both cases.
By the definition of F ,

a F (P N ) b ⇐⇒ a F (QN ) b, (21.31)
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and therefore the function F satisfies the property of independence of irrelevant alterna-
tives.

Step 5: Using Theorem 21.10 (page 859).
Since F is a social welfare function satisfying the properties of unanimity and indepen-
dence of irrelevant alternatives, and since A contains at least three alternatives, we can
apply Theorem 21.10. This enables us to deduce that F is dictatorial. In other words, there
is an individual i such that

F (P N ) = Pi, ∀P N ∈ (P(A))N. (21.32)

We will next show that i is also a dictator in the social choice function G.
Let P N be a strict preference relation, and suppose that a is the alternative most preferred

by individual i. To see that i is a dictator under G, we need to show that G(P N ) = a.
Let b �= a be an alternative. Since a is the preferred by individual i, one has a Pi

b.
Since i is a dictator under F , one also has a F (P N ) b. The definition of F implies that
G(Z(P N, WN ; {a, b})) = a �= b, and Theorem 21.31 implies that G(P N ) �= b. Since this
is true for every alternative b �= a, we deduce that G(P N ) = a. This establishes that G is
a dictatorial social choice function, thus completing the proof of Theorem 21.27.

Theorem 21.27 states that dictatorial social choice functions are the only monotonic
social choice functions satisfying the property of unanimity. As the following example
shows, there do exist monotonic social choice functions that are not dictatorial (but they
do not satisfy the property of unanimity).

Example 21.34 The set of alternatives is A = {a, b, c}, and N = {1, 2}. Consider the social choice function

F defined by

F (P N ) :=
{

b b P1 c,

c c P1 b.
(21.33)

In words, the alternative that is chosen by society is the alternative preferred by Player 1 from the
set {b, c}. This social choice function is not dictatorial since alternative a will not be chosen even if
it is the preferred alternative of both players, and hence neither player is a dictator. This also shows
that F does not satisfy the property of unanimity. �

This example leads to the introduction of the following concept. Denote the image of
a social choice function G by range(G):

range(G) = {a ∈ A : there exists P N ∈ (P(A))N for which G(P N ) = a}. (21.34)

That is, range(G) is the set of alternatives that may be chosen by society, if society applies
the social choice function G. If a social choice function G satisfies the unanimity property
then range(G) = A.

Theorem 21.35, whose proof is left to the reader (Exercise 21.27), is the generalization
of Theorem 21.27 to the case in which range(G) �= A.
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Theorem 21.35 For any monotonic social choice function G satisfying |range(G)| ≥ 3,
there exists a player i such that for every strict preference profile P N , the alternative
G(P N ) is player i’s preferred alternative from among the alternatives in range(G).

21.3 Non-manipulability
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The model presented in the previous section is a model in which each individual is assumed
to report (to, say, a governing body) his or her strict preference relation over the set of
alternatives, with the social choice function then choosing an alternative that is declared
to be society’s most-preferred alternative. The model thus assumes implicitly that each
individual reports his or her true preference relation. But why should an individual always
report his or her true preference relation? Perhaps there might be cases in which by
reporting a preference relation that is different from his true preference, an individual can
cause society to choose an alternative that is more preferred to him than the alternative
that would be chosen if were to report his true preference relation? If this is possible, we
say that the social choice function is manipulable.

Given a strict preference profile P N , denote by P−i = (Pj )j �=i the strict preferences
of all the individuals who are not individual i. In other words, (Pi, P−i) is an alternative
denotation for the profile P N .

Definition 21.36 A social choice function G is called manipulable if there exist a strict
preference profile P N , an individual i ∈ N , and a strict preference relation Qi satisfying

G(Qi, P−i) Pi
G(P N ). (21.35)

In words, a social choice function G is manipulable if there exists a strict preference
profile such that there is an individual who can, by reporting a strict preference relation
different from his true one, cause society to choose an alternative that is more preferred
by him than the alternative that would be chosen if he were to report his true preference
relation. If this is not possible, the social choice function is called nonmanipulable. If a
social choice function is nonmanipulable, the situation in which every individual reports
his or her true strict preference relation is a Nash equilibrium in the game in which the
set of strategies of each individual is the set of strict preference relations P(A), and the
outcome is the alternative chosen by society.

Remark 21.37 Definition 21.36 touches on the possibility that a single individual may
influence the alternative that is chosen by reporting a preference relation that differs from
his true preference relation. As we saw in Example 21.1, social choice functions may also
be manipulable by sets of individuals. We will not expand on this idea in this chapter. �

A dictatorial social choice function is nonmanipulable. The dictator cannot gain by
reporting a strict preference relation that is different from his true preference relation,
because society’s choice is always the most-preferred alternative that he reports. Neither
can the other individuals gain by reporting false preference relations, because their reported
preference relations have no effect on society’s choice, in any event. The next example
presents a social choice function that is manipulable by a single voter.



872 Social choice

Example 21.38 A manipulable social choice function Lisa (individual 1), Mickey (individual 2), and Emily

(individual 3) comprise the membership of a village social committee, charged with choosing the
theme of the annual village social event. The committee makes its choice by majority vote. If each
committee member votes for a different alternative, the deciding vote is the one cast by Lisa, the
committee chairman. Three alternatives have been suggested: a bingo night (B), a dance party (D),
or a village singalong (S).

Consider the following strict preference profile P N in which P1 is Lisa’s preference relation, P2

is Mickey’s preference relation, and P3 is Emily’s preference relation:

B P1 D P1 S,

P N : D P2 B P2 S,

S P3 D P3 B.

(21.36)

If Lisa, Mickey, and Emily all report their true preference relations, the chosen alternative will be
a bingo night. If, however, Emily changes her reported preference relation to

D Q3 S Q3 B, (21.37)

the chosen alternative will be a dance party, which Emily prefers to bingo. We see that the social
choice function in this example, in which the majority rule is applied, with the committee chairman
granted the tie-breaking vote, is manipulable. �

Gibbard [1973] and Satterthwaite [1975] proved the following theorem.

Theorem 21.39 (Gibbard, Satterthwaite) Let G be a nonmanipulable social choice
function satisfying the unanimity property. If |A| ≥ 3 then G is dictatorial.

The practical implication of this theorem is that if we wish to apply a nondictatorial
social choice function, there are necessarily situations in which one (or more) of the
individuals has an incentive to report a preference relation that is different from his or her
true preference relation.

Proof: By Theorem 21.27, it suffices to show that every nonmanipulable social choice
function that satisfies the unanimity property is monotonic.

Let G be a nonmanipulable social choice function satisfying the unanimity property.
Suppose that G is not monotonic, i.e., that there exist two distinct strict preference profiles
PN and QN , and two distinct alternatives a, b such that

a Pi
c =⇒ a Qi

c, ∀c �= a, ∀i ∈ N, (21.38)

while

G(P N ) = a, and G(QN ) = b. (21.39)

Since P N and QN are distinct strict preference profiles there is at least one individual i

for whom Pi �= Qi . From among all pairs of alternatives a, b and strict preference profiles
PN and QN with respect to which the above conditions hold, choose those for which the
number of individuals i for which Pi �= Qi is minimal.
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For such P N and QN , denote by I the set of individuals i for whom Pi �= Qi :

I = {i ∈ N : Pi �= Qi}. (21.40)

By assumption, the set I contains at least one individual.
Let j be an individual in I . We claim that G(Pj , Q−j ) = a. Suppose by contradiction

that G(Pj , Q−j ) = c �= a (c may be equal to b). The pair of alternatives a, c, along
with the pair of strict preference profiles P N and (Pj , Q−j ) satisfy the above conditions
but the number of individuals whose strict preference relations differ in the two profiles
is |I | − 1 (because the preferences of individual j in the profiles P N and (Pj , Q−j ) are
identical), which contradicts the minimality of I . This contradiction establishes that indeed
G(Pj , Q−j ) = a.

In summary, we have deduced that G(QN ) = b and G(Pj , Q−j ) = a. Since G is
nonmanipulable, when the preference profile is QN , individual j has no incentive to
report Pj as his preference profile, and therefore

b = G(QN ) Qj
G(Pj , Q−j ) = a. (21.41)

Similarly, since G is nonmanipulable, when the preference profile is (Pj , Q−j ), individual
j has not incentive to report Qj as his preference profile, and therefore:

a = G(Pj , Q−j ) Pj
G(QN ) = b. (21.42)

Equations (21.38) and (21.42) imply that

a Qj
b. (21.43)

Equation (21.43) contradicts Equation (21.41). This contradiction establishes that G is
monotonic. �

21.4 Discussion
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this chapter, we have studied the question of how to aggregate the preferences of a
group of individuals into a single “social preference.” The approach we have adopted
is the normative, or axiomatic, approach. In other words to construct a choice func-
tion that associates every strict preference profile of individual preference relations
with a social preference relation, we asked what properties such a function should sat-
isfy. Surprisingly, this led us to conclude that if there are at least three alternatives,
seemingly natural and reasonable properties cannot hold unless the choice function is
dictatorial.

The most fundamental result in this section is Arrow’s Impossibility Theorem (Theorem
21.10 on page 859), which states that when there are at least three alternatives that are
to be ranked, the only social welfare function satisfying the properties of unanimity and
independence of irrelevant alternatives is dictatorial. This implies that the only social
choice function (which chooses one alternative, “the best alternative,” based on the strict
preference profiles of the individuals) satisfying monotonicity or nonmanipulability is
again dictatorial.
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These results form the foundations of an important branch of study (especially for the
disciplines of economics and political science) called “social choice.” One way to obtain
positive results in this field is to limit the domain of the social welfare (or choice) functions.
In other words, if one does not allow individuals to have every possible preference relation,
and instead restricts preference relations to a smaller set than the set of all preference
relations, it is in some cases possible to obtain positive results. For example, when studying
political or economic preferences (from conservative to liberal) it is customary to assume
that preferences are single-peaked, meaning that every individual has an “ideal point” along
a scale of alternatives that he prefers, with his ranking of other alternatives decreasing
the farther those alternatives are from his ideal point. If one assumes that preferences are
single-peaked, it is possible to find social choice functions that are not dictatorial and
satisfy monotonicity or nonmanipulability.

Another direction of inquiry in social choice theory involves “taking manipulation
into account”: constructing games whose sole equilibria are “desired outcomes.” In other
words, one studies implementations of social choice functions by appropriate game mech-
anisms, taking into account that each individual will do his best to have his preferred
alternatives chosen (possibly by not reporting his true preferences). The interested reader
is directed to Peleg [1984] for a detailed analysis of this subject.

21.5 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Example 21.1 was first presented by Borda [1784]. The interested reader may find three
simple proofs of Theorem 21.10 in Geanakoplos [2005].

Both the Borda Method (Exercise 21.3) and the Condorcet Method (Exercise 21.4)
were suggested as early as the thirteenth century by Ramon Lull. Approval voting (see
Exercise 21.28) was used as the voting procedure of the Major Council of the Republic of
Venice in the Middle Ages. Exercise 21.5 is based on an example appearing in Balinski
and Laraki [2007]. The authors thank Rida Laraki for kindly answering many questions
during the composition of this chapter.

21.6 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

21.1 For each of the following relations, determine whether it is complete, reflexive,
irreflexive, or transitive, and use this to determine whether it is a preference relation
or a strict preference relation.

(a) A is the set of all subsets of some set S, and a � b if and only if b is a subset
of a.

(b) A is the set of all natural numbers, and a � b if and only if b is a divisor of a

(i.e., a = bq for some integer q).
(c) A is the set of all 26 letters in the Latin alphabet, and α � β if and only if αβ

is a standard word in English (where α is the first letter of the word, and β the
second letter of the word).



875 21.6 Exercises

(d) A is the set of all natural numbers, and a � b if and only if a × b = 30.
(e) A is the set of all human beings, past and present, and b � a if and only if a is

a descendant of b (meaning a child, grandchild, great-grandchild, etc).
(f) A is the set of people living in a particular neighborhood, and a � b if and

only if a likes b.

21.2 Show that if P ∗ is a strict preference relation then P := P ∗ ∪ {(a, a) : a ∈ A} is a
preference relation.

21.3 The Borda Method The French mathematician Borda proposed the following
voting method. Every voter ranks the candidates, from most preferred to least
preferred. A candidate receives k points (called Borda points) from a voter if that
voter ranks the candidate higher than exactly k other candidates. The Borda ranking
of a candidate is given by the total number of Borda points he receives from all
the voters. The winning candidate (called the Borda winner) is then the candidate
who has amassed the most Borda points.

(a) For every pair of candidates a and b, let Na,b be the number of voters ranking
a ahead of b. Show that the Borda ranking of candidate a equals

∑
b �=a Na,b.

(b) Compute the Borda ranking, and the Borda winner, from among the three
candidates A, B, and C in Example 21.2.

21.4 The Condorcet Method The French mathematician Condorcet proposed the fol-
lowing method for determining a social preference order based on the strict prefer-
ences of the individuals in society. A voter i with a strict preference order Pi grants
k Condorcet points to a strict preference relation P if there are exactly k pairs of
alternatives a, b satisfying b P a and b Pi

a. The number of Condorcet points
amassed by the strict preference relation P is the total sum of the Condorcet points
it receives from all the voters. The strict social preference order is the one that has
amassed the greatest number of Condorcet points.

(a) Is the strict preference relation amassing the greatest number of Condorcet
points unique? If yes, prove this claim. If no, present a counterexample.

(b) Show that if there exists a Condorcet winner, then every strict preference
relation receiving the maximal number of Condorcet points ranks the Condorcet
winner highest in its preference ordering.

(c) Find the number of Condorcet points that each strict preference relation receives
in Examples 21.1 and 21.2, and determine the preference relation that the
Condorcet Method chooses.

21.5 The Borda and Condorcet Methods The following example was presented by
Condorcet, in a critique of the Borda Method. A committee composed of 81
members is to choose a winner from among three candidates, A, B, and C. The
rankings of the committee members appear in the following table:
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No. of voters First candidate Second candidate Third candidate
30 A B C

1 A C B

29 B A C

10 B C A

10 C A B

1 C B A

(a) Is there a Condorcet winner? If yes, who is the Condorcet winner?
(b) What is the Borda ranking, and who is the Borda winner?
(c) Based on your answers above, what is Condorcet’s critique of the Borda

Method?

A counterclaim to Condorcet’s critique might be given by analyzing the preference
profile in the following way. A Condorcet component is a set of 3n individuals
whose strict preference relations are as follows:

No. of voters First candidate Second candidate Third candidate
n a1 a2 a3

n a3 a1 a2

n a2 a3 a1

The variables a1, a2, a3 are three distinct alternatives (this example can be gen-
eralized to an arbitrary number of alternatives). In a certain sense, these voters
“neutralize” each other, and they can therefore be removed from the list of voters.

(a) What are all the Condorcet components in this example?
(b) Remove all the individuals appearing in one of the Condorcet components.

From among the remaining individuals, find another Condorcet component
and remove all the individuals in that component. Repeat this process until
there remain no Condorcet components. Is there a Condorcet winner according
to the strict preference profile that remains at the end of this process? If so,
which candidate is the Condorcet winner?

(c) Given the above two items, elucidate a counterclaim to Condorcet’s critique of
the Borda Method.

21.6 Show that there is at most one dictator in every social welfare function F : if i is a
dictator in F , and j is also a dictator in F , then i = j .

21.7 A committee comprised of 15 members is called upon to rank three colors: red,
blue, and yellow, from most preferred to least preferred. The committee members
simultaneously announce their strict preference relations over the three colors.
If red is the preferred color of at least five members of the committee, red is
determined to be the prettiest color. Otherwise, if blue is the preferred color of at
least five members of the committee, blue is determined to be the prettiest color.
Otherwise, yellow is determined to be the prettiest color. Once the prettiest color
is determined, the remaining two colors are then ranked by the simple majority
rule.
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(a) Is the social welfare function described here dictatorial? Justify your answer.
(b) Does the social welfare function described here satisfy the unanimity property?

Justify your answer.
(c) Does the social welfare function described here satisfy the independence of

irrelevant alternatives property? Justify your answers.

21.8 Repeat Exercise 21.7 for the following situation. There are two alternatives, A =
{a, b}, and n voters. Let k ∈ {0, 1, 2, . . . , n} and let Fk be the following social
welfare function: a �Fk (PN ) b if and only if the number of individuals who prefer
a over b is greater than or equal to k.

21.9 Let F be a social welfare function satisfying the independence of irrelevant alter-
natives property, and let a, b be two distinct alternatives. Let P N and QN be two
strict preference profiles satisfying

a Pi
b ⇐⇒ a Qi

b, ∀i ∈ N. (21.44)

Prove that a ≈F (P N ) b if and only if a ≈F (QN ) b.

21.10 Denote by K = |A| the number of alternatives in A. For each alternative a ∈ A,
denote by ja(Pi) the ranking of a in the strict preference relation Pi (for example,
ja(Pi) = 1 when alternative a is the most-preferred alternative according to Pi).
Define a social welfare function as follows. For each alternative a, compute the sum
sa = ∑

i∈N ja(Pi). We say that alternative a is (weakly) preferred to alternative b

if and only if sa ≤ sb.

(a) Prove that this defines a social welfare function.
(b) Is this a dictatorial function? Does it satisfy the unanimity property? Does

it satisfy the independence of irrelevant alternatives property? Justify your
answers.

(c) What is the connection between this voting system and the Borda system
appearing in Exercise 21.3?

21.11 Prove Theorem 21.16 (page 861): let F be a social welfare function satisfying the
unanimity property. Then for every a, b ∈ A the coalition N is decisive for a over
b, and the empty coalition ∅ is not decisive for a over b.

21.12 A jury composed of seven members is called upon to find an accused individual
either guilty or innocent. Debbie is the jury forewoman, with Bobby and Jack
appointed vice-foremen. The jury includes four more jurors, in addition to Debbie,
Bobby and Jack. For each of the following cases, describe the set of all decisive
coalitions for “guilty” over “innocent,” and the set of all minimal decisive coalitions
for this pair of alternatives.

(a) The accused is found guilty only if all the jurors unanimously agree that he is
guilty.

(b) The accused is found guilty if a majority of jurors declare him to be guilty.
(c) The accused is found guilty if at least four jurors, including Debbie, declare

him to be guilty.
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(d) The accused is found guilty if at least four jurors, including Debbie, declare
him to be guilty, or if at least five jurors, including Bobby and Jack, declare
him to be guilty.

(e) The accused is found guilty if at least four jurors declare him to be guilty, or if
Debbie, Bobby, and Jack declare him to be guilty.

(f) The accused is found guilty if at least five jurors, including Debbie and at least
one of her vice-foremen, declare him to be guilty.

21.13 Suppose that |A| ≥ 3, and let F be a social welfare function satisfying the properties
of unanimity and independence of irrelevant alternatives. What are all the decisive
coalitions?

21.14 Show that the assumptions of Theorem 21.18 (page 862) are necessary for its
conclusion: if we remove any one of the three assumptions of the theorem, the
conclusion does not hold.

21.15 Sam wishes to prove Claim 21.20 (page 864) using the following strict preference
profile, instead of the preference profile QN appearing in the proof of the claim on
page 864. How can you help Sam complete his proof of the claim?⎧⎨⎩

a Qi
c Qi

b i = j,

a Qi
b Qi

c i �= j, a Pi
b,

b Qi
a Qi

c i �= j, b Pi
a.

(21.45)

21.16 Ben wishes to prove Claim 21.20 (page 864) using the following strict preference
profile, instead of the preference profile QN appearing in the proof of the claim on
page 864. Why does the proof of the claim fail when using this preference relation?⎧⎨⎩

a Qi
c Qi

b i = j,

a Qi
c Qi

b i �= j, a Pi
b,

c Qi
b Qi

a i �= j, b Pi
a.

(21.46)

21.17 A social welfare function F is called monotonic if for every alternative a ∈ A, and
every pair of strict preference profiles P N and QN satisfying

a Pi
c =⇒ a Qi

c, ∀c �= a, ∀i ∈ N, (21.47)

the following is also satisfied:

a F (P ) c =⇒ a F (Q) c, ∀c �= a. (21.48)

In words, if for each individual i the ranking of alternative a relative to the other
alternatives is not lowered in moving from Pi to Qi , then its ranking is not lowered
in society’s ranking, according to the social welfare function, when moving from
profile P N to profile QN .

Answer the following questions:

(a) Are the social welfare functions in Exercises 21.7 and 21.10 monotonic? Justify
your answer.

(b) Does every monotonic social welfare function satisfy the unanimity property?
Justify your answer.
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(c) Does every monotonic social welfare function satisfy the independence of
irrelevant alternatives property? Justify your answer.

(d) Is every social welfare function satisfying the independence of irrelevant alter-
natives property monotonic? Justify your answer.

21.18 Ron and Veronica need to choose a name for their newborn daughter. After giving
the matter much thought, they have narrowed the list of possible names to four:
Abigail, Iris, Irene, and Olga. They now must choose one name from this list. Each
parent ranks the four names in order of preference. Given each of the following
decision rules, determine whether it is a social choice function. If yes, determine
whether it is monotonic, and whether it is manipulable. Justify your answers.
(If a rule is monotonic, provide a direct proof that it satisfies the property of
monotonicity. If a rule is manipulable, provide an example showing how it may be
manipulated.)

(a) If both parents select a name as being the most preferred, that name is chosen.
Otherwise, if there is only one name that both parents rank within their top two
most-preferred names, that name is chosen. Otherwise, Abigail is the chosen
name.

(b) If both parents select a name as being the most preferred, that name is chosen.
Otherwise, if there is only one name that both parents rank within their top
two most-preferred names, that name is chosen. Otherwise, the parents toss a
coin to determine the name of their daughter, with Iris chosen if the coin shows
heads, and Olga chosen if the coin shows tails.

(c) If Ron most prefers the name Irene, that name is chosen. Otherwise, the name
that Veronica most prefers is chosen.

(d) As a first step, the name that each parent ranks last by preference is removed
from the list under consideration. This leaves two or three names in contention.
In the next step, the name that each parent ranks last by preference from among
the two or three remaining names is removed from the list under considera-
tion. This leaves zero, one, or two names. If two names remain, the process
of removing the name that each parent least prefers from the list under con-
sideration is repeated again. If only one name remains, that name is chosen.
Otherwise, Olga is chosen as the child’s name.

21.19 A committee comprised of 15 members is called upon to choose the prettiest
color: red, blue, or yellow. The committee members simultaneously announce their
strict preference relations among these three colors. If red is the most-preferred
color of at least one committee member, red is declared the prettiest color. Oth-
erwise, if blue is the most-preferred color of at least one committee member,
blue is declared the prettiest color. Otherwise, yellow is declared the prettiest
color.

(a) Is the social choice function described above dictatorial? Justify your answer.
(b) Is the social choice function described above monotonic? Justify your answer.
(c) Is the social choice function described above manipulable? Justify your answer.
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21.20 The following electoral method is used to choose the mayor of Whoville: Every
resident ranks the candidates from most preferred to least preferred, and places
this ranked list in a ballot box. Each candidate receives a number of points equal to
the number of residents who prefer him to all the other candidates. The candidate
who thus amasses the greatest number of points wins the election. If two or more
candidates are tied for first place in the number of points, the winner of the election
is the candidate among them whose social security number is smallest. Assume
there are at least three candidates.

(a) Show by example that this electoral method is not monotonic.
(b) Show by example that this electoral method is not manipulable.

21.21 Repeat Exercise 21.20, under the following scenario. The following electoral
method is used to choose the mayor of Sleepy Hollow: Every resident ranks
the candidates from most preferred to least preferred, and places this ranked list in
a ballot box. Each candidate receives a number of points equal to the number of
residents who rank him or her in the first two positions. The candidate who thus
amasses the greatest number of points wins the election. If two or more candidates
are tied for first place in the number of points, the winner of the election is the
candidate among them whose social security number is smallest. Assume there are
at least three candidates.

21.22 The following electoral method is used to choose the mayor of Hobbiton: Every
resident ranks the candidates from most preferred to least preferred, and places
this ranked list in a ballot box. Each candidate receives a number of points equal
to the number of residents who rank him or her least preferred. The candidate
who thus amasses the greatest number of points is then removed from the list
of candidates. If two or more candidates are tied for first place in the number
of points, the candidate among them whose social security number is greatest is
removed from the list of candidates. This candidate is then ignored in the strict
preference relations submitted by the residents, and the process is repeated as often
as is necessary, until only one candidate remains, who is declared the new mayor.
Assume there are at least three candidates.

(a) Is it possible for the winner of the election to not be the most preferred candidate
of any resident? Justify your answer.

(b) Is it possible for the winner of the election to be ranked least preferred by at
least half of the residents? Justify your answer.

(c) Is the social choice function described here dictatorial? Justify your answer.
(d) Is it monotonic? Prove why yes, or show by example that it is not monotonic.
(e) Is it manipulable? If yes, provide an example or otherwise prove that it is not.
(f) After the election of the mayor, using the above method, is completed, the local

Elections Board checks which candidate would have won had they implemented
instead the electoral method used in Whoville (see Exercise 21.20). Will the
same candidate necessarily be chosen under both electoral methods? Justify
your answer.
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21.23 Repeat Exercise 21.20 for the following situation. The following electoral method
is used to choose the mayor of Hogsmeade Village: Every resident ranks the
candidates from most preferred to least preferred, and places this ranked list in
a ballot box. For each candidate a denote by Na,k the ratio of residents (using a
number between 0 and 1) who ranked him or her in the top k positions. Further
denote:

k0 = min

{
k ∈ N : there is a candidate a such that Na,k >

k

k + 1

}
. (21.49)

The winning candidate is the one whose value of Na,k0 is maximal (if there are two
or more such candidates, the winner is the candidate among them whose social
security number is smallest).

Under this method, if there is a candidate who is ranked first by more than
half of the population, he or she wins the election. Otherwise, if there are one or
more candidates who are ranked first or second by more than two-thirds of the
population, the winner of the election is the candidate who is ranked first or second
by the greatest number of residents, and so on.

21.24 Let A be a set of alternatives, and let P N be a strict preference profile. Alterna-
tive a ∈ A is termed the Condorcet winner if for every alternative b �= a, more
than half of the individuals rank a above b. A social choice function G satisfies
the Condorcet criterion if for every strict preference profile P N for which there
exists a Condorcet winner a, it chooses the Condorcet winner, i.e., G(P N ) = a

holds.

(a) Does a Condorcet winner a exist for every strict preference profile P N ? Justify
your answer.

(b) Which of the social choice functions described in Exercises 21.19–21.23 satisfy
the Condorcet criterion? Justify your answer.

21.25 Let G be a monotonic social choice function, let P N and QN be two strict
preference profiles, and let R ⊆ A. Show that if a ∈ R and G(PN ) = a, then
G(Z(P N, QN ; R)) = a. (for the definition of Z(P N, QN ; R) see Definition 21.30
on page 867).

21.26 Let G be a monotonic social choice function, let a ∈ range(G), and let P N be a
strict preference profile. Show that if

a Pi
b, ∀i ∈ N, (21.50)

then G(P N ) �= b.

21.27 In this exercise we prove Theorem 21.35 (page 871).

(a) Prove that if G is a monotonic social choice function, then for any pair of strict
preference relations P N and QN satisfying

a Pi
b ⇐⇒ a Qi

b, ∀a, b ∈ range(G), ∀i ∈ N, (21.51)
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G(P N ) = G(QN ). In words, the claim states that the alternatives that are not
in range(G) have no effect on the choice of G.

(b) Show that if G is a monotonic social choice function satisfying |range(G)| ≥ 3,
then there is an individual i such that for every strict preference profile P N the
alternative G(P N ) is the most prefered alternative from i’s perspective, from
among all the alternatives in range(G).

Guidance: For the first part, choose a strict preference profile WN , and denote
R = range(G). Show that Z(P N, WN ; R) = Z(QN, WN ; R), and use Theorem
21.31 to derive the claim. For the proof of the second part, use Exercise 21.26.

21.28 Approval voting In this question, we consider the case in which the individu-
als are called upon to choose candidates for a task, by specifying which candi-
dates they most approve for the task. Let A be a nonempty set of alternatives.
A binary relation Pi over A is called (at most) two-leveled if there exists a set
B(Pi) ⊆ A satisfying: (i) b ≈Pi

c for every b, c ∈ B(Pi), (ii) b ≈Pi
c for every

b, c ∈ A \ B(Pi), (iii) b Pi
c for every b ∈ B(Pi), and c ∈ A \ B(Pi). In words,

the individual is indifferent between all the alternatives in B(Pi), he is indif-
ferent between all the alternatives that are not in B(Pi), and he prefers all the
elements in B(Pi) to all the elements that are not in B(Pi). The interpretation that
we give to such a preference relation is that the individual approves of all the
alternatives in B(Pi), and disapproves of all the alternatives not in B(Pi). A two-
leveled preference profile P N is a profile of preference relations all of which are
two-leveled.

Consider a choice function H associating every two-leveled profile with
a single alternative, which is declared to be society’s most-preferred alterna-
tive. Such a choice function H is called monotonic if for every pair of two-
leveled preference profiles PN and QN , if H (P N ) = a, and if every individ-
ual i satisfies B(Qi) = B(Pi) or B(Qi) = B(Pi) ∪ {a}, then H (QN ) = a. In
other words, if alternative a is chosen under preference profile P N , and if QN

is a preference profile that is identical to P N except that some individuals
have added a to the set of their approved alternatives, then a is also chosen
under QN .

A choice function H is called nonmanipulable if for every two-leveled pref-
erence profile P N , for every individual i, and for every two-leveled preference
relation Qi , it is the case that H (P N ) �Pi

H (Qi, P−i).
Define a choice function H ∗ as follows: a winning alternative is one that is

approved by the greatest number of individuals; in other words, a is a winning
alternative if it maximizes the value of |{i ∈ N : a ∈ B(Pi)}|. If there are two or
more alternatives receiving the greatest number of approval votes, the alternative
whose serial number is lowest is chosen.

Is this choice function monotonic? Is it manipulable? Justify your answer.

21.29 This exercise is similar to Exercise 21.28, but we now assume that the individ-
uals are called upon to agree on a set of approved alternatives (as opposed to
one most-approved alternative). In other words, the function H associates each
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two-leveled preference profile P N with a two-leveled preference profile H (P N ).
In this case, a choice function H is called nonmanipulable if for every two-leveled
preference profile P N , and every individual i, if a ∈ B(Pi) and if a �∈ B(H (P N )),
then a �∈ B(H (Qi, P−i)) for every two-leveled preference relation Qi .

Define a function H ∗ as follows: the set of approved alternatives, H ∗(P N ),
is the set of alternatives that are approved by the greatest number of individuals
according to P N . Is this function manipulable? Justify your answer.



22 Stable matching

Chapter summary
In this chapter we present the subject of stable matching. Introduced in 1962 by David
Gale and Lloyd Shapley, stable matching became the starting point of a rich literature on
matching problems in two-sided markets (e.g., workers and employers, interns and
hospitals, students and universities), and remains one of the most applied areas in game
theory to date.

We present Gale and Shapley’s basic model of matching men to women, the concept
of stable matching, and an algorithm for finding it. It is proved that the set of stable
matchings has a lattice structure based on the preferences of women and men. We then
study several variations of the model: the case in which there are more men than
women; the case in which bachelorhood is not the worst outcome; the case of
many-to-one matchings (e.g., many students to one college); and matchings in a
single-gender population. It is also shown that the Gale–Shapley algorithm is not
immune to strategic manipulations.

The study of the subject of this chapter began at the end of the nineteenth century, with
the introduction of residency requirements for recent medical school graduates. Fresh
medical school graduates needed to find a hospital in which to pursue their medical
internships. Over the years, the residents played an increasingly important role in the
staffs of hospitals, and hospitals began competing with each other for the best medical
school graduates. To get a jump on the competition, hospitals kept moving up the dates
on which they granted medical students residency positions. By 1944, medical students
beginning their third year of medical school (out of four years) were interviewed for
residency positions. This state of affairs did not serve the interests of either students or
hospitals, and as the situation only deteriorated further, medical schools and hospitals
agreed in 1951 to adopt a formal system for matching graduating medical students with
hospitals, beginning the following year. The system works as follows: after interviews
are conducted, the fourth-year medical students rank the hospitals at which they were
interviewed, while at the same time the hospitals rank the students that they interviewed.
Each hospital also announces the maximum number of residents that it can hire. The
data are collected by a special national resident matching program, which then inputs the
data into an algorithm composed for the purpose of matching hospitals and residents. The
algorithm takes into account the preferences of both the hospitals and the medical students
with an attempt to arrive at a “best fit.”

884
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Participation in this central mechanism, on the part of both hospitals and medical
students, is voluntary. The satisfaction that all parties derive from a good suggested
“matching” between residents and hospitals is therefore a significant factor in determining
the extent of participation in the matching system and its success.

It is not easy to arrive at matches that please everyone. For example, if Mark prefers
Massachusetts General Hospital to Johns Hopkins Hospital, and Massachusetts General
Hospital prefers Mark to Andrew, it would be unwise to send Mark to Johns Hopkins
and Andrew to Massachusetts General. Such a matching will generate dissatisfaction for
both Mark and Massachusetts General, and both of them will then have an incentive to
disregard the matching program. If too many such cases multiply, the entire system could
be abandoned (this actually happened in the United Kingdom, where the system matching
house officer posts at British hospitals with medical students led to so many unsatisfactory
matches that it fell into disuse).

The beauty of the algorithm used by the American national resident matching program
is that it leads to matches in which no pair is dissatisfied: if Mark is matched with Johns
Hopkins Hospital, then Massachusetts General Hospital must have been matched with
residents whom it preferred to Mark, and Mark has no justified complaint, because his
preferred hospital simply preferred others to him; no injustice was involved, nor any
inefficiency in the algorithm.

The problem of matching elements from two different populations is not limited to
the example of hospitals and potential residents. Two additional examples that may be
adduced are matching workers and employers, and matching men and women in couples.

In 1962, David Gale and Lloyd Shapley published a paper defining the matching
problem and the concept of “stable matching.” In that paper, they also proved that stable
matchings always exist, and spelled out an algorithm for computing stable matchings.
Several years later, Alvin Roth connected the Gale–Shapley result to the algorithms used
to match residents and hospitals in the United States, by showing that the algorithms used
in the resident matching system created stable matchings according to Gale and Shapley’s
definition of the term.

The subject of matching raises many natural questions: What is the best definition
of a stable placement of candidates for residency with open positions? Do such stable
placements always exist? If so, how can they be found? Can a hospital (or a candidate for
residency) obtain a more satisfactory placement by submitting a preference ordering over
candidates that differs from the honest preference ordering?

In this chapter, we will first consider the simple case in which the number of residency
candidates equals the number of hospitals, and each hospital is seeking only one resident.
Such a situation better describes the matching of men and women in married couples,
and we will therefore use the language of that metaphor in analyzing this problem. The
matching situation we consider then consists of n men and n women. Each man orders the
women in decreasing order, from the woman he most prefers to the woman he least prefers
as a mate, and each woman similarly orders the men in decreasing order of preference.
The goal is to match each man to one woman in such a way that no complaints will be
registered: if Julius is matched to Cornelia and Mark is matched to Cleopatra, then Julius
and Cleopatra should not leave their spouses for each other: either Julius prefers Cornelia
to Cleopatra or Cleopatra prefers Mark to Julius (or both).

Later in the chapter we will study extensions of this basic model.
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22.1 The model
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

We begin by recalling the definition of a preference relation. In words, a preference
relation enables us to compare any two elements of a set, and state which of the two is
more preferred.

Definition 22.1 Let X be a set. A preference relation1 over X is a binary relation 
satisfying the following properties:

� For every x �= y, either x  y or y  x (the relation is complete; i.e., every pair of
distinct elements can be compared).

� x � x (the relation is irreflexive; i.e., x is not preferred to itself).
� If x  y, and y  z, then x  z (the relation is transitive; i.e., if x is preferred to y, and
y is preferred to z, then x is also preferred to z).

Every complete, irreflexive, and transitive relation is asymmetric: if x �= y, then x  y

if and only if y � x (Exercise 22.1).
Note that a preference relation, as we have defined it, represents strict preferences; we

are not allowing for the possibility of indifference. We are assuming this for the sake of
simplifying the analysis. Some of the results presented in this chapter can be generalized
to preference relations with indifference (see Exercise 22.35).

We are now ready for the formal definition of a matching problem.

Definition 22.2 A matching problem is given by:

� A natural number n representing the number of men and the number of women in a
population (thus, we assume that the number of women equals the number of men).

� Every woman has a preference relation over the set of men.
� Every man has a preference relation over the set of women.

The set of women will be denoted by W , and an element in that set is denoted by w.
The set of men will be denoted by M , and an element in that set is denoted by m. The fact
that a woman w prefers a man m1 to a man m2 is denoted

w : m1  m2. (22.1)

For example, “Cleopatra prefers Julius to Mark” is denoted as:

Cleopatra: Julius  Mark.

Definition 22.3 A matching is a bijection from the set of men to the set of women.

Equivalently, a matching is a collection of n pairs {(w1, m1), (w2, m2), . . . , (wn, mn)} such
that {m1, m2, . . . , mn} = M and {w1, w2, . . . , wn} = W . If a pair (w, m) is included in a
matching, then we say that the man m is matched to the woman w (or that the woman w

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 The definition appearing here is of a complete and strict ordering relation (meaning that there is no possibility
of indifference between any two elements). In other places in this book (Chapters 2 and 21) we have presented
definitions of ordering relations that satisfy other properties.
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is matched to the man m). We will henceforth denote matchings using the letters A, B, or
C, etc.

Definition 22.4 A man and a woman object to a matching, if they prefer each other to the
mates to whom they are matched under the matching. A matching is stable if there is no
pair consisting of a man and a woman who have an objection to the matching.

The following definition is equivalent to that of a stable matching (Exercise 22.4).

Definition 22.5 A matching A is stable if in every case that a man prefers another woman
to the woman to whom he is matched under A, that woman prefers the man to whom she
is matched to him.

The definition may be similarly phrased by interchanging the roles of the men and the
women: matching A is stable if in every case that a woman prefers another man to the man
to whom she is matched under A, that man prefers the woman to whom he is matched to her.

Example 22.6 Consider the following example, where n = 4: the set of men is {Adam, Ben, Charles, Dean},
and the set of women is {Anne, Bess, Carol, Donna}. The preferences of these men and women are
presented in Figure 22.1. The preferences of the women appear in the lower right-hand side of each
cell (read vertically) and the preferences of the men appear in the upper left-hand side of each cell
(read horizontally). For example, in the upper left cell of the table, corresponding to the pair Anne –
Adam, the numbers 2 and 4 are listed: Adam is second on Anne’s preference list, and Anne is fourth
on Adam’s preference list.

The matching depicted in Figure 22.1 by stars, and detailed again in Figure 22.2, is not stable.
This is because Carol and Adam have an objection to the matching: Carol prefers Adam (number
2 on her list) to Charles (number 3 on her list), and Adam prefers Carol (number 2 on his list) to
Anne (number 4 on his list).

Anne Bess Carol Donna

Dean

Charles

Ben

Adam

4

1

3

4

1

2

♣

2

4

3

4

1

1

♣

4

1

2

3

1

3

3

3

4

3

2

2

♣

1

2

♣

2

2

3

4

4

1

Figure 22.1 The preference relations of the men and the women, along with two matchings (one
denoted by �, and the other by ♣)
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AnneBessCarolDonna

AdamBenCharlesDean
Figure 22.2 An unstable matching (denoted by � in Figure 22.1) and an objection to that
matching

In contrast, the matching

(Adam – Carol, Ben – Anne, Charles – Bess, Dean – Donna),

depicted in Figure 22.1 by ♣, is stable. To see this, note that Anne, Bess, and Donna are all matched
with the men who are number 1 on their lists, so that none of them will object to the matching with
any man. Carol is matched with Adam, who is number 2 on her list, and therefore the only possible
objection she may have is with Dean, who is number 1 on her list. But Dean prefers Donna (number
2 on his list) to Carol (number 3 on his list). This matching is thus stable, because no pair consisting
of a man and a woman has an objection. �

22.2 Existence of stable matching: the men’s courtship algorithm
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The first theorem we prove states that there always exists a stable matching. The proof is
attained by presenting an algorithm that leads to a stable matching. The algorithm is due
to Gale and Shapley [1962].

Theorem 22.7 To every matching problem there exists a stable matching.

Proof:
Step 1: Description of the algorithm.
Consider the following algorithm:

1. Stage 1(a): Every man goes to stand in front of the house of the woman he most prefers.
2. Stage 1(b): Every woman asks the man whom she most prefers from among the men

standing in front of her house, if there are any, to wait, and dismisses all the other men.
3. Stage 2(a): Every man who was dismissed by a woman in the first stage goes to stand

in front of the house of the woman he most prefers from among the women who have
not previously dismissed him (i.e., the woman who is second on his list).

4. Stage 2(b): Every woman asks the man whom she most prefers from among the men
standing in front of her house, if there are any (including the man whom she told to
wait in the previous stage), to wait, and dismisses all the other men. In general:

5. Stage k(a): Every man who was dismissed by a woman in the previous stage goes to
stand in front of the house of the woman he most prefers from among the women who
have not previously dismissed him.

6. Stage k(b): Every woman asks the man whom she most prefers from among the men
standing in front of her house, if there are any, to wait, and dismisses all the other men.

7. The algorithm terminates when there is one man standing in front of every woman’s
house.
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It is possible, in principle, that a particular man will be dismissed by every woman. We
will show that this cannot happen. The algorithm will always terminate, and every woman
will have one man standing in front of her house. The algorithm therefore always terminates
by finding a matching. We will further prove that the algorithm always terminates by
finding a stable matching.

Before proceeding to the proof of the theorem, we note that the algorithm satisfies the
following three properties that will later be needed. The reader can readily ascertain that
the first and third properties are satisfied. The reader is further asked to show that the
second property is also satisfied, in Exercise 22.2.

(1) The preferred women have been courted in the past: If, in stage k, Henry stands in
front of the house of Anne, but prefers Catherine to Anne, then it must be the case that
he previously courted Catherine by standing in front of her house, and was dismissed. In
other words, the men go down their preference list along the course of the algorithm.

(2) The preferred men will come courting in the future: If, in stage k, Cleopatra asks
Mark to wait, and in a later stage asks Julius to wait, then she prefers Julius to Mark. In
other words, the women go up their preference list along the course of the algorithm.

(3) Once a woman is courted, she will always be courted: If, in stage k, Mark stands in
front of Cleopatra’s house, then from stage k onwards, there will always be at least one
man courting Cleopatra by standing in front of her house.

Step 2: The algorithm terminates in a finite number of stages and produces a matching.
We first show that there is a stage at which no man is dismissed. A man who is dismissed
by a women never returns to court her again. This means that each woman dismisses at
most n − 1 men. It follows that after at most n(n − 1) = n2 − n stages, there are no more
rejections, and therefore after at most n2 − n + 1 stages we arrive at a stage at which no
woman dismisses any man.2

We next show that a man cannot be dismissed by all women. Assume by way of
contradiction that there exists a man, let’s call him Joe, who was dismissed by all the
women. By the algorithm’s construction, Joe must have paid a visit to the house of every
woman. By the “once a women is courted, she will always be courted” property, after
Joe has courted every woman, every woman has a man standing in front of her house.
Since the number of women equals the number of men, and Joe is not standing in front
of any woman’s house, there must be a woman who has no man in front of her house, a
contradiction. Hence there cannot be a man who has been dismissed by every woman.

It follows that the algorithm terminates by producing a matching. Indeed, if at the end
of any particular stage no man is sent home, it follows that in front of each woman’s house
there is one and only one man left standing, who is then her mate. A matching has been
attained.

Step 3: The resulting matching is stable.
Suppose by contradiction that the resulting matching is unstable. Then there exist at least
one man and one woman, let’s call them Julius and Cleopatra, who prefer each other to the

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2 In fact, the algorithm terminates after at most (n − 1)2 + 1 stages (see Exercise 22.13).
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mates to which they have been matched under the algorithm. Suppose that the algorithm
has matched Julius to Cornelia, and Cleopatra to Mark.

Since Julius prefers Cleopatra to Cornelia, by “the preferred women were courted in
the past” property, Julius must have courted Cleopatra before he courted Cornelia. Since
Cleopatra has been matched by the algorithm to Mark, by “the preferred men will come
courting in the future” property, she prefers Mark to Julius. This contradicts the assumption
that Julius and Cleopatra have an objection to the matching. �

Example 22.6 (Continued) We apply the matching algorithm to Example 22.6. The table in Figure 22.3

describes the run of the algorithm.

Anne Bess Carol Donna Dismissed men
Stage 1(a) Dean(1) Ben(1), Charles(1) Adam(1)
Stage 1(b) Dean(1) Charles(1) Adam(1) Ben
Stage 2(a) Dean(1), Ben(2) Charles(1) Adam(1)
Stage 2(b) Ben Charles(1) Adam(1) Dean
Stage 3(a) Ben(2) Charles(1) Adam(1), Dean(2)
Stage 3(b) Ben(2) Charles(1) Dean(2) Adam
Stage 4(a) Ben(2) Charles(1) Adam(2 ) Dean(2)

Figure 22.3 Men’s courtship algorithm

Each stage of the run of the algorithm is described by two consecutive rows. In the row cor-
responding to part (a) we note the men who are standing in front of women’s houses after the
application of part (a) of that stage (prior to the dismissals of the women), and in the row cor-
responding to part (b) we note the men who are standing in front of women’s houses after the
application of part (b) of that stage (after the women have announced their dismissals). The number
appearing by the name of each man represents the ranking of the woman in front of whose house
he is standing, in his preference relation.

The algorithm ends with the matching:

(Adam – Carol, Ben – Anne, Charles – Bess, Dean – Donna),

which is the stable matching previously mentioned. �

22.3 The women’s courtship algorithm
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In the algorithm presented in the previous section, the men courted the women, and the
women kept the men waiting or dismissed them. We call the resulting matching a “men’s
courtship matching,” and denote it by Om. The roles of the men and women, however, may
be reversed, with women taking the courting initiative, going to the mens’ houses, with
each man keeping only the most preferred woman from among those standing in front
of his house and dismissing all the others. By the proof of Theorem 22.7, this algorithm
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also leads to a stable matching, which we call the “women’s courtship matching,” denoted
by Ow.

Example 22.6 (Continued) We apply the women’s courtship algorithm to Example 22.6 (see Figure 22.4).

Adam Ben Charles Dean Dismissed women
Stage 1(a) Anne(1) Bess(1) Carol(1), Donna(1)
Stage 1(b) Anne(1) Bess(1) Donna(1) Carol
Stage 2(a) Carol(2) Anne(1) Bess(1) Donna(1)

Figure 22.4 Women’s courtship algorithm

The algorithm ends with the matching:

(Adam – Carol, Ben – Anne, Charles – Bess, Dean – Donna),

which is exactly the same matching that the men’s courtship algorithm produced. Do the two
different algorithms always lead to the same matching? The answer to that question is negative: as
the next example shows, the men’s courtship algorithm may lead to a different matching from the
women’s courtship algorithm, which indicates that there may be more than one stable matching.
In addition, there may be stable matchings that are different from those attained by applying either
the men’s courtship or the women’s courtship algorithms described above. �

Example 22.8 Consider the matching problem depicted in Figure 22.5, with three men and three women.

Anne Bess Carol

Charles

Ben

Adam

2

2

1

3 ♣

3

1

1

3 ♣

3

1

2

2

3

1

2

2

1

3 ♣

Figure 22.5 The preferences of the men and women in Example 22.8, and three stable matchings

The matching indicated by darkened squares is the men’s courtship matching (attained by each
man matched to the woman he most prefers), the matching indicated by clubs is the women’s
courtship matching (attained by each woman matched to the man she most prefers), and the
matching indicated by stars is a third stable matching that differs from the previous two matchings
(the reader is asked to ascertain that each of these three matchings is indeed stable). �
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The number of possible matchings equals n!, the number of permutations of n ele-
ments. This number rapidly grows large as n grows. In principle the number of sta-
ble matchings could still be rather small. However, Gusfield and Irving [1989] show
that matching problems may have a very large number of stable matchings. Using their
method, one can construct a matching problem with 8 men and 8 women, with 268 stable
matchings; a matching problem with 16 men and 16 women, with 195,472 stable match-
ings; and a matching problem with 32 men and 32 women, with 104,310,534,400 stable
matchings.

22.4 Comparing matchings
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

So far we have found ways to attain two possible matchings: the men’s courtship algorithm
and the women’s courtship algorithm. As shown in Example 22.8, there may be more stable
matchings. Since these algorithms may lead to the creation of different pairs, if we compare
two stable matchings there may be men and women who will prefer the application of one
matching, and others who will prefer the application of the other matching.

Example 22.9 Consider a matching problem with four women and four men, with the preference relations

depicted in Figure 22.6. This matching problem has four stable matchings: (check that this is true):

A1 : Adam – Anne, Ben – Bess, Charles – Carol, Dean – Donna

A2 : Adam – Bess, Ben – Anne, Charles – Carol, Dean – Donna

A3 : Adam – Anne, Ben – Bess, Charles – Donna, Dean – Carol

A4 : Adam – Bess, Ben – Anne, Charles – Donna, Dean – Carol

Anne Bess Carol Donna
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Charles

Ben

Adam

4

3

3

3

1

2

2

1

4

4

3

4

2

1

1
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2

2
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3

3
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1

2

4

4

3

4

Figure 22.6 The preference relations of the men and women in Example 22.9
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Matching A1 is the men’s courtship matching, and matching A4 is the women’s courtship
matching. Matching A1 is the best from the perspective of the men, because each man is matched
with the woman ranked highest on his preference list, and matching A4 is the best from the
perspective of the women, because each woman is matched with the man ranked highest on her list.
From among these four matchings, the men’s courtship matching A1 is the “worst” for the women,
and the women’s courtship matching A4 is the “worst” for the men.

Comparing the matchings A2 and A3, Anne and Bess prefer A2 to A3 (because under A2 each is
matched with the man she ranks highest), while Donna and Carol prefer A3 to A2 (because under
A3 each is matched with the man she ranks highest). Similarly, Charles and Dean prefer A2 to A3,
and Adam and Ben prefer A3 to A2. �

The last example raises several broad questions regarding the preferences of men and
women over stable matchings. Is there a stable matching that is the worst for all the men,
among all the stable matchings? Which matching algorithm is better for the men, the
men’s courtship algorithm or the women’s courtship algorithm?

Definition 22.10 Let A and B be two matchings. Denote A �mB if every man who is
matched under A and B to different women prefers the woman to whom he is matched
under A to the woman to whom he is matched under B. Denote A �wB if and only if
every woman who is matched under A and B to different men prefers the man to whom
she is matched under A to the man to whom she is matched under B.

This is a definition of two ordering relations �m and �w over the set of matchings:
A �mB if and only if every man matched to two different women under matchings A

and B prefers the woman to whom he is matched under A. Equivalently, no man prefers
matching B to matching A. It follows that A �mA for every stable matching, and therefore
�m (and similarly �w) is a reflexive relation. It can be ascertained that the relations �m

and �w are also transitive relations (Exercise 22.18).
Despite the fact that these ordering relations are defined for all matchings, we will

mostly be interested in using them to order stable matchings. As we will show, in stable
matchings these orderings induce a special structure. First of all, note that even if we restrict
attention to stable matchings, these orderings are not complete orderings; in Example 22.9
A2 ��wA3 and A3 ��wA2 and similarly A2 ��mA3 and A3 ��mA2.

The next theorem states that if one stable matching is better for the men than another
stable matching, then it is worse for the women.

Theorem 22.11 For every pair of stable matchings A and B, A �mB if and only if
B �w A.

Proof: We will prove that if A �mB then B �wA. The other direction of the statement
of the theorem is then proved by reversing the roles of the women and the men.

Let A and B be two stable matchings, and suppose that A �mB. We need to show that
B �wA, i.e., every woman who is matched to different men under A and under B prefers
her mate under matching B to her mate under matching A. Let Lena be such a woman, and
suppose that she is matched with Aaron under A, and with Benjamin under B. Suppose
that under matching B, Aaron is matched with Mandy. Since A �mB, Aaron prefers the
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woman with whom he is matched under A, Lena, to the woman with whom he is matched
under B, Mandy:

Aaron: Lena  Mandy.

Since B is a stable matching, Aaron and Lena do not have an objection under B. Since
Aaron prefers Lena to Mandy, his mate under matching B, it follows that Lena prefers the
man with whom she is matched under B, Benjamin, to Aaron, with whom she is matched
under A, which is what we wanted to show. �

The following theorem states that the phenomenon we saw in Example 22.9, in which
the men’s courtship matching Om is the best stable matching from the perspective of all
the men, and the worst from the perspective of all the women, and in which the women’s
courtship matching Ow is the best stable matching from the perspective of all the women,
and the worst from the perspective of all the men, holds true for every matching problem.

Theorem 22.12 For every stable matching A, one has Om �mA �mOw and Ow �w

A �w Om.

Proof: To prove the theorem, it suffices to prove that Om �mA holds for every stable
matching A. To see this, note that by Theorem 22.11 this would imply that A �wOm. By
reversing the roles of the men and the women, we also get Ow �wA and A �mOw.

We will say that a woman w is possible for a man m if there exists a stable matching
under which they are matched to each other.

Step 1: Any woman who dismissed a man under the men’s courtship algorithm is not
possible for him.
The proof will be by induction over the stages k in which the man is dismissed. Start with
the first stage, k = 1. We will prove that if Adam is dismissed by Bess in the first stage
of the men’s courtship algorithm then Bess is not possible for Adam. To see this, suppose
that Adam and Bill stand in front of Bess’s house in the first stage and that Bess dismisses
Adam in that first stage while telling Bill to stay. This means that Bess prefers Bill to
Adam and that Bill prefers Bess to any other woman, because he went to her house in the
first stage of the men’s courtship algorithm. It follows that any matching A that matches
Bess to Adam is unstable, because the pair (Bill, Bess) objects to it, since Bess prefers
Bill to Adam and Bill prefers Bess to any other woman, and in particular to any women
to whom he is matched under A. We deduce that Bess is not possible for Adam.

Let k ≥ 1 and suppose by induction that every woman who dismisses a man in the
first k stages of the algorithm is not possible for him. Suppose that Adam is dismissed by
Bess in stage k + 1 of the algorithm. We will prove that she is not possible for him; in
other words, every matching A in which Bess is matched to Adam is unstable. To see this,
suppose that Adam and Ben stand in from of Bess’s house in stage k + 1 of the algorithm
and that Bess dismisses Adam while telling Ben to stay. Then Bess prefers Ben to Adam.
Suppose that Ben’s mate under the matching A is Abigail. If the matching A were stable,
then since under A Abigail is matched to Ben, by the inductive hypothesis she could not
have dismissed Ben in the first k stages of the algorithm. It follows that Ben did not go
to Abigail’s house before he went to Bess’s house (which he does in stage k + 1), and
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therefore he prefers Bess to Abigail. Hence, the pair (Ben, Bess) objects to the matching
A, and A is unstable. This completes the inductive stage.

Step 2: Om �mA for every stable matching A.
Suppose that under the men’s courtship algorithm a particular man, Adam, is matched to
Bess. We wish to show that for every stable matching A in which Adam is matched to a
woman who is not Bess, say Betty, he prefers Bess to Betty. If he were to prefer Betty to
Bess then that means that under the men’s courtship algorithm Adam visits Betty before
he visits Bess and that Betty dismissed him (since he is matched to Bess under the men’s
courtship algorithm). But then by Step 1, Betty is not possible for him, contradicting the
assumption that she is matched to him in a stable matching. �

For two stable matchings A and B define a rule under which every woman chooses a
mate: if the woman is matched to the same man under A and B, then she chooses that
man. If she is matched to two different men under the two matchings, then she chooses the
man whom she most prefers from among those two. Is the resulting outcome a matching,
or can this lead to a situation in which two women choose the same man? If this process
leads to a matching, is it stable? If the answer to these questions is affirmative, clearly this
matching is at least as good for the women as the original two matchings.

Definition 22.13 Let A and B be two matchings. Denote by A ∨wB the set of all n

pairs {(m1, w1), (m2, w2), . . . , (mn, wn)} that satisfies {w1, w2, . . . , wn} = W and for all
i = 1, 2, . . . , n, mi is the one man whom woman wi prefers from among the men to whom
she is matched under A and B.

Theorem 22.14 If A and B are stable matchings, then A ∨wB is also a stable matching.

Proof: The theorem is proved in two steps. We first prove that A ∨wB is a matching, and
then that it is a stable matching. Denote C := A ∨wB.

Step 1: C is a matching.
Suppose by contradiction that C is not a matching. In other words, suppose that after each
woman chooses the man whom she most prefers among those matched to her under A and
B, there is a man who is chosen by two women. For example, suppose that in C Adam
is chosen by both Anne and Bess. It then follows that Adam is matched to one of them
under A, and matched to the other one under B. Suppose in particular that under A Adam
is matched to Anne and Elton is matched to Bess, and that under B Adam is matched to
Bess and Dan is matched to Anne.

Matching A: Adam – Anne, Elton – Bess
Matching B: Adam – Bess, Dan – Anne.

(Note that Elton and Dan may be the same person.) Since both Anne and Bess choose
Adam in C:

Anne: Adam  Dan,
Bess: Adam  Elton.

If

Adam : Anne  Bess
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then the pair (Adam, Anne) has an objection to matching B.
If

Adam: Bess  Anne

then the pair (Adam, Bess) has an objection to matching A, contradicting the fact that
both A and B are stable matchings. This contradiction proves that C is a matching.

Step 2: C is a stable matching.
Suppose by contradiction that C is not stable. Then there is a pair, say Adam and Claire,
who are not matched to each other under C and have an objection.

Suppose that under the matching C:

Matching C: Adam – Bess, Elton – Claire.

Since Adam and Claire have an objection, it must be true that

Claire: Adam  Elton,
Adam : Claire  Bess.

Since under the matching C Claire is matched to Elton, she must be matched to him
under either A or B. Suppose without loss of generality that she is matched to him under
A, and suppose that she is matched to Frank under matching B. (Our claims still hold if
Claire is also matched to Elton under matching B.)

Matching A: Elton – Claire, Matching B: Frank – Claire.

Claire prefers Adam to Elton, and Elton to Frank (since under matching C she chooses
Elton and not Frank), and therefore she prefers Adam to Frank:

Claire: Adam  Elton  Frank.

We claim that Bess is not matched to Adam under matching A. Since matching A is a
stable matching, Adam and Claire have no objection to it. Since Claire prefers Adam to
Elton, Adam must prefer the woman to whom he is matched under matching A to Claire.
Since Adam prefers Claire to Bess, it is impossible for Bess to be matched to Adam
under A.

Finally, we show that Bess is not matched to Adam under matching B. Since B is a
stable matching, Adam and Claire have no objection to it. Since Claire prefers Adam to
Frank, Adam must prefer the woman to whom he is matched under B to Claire. Since
Adam prefers Claire to Bess, it is impossible for Bess to be matched to Adam under B.

In other words, Bess is not matched to Adam under either A or B. If so, how could
she be matched to Adam under the matching C? The contradiction establishes that C is a
stable matching. �

Clearly, the matching C := A ∨wB is, for every woman, at least as good as A, and at
least as good as B; that is, C �wA and C �wB. By Theorem 22.11, the matching C is,
for every man, worse than (or equally preferred to) both A and B; that is, A �mC and
B �mC.

Similarly, we can define, for every pair of matchings A and B, the collection of n pairs
D := A ∨mB, in which every man chooses the woman who is most preferred by him from
among the women to whom he is matched under A and B. By reversing the roles of the
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men and the women in Theorem 22.14, we deduce that D is a stable matching, and that
D �mA, D �mB, A �wD, and B �wD.

22.4.1 The lattice structure of the set of stable matchings
A partial ordering � is a reflexive and transitive binary relation.3 In words, a partial
ordering relation enables us to compare the members of some pairs of elements in a given
set. A partially ordered set is a set with a partial ordering relation defined over it. An
example of a partially ordered set is the pair (X, �), where X is the collection of all
subsets of a set S, and for every two subsets U and V of S one has U � V if U ⊇ V .
This is not a complete ordering when S contains at least two elements, because in this
case there are two subsets of S that cannot be compared by this ordering (that is, two sets
neither of which is a subset of the other).

Using the relation �, we defined in Chapter 2 the concept of a strict preference relation
:

x  y ⇐⇒ x � y and y �� x. (22.2)

We also defined the indifference relation ≈:

x ≈ y ⇐⇒ x � y and y � x. (22.3)

Definition 22.15 Let X be a finite set, let � be a partial ordering over X, and let
x1, x2 ∈ X be two elements in X. The element y ∈ X is called the maximum of x1 and x2,
and denoted y = max{x1, x2}, if the following two conditions hold:

1. y � x1 and y � x2.
2. If z � x1 and z � x2, then z � y.

If X is the collection of subsets of a set S, and the relation � is the set inclusion relation,
then the maximum of a pair of subsets of S is their union. The next example shows that
there are partial orderings for which the maximum does not exist.

Example 22.16 Let X = {x1, x2, x3, x4}, and let the ordering relation be given by

x1  x3, x2  x3, x1  x4, x2  x4. (22.4)

The elements x3 and x4 have no maximum. Indeed, both x1 and x2 are greater than x3 and greater
than x4, but one cannot compare them to each other, and therefore neither of them is a maximum
for x3 and x4. The elements x1 and x2 also do not have a maximum, because there is no element
greater than both of them. �

The minimum of a set is defined analogously to the definition of the maximum of a set.

Definition 22.17 Let X be a finite set, � be a partial ordering relation over X, and let
x1, x2 ∈ X be two elements of X. An element y ∈ X is a minimum of x1 and x2, denoted
y = min{x1, x2}, if the following conditions are satisfied:

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 We previously encountered, earlier in this chapter and in Chapter 2, the concept of a complete ordering in which all
elements are comparable. In contrast, under a partial ordering it is possible for two elements to be incomparable.
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1. x1 � y and x2 � y.
2. If x1 � z and x2 � z, then y � z.

Definition 22.18 A lattice is a partially ordered set satisfying the property that any pair
of elements in the set has a minimum and a maximum.

For the partial ordering �w over the set of stable matchings, the maximum of a pair of
stable matchings A and B is the matching A ∨wB; in other words, max{A, B} = A ∨wB,
and the minimum of this pair of stable matchings is the matching min{A, B} = A ∨mB

(Exercise 22.20). Similarly, for the partial ordering �m over a set of stable matchings,
max{A, B} = A ∨mB and min{A, B} = A ∨wB.

The above discussion leads to the following theorems.

Theorem 22.19 Under the ordering relation �w, the set of stable matchings is a lattice.

Similarly,

Theorem 22.20 Under the ordering relation �m, the set of stable matchings is a lattice.

Theorem 22.11 (page 893) states that in effect the lattices described by Theorems 22.19
and 22.20 are the same lattice: both are defined over the same set of elements (the set
of stable matchings) and the maximum under the ordering relation �w is the minimum
under the ordering relation �m (and vice versa).

22.5 Extensions
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we consider several extensions of the basic model that has been studied up
to now.

22.5.1 When the number of men does not equal the number of women
We have so far dealt only with models in which the number of men equals the number
of women. Suppose instead that nm, the number of men, is greater than nw, the number
of women. The case in which the number of women is greater than the number of men
is analyzed similarly. Since nm > nw, under every stable matching there must remain
nm − nw men who are not matched to a woman.

To fit this new situation, we need to change the definition of a matching. Recall that we
denote by M the set of men, and by W the set of women.

Definition 22.21 A matching is a function associating every man with an element of the
set W ∪ {single}, such that every woman is associated under this function with one man.

We assume here that being single is considered by every man to be a worse outcome
than being matched to any of the women.

Definition 22.22 Suppose that a matching is given. A man m and a woman w object to
the matching if the following conditions hold: (a) the man m is single, or is matched to a
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woman ŵ and he prefers w to ŵ; and (b) the woman w prefers m to the man to whom she
is matched under the matching.

The Gale–Shapley algorithm that is presented in the previous sections is applicable
to this case, and the proof of Theorem 22.7 goes through with minor modifications. In
particular, the algorithm is guaranteed to terminate with a stable matching (Exercise 22.24).
The next theorem, whose proof is left to the reader (Exercise 22.25), establishes that under
all stable matchings, the set of singles is the same.

Theorem 22.23 Suppose that the number of men is greater than the number of women.
If a particular man is not matched to any woman under some stable matching, then he is
not matched to a woman under any stable matching.

22.5.2 Strategic considerations
In the men’s courtship algorithm presented above, in every stage, every man goes to the
house of the woman whom he ranks highest among all the women who have not previously
dismissed him, and every woman asks the man she ranks highest from among the men
standing in front of her house to stay, while dismissing all the rest. Does this algorithm
leave any room for “strategic behavior”? In other words, is it possible that by pretending
to have a preference relation that differs from her true preference relation, a woman can
obtain a better match for herself than by being honest? The next example shows that this
may indeed be possible.

Example 22.24 An example of strategic behavior Consider an example with three men and three women

whose preference relations are given by the tables shown in Figure 22.7, where 1, 2, and 3 denote
placement within the preference list, with 1 representing highest preference.

321
Hector: Helena Andromache Lavinia
Aeneas: Helena Lavinia Andromache
Paris: Andromache Helena Lavinia

21 3
Helena: Paris Hector Aeneas
Andromache: Hector Paris Aeneas
Lavinia: Aeneas Hector Paris

Figure 22.7 The preferences of the men and the women

We trace the men’s courtship algorithm (Figure 22.8).

Helena Andromache Lavinia Dismissed men
Stage 1(1a) Aeneas(1), Hector(1) Paris(1)
Stage 1(b) Hector(1 ) Paris(1) Aeneas
Stage 2(a) Hector(1 ) Paris(1) Aeneas(2 )

Figure 22.8 Men’s courtship algorithm
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The resulting matching is

(Hector – Helena, Aeneas – Lavinia, Paris – Andromache).

Suppose, instead, that Helena were to act as if her preference relation is:

1 2 3
Helena: Paris Aeneas Hector

Then the men’s courtship algorithm would look as shown in Figure 22.9.

Helena Andromache Lavinia Dismissed men
Stage 1(a) Hector(1 ), Aeneas(1) Paris(1)
Stage 1(b) Aeneas(1) Paris(1) Hector
Stage 2(a) Aeneas(1) Paris(1), Hector(2)
Stage 2(b) Aeneas(1) Hector(2 ) Paris
Stage 3(a) Aeneas(1), Paris(2) Hector(2 )
Stage 3(b) Paris(2) Hector(2 ) Aeneas
Stage 4(a) Paris(2) Hector(2 ) Aeneas(2)

Figure 22.9 The men’s courtship algorithm when Helena behaves strategically

The resulting matching is

(Hector – Andromache, Aeneas – Lavinia, Paris – Helena).

As can be seen, Helena has improved her situation by pretending that her preference relation
is different from her true one: under this matching, she is matched to Paris, who is ranked first in
her (true) preference relation, instead of to Hector, who is ranked second in her (true) preference
relation. The matching that results from Helena’s strategic behavior is a stable matching relative
to the true preferences of the participants (check that this is true). This is no coincidence; in
Exercise 22.29 we present conditions relating to a woman’s strategic behavior that guarantee
that the men’s courtship algorithm terminates with a matching that is stable relative to the true
preferences of all participants. �

The last example shows that a woman may sometimes obtain a more preferred mate
under the men’s courtship algorithm if she does not dismiss men according to her true
preferences. It turns out that this is not possible for the men: under the men’s courtship
algorithm, a man cannot obtain a more preferred mate if he courts the women in an
ordering that is different from his true preference ordering (Exercise 22.28). It follows in
particular that when there are more men than women, a man who remains single at the
end the men’s courtship algorithm will also remain single if he courts women under a
different ordering than his true preference ordering.

22.5.3 The desire to remain single, or: getting married, but not at any price
In the model we have regarded so far, we assumed that every man prefers being with
any woman to remaining single, and that every woman prefers being with any man to
remaining single. How does our analysis change if some participants prefer the single life
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to being in a match that they dislike? We first need to define a model that enables this
possibility.

Definition 22.25 A matching problem is defined by:

� A set of men M and a set of women W .
� For every woman w, a preference relation over the set M ∪ {(w-single)}.
� For every man, a preference relation over the set W ∪ {(m-single)}.

The elements “m-single” and “w-single” enable the participants to rank the single life
in their list of preferences. For example, if

Juliet: Romeo  Juliet-single,

then Juliet prefers a match with Romeo to remaining single, but if

Juliet: Juliet-single  Benvolio,

then she prefers remaining single to a match with Benvolio.
The definition of a matching in this case is:

Definition 22.26 A matching is a function associating every man m ∈ M with an element
of the set W ∪ {(m-single)} and every woman w ∈ W with an element of the set M ∪
{(w-single)}, such that if a man m is matched to a woman w, the woman w is matched to
the man m.

We also update the definitions of an objection and a stable matching. In contrast to
Definition 22.4, where only pairs could object to a matching, in this model an objection to
a matching can be raised by a single woman or a single man, in case one of them prefers
remaining single to the person to whom he or she is matched under the matching. In
addition, we also allow objections to be raised by pairs who are not necessarily matched
under the matching, because one, or both of them, is single under the matching.

Definition 22.27 Given a matching,

1. A man objects to the matching, if he is matched to a woman but prefers remaining
single to the woman to whom he is matched.

2. A woman objects to the matching if she is matched to a man but prefers remaining
single to the man to whom she is matched.

3. A man m and a woman w object to the matching if (a) the man prefers w to the woman
to whom he is matched under the matching, or prefers w to remaining single, if he is
not matched to any woman under the matching; and (b) the woman prefers m to the
man to whom she is matched under the matching, or prefers m to remaining single, if
she is not matched to any man under the matching.

A matching is stable if no man, no woman, and no pair of a man and a woman object
to it.

So far, we have changed our model by adding fictitious elements of the form (w-single)
and (m-single); every woman w has a preference relation over the set M ∪ {(w-single)}
and every man m has a preference relation over the set W ∪ {(m-single)}. To generalize
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the Gale–Shapley algorithm to this model, expand the set of women and the set of men as
follows:

� The set of men is M ′ := M ∪ {(w-single) : w ∈ W }.
� The set of women is W ′ := W ∪ {(m-single) : m ∈ M}.

We also expand the preference relation of every woman to a preference relation over M ′,
and the preference relation of every man to a preference relation over W ′. Define the
preference relations of the fictitious elements, as follows:

� Every woman w prefers the element (w-single) to the element (ŵ-single), for every
woman ŵ �= w. The precise ordering under which the elements {(ŵ-single), ŵ ∈ W \
{w}} are ordered is immaterial.

� Every man m prefers the element (m-single) to the element (m̂-single), for every man
m̂ �= m. The precise ordering under which the elements {(m̂-single), ŵ ∈ W \ {w}} are
ordered is immaterial.

� The element (w-single) prefers w to every other element in W ′. The precise ordering
under which the other elements are ordered in the preference relation of this element is
immaterial.

� The element (m-single) prefers m to every other element in M ′. The precise ordering
under which the other elements are ordered in the preference relation of this element is
immaterial.

In the men’s courtship algorithm, every man courts the women in descending order
according to his preference list. If m gets far enough down his list to reach the fictitious
(m-single), then he will remain “at the door” of the element (m-single) when the algorithm
terminates. Indeed, since the fictitious element (m-single) prefers m to all the other men,
the man m will not be dismissed by (m-single). The algorithm terminates when at most
one man stands in front of the house of each woman w ∈ W , i.e., when there can be no
more dismissals.

Example 22.28 Consider a matching problem with the set of men M = {Alan, Basil, Colin} and the set of

women W = {Rose, Sara}. The preference relations of the men and women are depicted in the
following tables, where 1, 2, and 3 denote placement within the preference list, with 1 representing
highest preference.

1 2 3
Alan: Sara Rose Alan-single
Basil: Rose Basil-single Sara
Colin: Rose Sara Colin-single

1 2 3 4
Rose: Alan Basil Rose-single Colin
Sara: Basil Colin Sara-single Alan

Two elements are now added to the set of men: (Rose-single) and (Sara-single), and similarly
three elements are added to the set of women: (Alan-single), (Basil-single), and (Colin-single).
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One possible definition of a preference relation following the addition of the fictitious elements
is:

1 2 3 4 5
Alan: Sara Rose Alan-single Colin-single Basil-single
Basil: Rose Basil-single Sara Colin-single Alan-single
Colin: Rose Sara Colin-single Alan-single Basil-single
Rose-single: Rose Sara Colin-single Alan-single Basil-single
Sara-single: Sara Rose Colin-single Alan-single Basil-single

1 2 3 4 5
Rose: Alan Basil Rose-single Colin Sara-single
Sara: Basil Colin Sara-single Alan Sara-single
Alan-single: Alan Basil Colin Sara-single Rose-single
Basil-single: Basil Alan Colin Sara-single Rose-single
Colin-single: Colin Basil Alan Sara-single Rose-single

The men’s courtship matching and the women’s courtship matching of the expanded problem is
as follows (check that this is true):

Basil – (Basil-single), Alan – Rose, Colin – Sara,
(Rose-single) – (Alan-single), (Sara-single) – (Colin-single).

It follows that the only stable matching to the original problem is

(Basil – Basil-single, Alan – Rose, Colin – Sara). �

In Exercise 22.30, the reader is asked to spell out in detail the Gale-Shapley algorithm
for this model and to prove that the algorithm always terminates after finding a stable
matching.

22.5.4 Polygamous matching: placement of students in universities
We have so far assumed that every man is permitted to marry only one woman, and each
woman is permitted to marry only one man. In some cases, however, such as matching
medical residents and hospitals, universities and students, and corporations and employ-
ees, there is an asymmetry between the two sides of the market: hospitals, universities,
and corporations are interested in more than one resident, student, or employee, while
each resident, student, and employee generally chooses only one hospital, university,
or employing corporation. A model that can accommodate such situations is as follows
(for convenience, in the definition we have adopted terms used in student placement in
universities).

Definition 22.29 A polygamous matching problem is given by:

� A finite set of universities U and a finite set of students S.
� For each university u ∈ U a quota qu ∈ N that represents the maximal number of

students it will accept.
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� For each student s ∈ S, a preference relation over the set U .
� For each university u ∈ U , a preference relation over the set S.

Definition 22.30 A matching is a function assigning, to each university u ∈ U , a subset
S containing between 0 and qu students, such that each student in S is associated with
at most one university. In other words, the sets of students associated to two different
universities are disjoint sets.

The concept of an objection is defined as follows.

Definition 22.31 A university u and a student s object to a matching if both of the
following conditions are met:

� The student s prefers university u to the university to which he is matched.
� University u is matched to fewer than qu students, or it is matched with qu students but

prefers s to one of the students that are matched to it.

A matching is stable if there is no pair consisting of a university and a student who have
an objection to it.

To show that there always exists a stable matching, consider the following “student
courtship” algorithm, under which students apply to universities and each university u

asks the qu students that it most prefers from among the students gathered at the university’s
gate to remain (instead of asking only one) and rejecting all the rest; if less than qu students
have applied, it asks all of them to remain. Every rejected student then goes to the university
next down on his or her preference list. The proof that this algorithm always terminates
after finding a stable matching is similar to the proof in the monogamous matching case
(Exercise 22.31).

22.5.5 Unisexual matchings
We have so far matched men to women, thus assuming that pairs must be composed of
at least one member of the two different sexes. But there are cases in which pairs need to
be matched from a homogeneous population: students being paired for dormitory rooms,
police officers paired in patrol cars, and so on. Interestingly, while heterosexual stable
matchings are guaranteed always to exist, unisexual stable matchings may not exist, as
the next example shows.

Example 22.32 A unisexual population without a stable matching Consider an example with four men,

Alex, Benjamin, Chris, and Franklin, who are to be partitioned into two pairings. Each man has a
preference relation over the other men given by the table shown in Figure 22.10.



905 22.7 Exercises

21 3
Alex: Benjamin Chris Franklin
Benjamin: Chris Alex Franklin
Chris: Alex Benjamin Franklin
Franklin: Alex Chris Benjamin

Figure 22.10 Preference relations in a single-sex example with no stable matching

We will now show that given these preference relations, there is no stable matching. Suppose, for
example, that Franklin is paired with Alex, which then means that Benjamin is paired with Chris:

(Franklin – Alex, Benjamin – Chris).

Then Alex and Chris have an objection: Alex prefers Chris (number 2 on his list) to Franklin
(number 3 on his list), and Chris prefers Alex (number 1 on his list) to Benjamin (number 2 on his
list).

It can similarly be shown that there is no stable matching under which Franklin is paired with
either Benjamin or Chris (Exercise 22.38). �

22.6 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The authors wish to thank Dov Samet for his assistance in the composition of this chapter.
The introduction to this chapter is based on Roth [2005]. The reader interested in fur-
ther study of the material in this chapter is directed to Roth and Sotomayer [1990] and
Gusfield and Irving [1989], both of which contain a wealth of information on matching
theory.

Exercise 22.17 is based on Dubins and Freedman [1981]. Exercises 22.27 and 22.28
are based on Gale and Sotomayor [1985].

22.7 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

22.1 Prove that every complete, irreflexive, and transitive relation is asymmetric: if
x �= y, then x  y if and only if y � x.

22.2 Prove that the Gale–Shapley algorithm for finding a stable matching satisfies the
following property: if Cleopatra asks Mark to stay in front of her house at stage k,
and at a later stage she asks Julius to stay in front of her house, then she prefers
Julius to Mark.

22.3 Consider the following system of preferences (recall that the preferences of the
women appear in the lower right side of each cell (read vertically) and the prefer-
ences of the men appear on the upper left side (read horizontally)).
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Anne Betty Claire Donna

Dean

Chris

Ben

Alfredo

1

4

2

2

3

3

4

1

4

3

2

4

1

4

3

2

2

2

4

1

3

1

1

3

2

1

1

3

4

2

3

4

Check whether the following matchings are stable. Justify your answers.

(Chris – Anne, Alfredo – Betty, Dean – Claire, Ben – Donna),
(Chris – Anne, Alfredo – Betty, Ben – Claire, Dean – Donna).

22.4 Prove that Definitions 22.4 and 22.5 on page 887 are equivalent.

22.5 In each of the following systems of preferences, find the stable matching that is
obtained by the men’s courtship algorithm, and the stable matching that is obtained
by the women’s courtship algorithm:

(a)
1 2 3

Andre: Anne Barbara Claire
Boris: Barbara Claire Anne
Chris: Claire Anne Barbara

1 2 3
Anne: Boris Chris Andre
Barbara: Chris Andre Boris
Claire: Chris Boris Andre

(b)
1 2 3 4

Alex: Ellen Flora Gail Hillary
Bill: Ellen Hillary Gail Flora
Colin: Flora Ellen Gail Hillary
David: Hillary Flora Gail Ellen

1 2 3 4
Ellen: David Colin Alex Bill
Flora: Bill David Alex Colin
Gail: David Alex Bill Colin
Hillary: Colin Bill Alex David

(c)
1 2 3 4

Peter: Olivia Patty Mary Netty
Jacob: Patty Mary Netty Olivia
Kevin: Mary Netty Olivia Patty
Larry: Patty Olivia Mary Netty

1 2 3 4
Mary: Peter Jacob Kevin Larry
Netty: Peter Jacob Kevin Larry
Olivia: Jacob Kevin Peter Larry
Patty: Kevin Peter Jacob Larry
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(d)
1 2 3 4

Ernest: Felicia Emma Donna Carol
Felix: Emma Donna Carol Felicia
George: Donna Carol Felicia Emma
Henry: Emma Felicia Donna Carol

1 2 3 4
Carol: Ernest Felix George Henry
Donna: Ernest Felix George Henry
Emma: George Ernest Felix Henry
Felicia: Felix George Ernest Henry

(e)
1 2 3 4

Peter: Lisa Melissa Natasha Octavia
Quentin: Lisa Melissa Natasha Octavia
Ron: Melissa Natasha Lisa Octavia
Sam: Natasha Lisa Melissa Octavia

1 2 3 4
Lisa: Ron Sam Peter Quentin
Melissa: Sam Peter Quentin Ron
Natasha: Peter Quentin Ron Sam
Octavia: Sam Ron Peter Quentin

22.6 Suppose that the number of men equals the number of women. Prove the following
claims, or provide counterexamples:

(a) For every pair of matchings there exist preference relations for which these are
two stable matchings.

(b) For every three matchings there exist preference relations for which these are
three stable matchings.

(c) For every four matchings there exist preference relations for which these are
four stable matchings.

22.7 Gary is at the top of Gail’s preference list, and Gail is at the top of Gary’s preference
list. Prove that in every stable matching Gary and Gail are matched to each other.

22.8 Dan is at the bottom of Donna’s preference list, and Donna is at the bottom of
Dan’s preference list. Is it possible that there is a stable matching that matches Dan
to Donna? Justify your answer.

22.9 Prove that if Romeo and Juliet are matched to each other under both the men’s
courtship and the women’s courtship algorithms, then they are matched to each
other under any stable matching.

22.10 Prove that if the result of the men’s courtship algorithm yields the same result as
the women’s courtship algorithm, then this resulting matching is the unique stable
matching.



908 Stable matching

22.11 Given a stable matching of n men and n women,

(a) Is it possible to find three pairs such that if the matching among them is changed,
each man will be matched to a woman whom he prefers, and each woman will
be matched to a man whom she prefers?

(b) Generalize this conclusion to a subset of k pairs, for every 4 ≤ k ≤ n.

22.12 In Julius’s list of preferences, Agrippina appears first, Messalina appears sec-
ond, and Cleopatra appears third. Suppose there is a stable matching under which
Julius is matched to Agrippina, and that there is a stable matching under which
Julius is matched to Cleopatra. Is there necessarily a stable matching under
which Julius is matched to Messalina? Either prove this statement or provide a
counterexample.

22.13 In this exercise we consider a situation with n men and n women.

(a) Prove that if in stage t of the men’s courtship algorithm, a particular man
is dismissed for the (n − 1)-th time, then the algorithm terminates at stage
(t + 1).

(b) Prove that the men’s courtship algorithm terminates after at most (n − 1)2 + 1
stages.

(c) Find preference relations under which the algorithm terminates after precisely
(n − 1)2 + 1 stages (hence this is the lowest bound for the length of the
algorithm).

22.14 Suppose that Fara is preferred by every man to all the other women. Prove that
under every stable matching Fara is matched to the same man. Who is the lucky
guy?

22.15 Suppose that the number of men equals the number of women, and that Vera is last
on the preference list of every man. Prove that under every stable matching, Vera
is matched to the same man. Who is the unlucky guy?

22.16 Suppose that every man has the same preference relation over the set of women.
Prove that there exists only one stable matching.

22.17 In this exercise, we present a family of algorithms, each of which produces the
men’s courtship matching, and contains the Gale–Shapley algorithm.

Consider the following algorithm for matching men and women. At the start of
the algorithm, all the men leave the room, while all the women remain in the room.
In every stage of the algorithm, one of the men who is outside the room enters, and
goes directly to the woman whom he most prefers from among the women who
have not previously dismissed him. If another man is already standing next to that
woman, the woman asks the man whom she prefers from among those two who
are now next to her to stay, and dismisses the other one, who then leaves the room.
If, however, a man entering the room goes to a woman who is standing alone, she
asks him to stay. The algorithm terminates when every woman has exactly one
man standing next to her.
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(a) Prove that this algorithm satisfies the three properties of the Gale–Shapley
algorithm (specified on page 889).

(b) Prove that this algorithm terminates, and that it always yields a stable matching.
(c) Prove that the algorithm always produces the men’s courtship matching Om.

22.18 Prove that the preference relations on matchings �m and �w over the set of stable
matchings are transitive relations.

22.19 Show that Theorem 22.11 on page 893 does not hold if the matchings A and B

are not stable. In other words, find two matchings A and B satisfying A �mB but
B ��wA.

22.20 Prove that when the partial ordering over the set of stable matchings is �w, then
max{A, B} = A ∨wB and min{A, B} = A ∨mB.

22.21 Show by example that if A and B are two matchings (not necessarily stable), then
A ∨wB is not necessarily a matching.

22.22 Prove that when the partial ordering over the set of stable matchings is �w, the
minimum of the stable matchings A and B is A ∨mB.

22.23 In this exercise we generalize the definition of the maximum of two matchings to a
definition of the maximum of any finite set with two or more matchings. Suppose
that the number of women equals the number of men. Let A1, A2, . . . , AK be stable
matchings. Define a function B from the set of men to the set of women as follows.
Under the function B, a man m is matched to the woman he most prefers from
among the women to whom he is matched under the matchings A1, A2, . . . , AK .

(a) Prove that the function B is a matching.
(b) Prove that the function B is a stable matching.
(c) Prove that for each stable matching C, if C �m Ak for every k ∈ {1, 2, . . . , K}

then C �m B. Matching C is the maximum of A1, A2, . . . , AK according to
the preference relations of the men.

22.24 Suppose that the matching problem is to match nm men to nw women, where
nw < nm.

(a) Describe in detail the generalization of the Gale-Shapley algorithm for this
case. Prove that the algorithm terminates with a stable matching.

(b) What is the maximal number of stages in the men’s courtship algorithm?
(c) Construct an example where nm > nw such that the men’s courtship algorithm

runs through the maximal number of stages.

22.25 Prove Theorem 22.23 on page 899: when the number of men nm is greater than the
number of women nw, if a particular man is not matched to any woman under some
stable matching, then he is not matched to any woman under any stable matching.

22.26 In each of the following pairs of preference relation systems, find the men’s
courtship matching and the women’s courtship matching:
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(a)
1 2 3

Oscar: Kara Lilly Mary
Peter: Kara Lilly Mary
Quinn: Kara Mary Lilly
Ralph: Lilly Kara Mary

1 2 3 4
Kara: Ralph Quinn Peter Oscar
Lilly: Ralph Oscar Quinn Peter
Mary: Oscar Ralph Peter Quinn

(b) The notation φ signifies a preference for remaining single.

1 2 3 4
Grant: Gloria Hanna φ Ida
Howard: Hanna Gloria Ida φ

Isaac: Gloria Ida φ Hanna
Jack: Hanna Gloria φ Ida

1 2 3 4 5
Gloria: Jack Isaac φ Howard Grant
Hanna: Jack Howard Grant φ Isaac
Ida: Isaac Grant φ Howard Jack

22.27 Let A be a matching (not necessarily stable), and let MA,Om be the set of men who
prefer the women to whom they are matched under A to the women to whom they
are matched under the men’s courtship matching Om.

(a) Prove that if A is a stable matching then MA,Om = ∅.

In this exercise we prove that if MA,Om �= ∅, then there exists a pair (m, w) who
object to the matching A, and m �∈ MA,Om .

Denote by W1 the set of the women who are matched to men in MA,Om under
the matching A, and by W2 the set of the women matched to men in MA,Om under
Om.

(b) Prove that if W1 �= W2, then W1 \ W2 �= ∅.
(c) Prove that if W1 �= W2, every woman w ∈ W1 \ W2 objects to A along with the

man to whom she is matched under Om.
(d) From here to the end of the exercise, assume that W1 = W2. Prove that every

woman in W1 dismisses at least one man under the men’s courtship algorithm
(her match under the matching A).

(e) Consider the woman w∗ ∈ W1 who was the last woman approached by a man
m∗ from the set MA,Om under the men’s courtship algorithm. Prove that when
w∗ receives an offer from m∗, there was another man at her doorstep, call him
m′, whom she dismissed in favor of m∗.

(f) Use the fact that w∗ is the last woman to get an offer from a man in MA,Om to
show that m′ is not in MA,Om .

(g) Prove that the pair (m′, w∗) object to the matching A.
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22.28 Suppose we are given a matching problem G. Let Om be the men’s courtship
matching of this problem. In this exercise we prove the claim on page 900: in
the course of the Gale–Shapley algorithm, a man cannot obtain a better result by
pretending to have a preference relation that is different from his true preference
relation. We will, in fact, prove a stronger claim: even if a set of men all pretend
to have preference relations that are different from their true preference relations,
under any stable matching of the new problem that is different from Om, at least
one of these men loses out; in other words, one of these men will be matched
to a woman whom he prefers less than the woman to whom he has been matched
under Om.

Let Ĝ be the matching problem derived from G by changing the preference
relations of some of the men: let M̂ ⊆ M be a set of men whom we term “dishonest,”
whose preference relations in matching problem Ĝ differ from their preference
relations in matching problem G.

Using Exercise 22.27, prove that there is no stable matching Â for matching
problem Ĝ satisfying the following properties: every man in M̂ prefers (according
to his true preference relation) the woman to whom he is matched under Â to the
woman to whom he is matched under Om.

22.29 We saw in Example 22.24 that under the men’s courtship algorithm a woman may
be matched to a man whom she prefers to the man to whom she is matched under
the men’s courtship matching Om by pretending that her preference relation is
different from her true preference relation. In this exercise we present a condition
that guarantees that a matching resulting from such strategic behavior on the part
of a woman is a stable matching.

Suppose that under the men’s courtship matching Om Messalina is matched to
Claudius. Consider the matching A that results from the men’s courtship algorithm
when Messalina pretends that her preference relation is different from her true
preference relation.

(a) Prove that the matching A is a stable matching under the true preferences of
the men and women if and only if the man to whom Messalina is matched
under A is the man she most prefers from among the men that came to her
door throughout the algorithm; that is, she does not regret any rejection she
made.

(b) Conclude that if Messalina improved her result by this behavior then she
necessarily makes at least one man worse off; i.e., there is at least one man
who is matched under A to a woman whom he prefers less than the woman to
whom he is matched under Om.

22.30 Describe in detail the generalization of the Gale–Shapley algorithm for the case
in which the single life is not universally considered the worst possible outcome
(see Section 22.5.3 on page 900), and prove that the algorithm always terminates
in finding a stable matching.
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22.31 Describe in detail the generalization of the Gale–Shapley algorithm (the students’
courtship algorithm) in the case in which each university has a quota for the
maximal number of students that it can accept (see Section 22.5.4 on page 903), and
prove that the algorithm always terminates in finding a stable matching. Describe
the universities’ courtship algorithm in this case. Which algorithm is more preferred
by the students? Explain.

22.32 In this exercise, we work with polygamous matchings (see Section 22.5.4 on
page 903).

(a) Prove that in the students’ courtship algorithm, every student is matched to
the university that is most preferred by him from among all the universities to
which he is matched under all possible stable matchings.

(b) Given a stable matching, prove that every student who is not matched by any
university under this matching is not matched to any university under any stable
matching.

(c) Prove that if under one stable matching there is a university that does not fill
its student quota, then that university does not fill its student quota under any
stable matching.

22.33 In this exercise we generalize the model of polygamous matchings (see
Section 22.5.4 on page 903).

Suppose that every university u ∈ U is given a quota qu ≥ 1, a subset Su ⊆ S

of the set of students, and a preference relation over the set Su. The set Su is
interpreted as the set of students that university u is willing to accept: university
u will not accept any student who is not in Su, even if that means that it will
not fill its quota of students. Suppose that each student s ∈ S is given a subset
Us ⊆ U of the set of universities, and a preference relation over Us . The set Us

is interpreted as the set of universities that the student is willing to attend. If a
student s is rejected by all the universities in Su, then he prefers not attending any
university.

(a) Generalize the definition of stable matching to this case.
(b) Generalize the Gale–Shapley algorithm to this case, and prove that it terminates

after finding a stable matching.
(c) Prove that a student who is not accepted by any university under a particular

stable matching will not be accepted into any university under any stable
matching.

22.34 The following tables depict the preferences of three universities regarding a set
of applicants, and the preferences of the applicants regarding the universities.
Every university also has a specified quota for the number of students that it can
accept. These preferences are strict preferences, i.e., there are no instances of
indifference. Find a stable matching A between the universities and the applicants
that is preferred by all the applicants to any other stable matching; i.e., for any
stable matching B, an applicant who is matched to two different universities under
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A and B prefers the university to which he is matched under A to the university to
which he is matched under B.

(a) The preferences of the universities (from left to right) and each university’s
quota of students (between the round brackets) are:
University X (4): j b a k g d c e f h i.
University Y (2): d b h a j f k e c i g.
University Z (3): f c j b h d e g i k a.

The preferences of the applicants (from left to right):

a : ZYX d : ZXY g : XZY j : XYZ

b : ZYX e : ZXY h : YXZ k : XYZ

c : YZX f : XZY i : YXZ

(b) The preferences of the universities (from left to right) and each university’s
quota of students (between the round brackets):
University X (6): a b c d e f g h i j k l m n.
University Y (6): n m l k j i h g f e d c b a.
The preferences of the applicants: Applicants a, b, c, d, e, f, g, h, i, j prefer
University X to University Y , and applicants k, l, m, n prefer University Y to
University X.

22.35 In this exercise, we will assume a given matching problem in which the preference
relations are weak preference relations, meaning that the preference relations may
include indifference; a woman may be indifferent to being matched to any of
several different men, and a man may be indifferent to being matched to any of
several different women. For example, Yoko may be indifferent between John,
Paul, George, and Ringo, and she may be indifferent between Tony and Allan,
and she may prefer each of John, Paul, George, and Ringo to Tony and to Allan.
That is,

Yoko : Ringo ≈ George ≈ Paul ≈ John  Allan ≈ Tony.

A man and a woman object to a matching if they both (strictly) prefer each other to
the woman and man to whom they are respectively matched. A matching is stable
if there are no men and women objecting to it.

(a) Given each man’s weak preference relation, construct a strict preference rela-
tion by ordering the women to whom he is indifferent in an arbitrary way, while
maintaining transitivity of preferences, and do the same with the preference
relation of each woman. Prove that a stable matching under this constructed
set of preference relations is also a stable matching in the original matching
problem with weak preferences.
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(b) Find at least two stable matchings for the following preference relations:

Tina : Albert  Boris  Chester ≈ David
Ursula : Chester ≈ Albert  Boris  David
Victoria : Chester ≈ David  Boris ≈ Albert

Albert : Tina ≈ Victoria  Ursula
Boris : Victoria  Ursula ≈ Tina
Chester : Tina  Victoria ≈ Ursula
David : Victoria ≈ Tina ≈ Ursula

22.36 As in Exercise 22.35, consider a matching problem in which the preference relations
of the men and women may include instances of indifference. Given a stable
matching to such a matching problem, is it always possible to replace the weak
preference relations (i.e., with instances of indifference) with strict preference
relations in such a way that the stable matching with respect to the weak preference
relations is also a stable matching with respect to the strict preference relations? If
your answer is yes, prove it; if your answer is no, provide a counterexample.

22.37 Theorem 22.23 is proved on page 899 under the assumption that all preference
relations are strict. Show by example that the theorem does not hold if there may
be instances of indifference in the preference relations of the men and the women.

22.38 Example 22.32 (page 904) has no stable matching. Complete the proof of this
statement.

22.39 Suppose that a population of size 3n is partitioned into three subsets: n contractors,
n carpenters, and n plumbers. Each person in this population has two preference
relations: a preference relation over each one of the two subsets listed above to
which he does not belong. For example, each contractor has a preference relation
over the set of carpenters, and a preference relation over the set of plumbers, and
so on. A matching A in this case is a partition of the population into n triples,
each composed of a contractor, a carpenter, and a plumber. A trio composed of a
contractor x, a carpenter y, and a plumber z has an objection to A if (a) the matching
A does not contain the set {x, y, z}, and (b) every pair of workers within this trio
who are not matched to each other under A prefer each other to the corresponding
workers to whom they have been matched under A. In other words, x prefers y

to the carpenter to whom he is matched under A (if he is matched to a carpenter
other than y), x prefers z to the plumber to whom he is matched under A (if he
is matched to a plumber other than z), y prefers x to the contractor to whom he
is matched under A (if he is matched to a contractor other than x), and so on. A
matching is stable if there is no trio composed of a contractor, a carpenter, and a
plumber who object to it.

Does there always exist a stable matching in this model? If your answer is no,
provide a counterexample. If your answer is yes, provide an algorithm for finding a
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stable matching, and prove that this algorithm always terminates in finding a stable
matching.

22.40 Repeat Exercise 22.39, but this time assume that each member of the population
has a preference relation over pairs of potential co-workers, i.e., every contractor
has a preference relation over the set of pairs composed of a carpenter and a
plumber, every carpenter has a preference relation over the set of pairs composed
of a contractor and a plumber, and every plumber has a preference relation over
the set of pairs composed of a contractor and a carpenter. A contractor x, carpenter
y, and plumber z have an objection to a matching A if (a) A does not contain the
set {x, y, z}, and (b) each member of the trio {x, y, z} ranks the other two above
the pair to which he is matched under A. A matching is stable if there is not a trio
composed of a contractor, a carpenter, and a plumber who have an objection to it.
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Chapter summary
In this chapter we present some basic results from different areas of mathematics
required for various proofs in the book. In Section 23.1 we state and prove several fixed
point theorems. The main and best known is Brouwer’s Fixed Point Theorem, which
states that every continuous function from a compact and convex subset of a Euclidean
space to itself has a fixed point. This theorem is used in Chapter 5 to prove the existence
of a Nash equilibrium in mixed strategies. Using Brouwer’s Fixed Point Theorem we
prove Kakutani’s Fixed Point Theorem, which states that every upper semi-continuous
convex-valued correspondence from a compact and convex subset of a Euclidean space
to itself has a fixed point. This result provides a shorter proof for the existence of a
Nash equilibrium in mixed strategies in strategic-form games. We then prove the KKM
theorem, which is used to prove the nonemptiness of the bargaining set (Theorem
19.19, page 790). The main tool for proving both Brouwer’s Fixed Point Theorem and the
KKM Theorem is Sperner’s Lemma, which is stated and proved first.

In Section 23.2 we prove the Separating Hyperplane Theorem, which states that for
every convex set in a Euclidean space and a point not in the set there is a hyperplane
separating the set and the point. This theorem is used in Chapter 14 to prove that every
B-set is an approachable set.

Section 23.3 presents the formulation and the central result in linear programs,
namely, the Duality Theorem of linear programming. This result is used to prove the
Bondareva–Shapley Theorem that characterizes coalitional games with nonempty cores
(Theorem 17.19, page 701) and to characterize balanced collections of coalitions
(Theorem 20.25, page 817).

23.1 Fixed point theorems
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In this section we formulate and prove three theorems: Brouwer’s Fixed Point Theorem,
Kakutani’s Fixed Point Theorem, and the KKM Theorem. The reader interested in addi-
tional fixed point theorems used in game theory, and in a discussion of the connections
between them, is directed to Border [1989].

We begin by presenting the statement and proof of Sperner’s Lemma, which is a vital
element in our proofs of fixed point theorems.

916
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Figure 23.1 The extreme points of a circle and of a square

23.1.1 Sperner’s Lemma
For n ∈ N denote the zero vector in Rn by �0. Recall that a set X ⊆ Rn is called convex if
λx + (1 − λ)y ∈ X for all x, y ∈ X and all λ ∈ [0, 1].

Definition 23.1 Let x0, x1, . . . , xk be vectors in Rn. The convex hull of x0, x1, . . . , xk ,
denoted conv(x0, x1, . . . , xk), is the smallest convex set (with respect to set inclusion) that
contains x0, x1, . . . , xk .

When x = ∑k
l=0 αlxl for nonnegative numbers (αj )kj=1 whose sum is 1, we say that x

is a convex combination of the points x0, x1, . . . , xk . It follows (see Exercise 23.1) that

conv(x0, x1, . . . , xk) = {
x ∈ Rn : x is a convex combination of x0, . . . , xk

}
. (23.1)

Definition 23.2 Let X ⊆ Rn be a convex set. A vector x ∈ X is an extreme point of X if
for every two distinct points y, z ∈ X, and for every α ∈ (0, 1),

αy + (1 − α)z �= x. (23.2)

In words, a point is an extreme point of a convex set if it cannot be expressed as a
convex combination of two different points in that set. Equivalently, a point is an extreme
point of a convex set if there is no open interval that both contains it and is contained
in that set. If none of the vectors x0, x1, . . . , xk is a convex combination of the other
vectors, then the extreme points of the convex hull conv(x0, x1, . . . , xk) are x0, x1, . . . , xk

(Exercise 23.2). Figure 23.1 depicts the extreme points of a square (four points) and of a
circle (all the boundary points of the circle) in R2.

Definition 23.3 The vectors x0, x1, . . . , xk in Rn are called affine independent if the only
solution of the following system of equations with unknowns (αl)kl=0 in R:

k∑
l=0

αlxl = �0, (23.3)

k∑
l=0

αl = 0, (23.4)

is given by α0 = α1 = · · · = αk = 0. If this condition is not satisfied, the vectors
x0, x1, . . . , xk in Rn are called affine dependent.

We say that a vector y ∈ Rn is affine independent of the vectors x0, x1, . . . , xk if the
vectors (x0, x1, . . . , xk, y) are affine independent.

It follows from the definition that every subset of a set of affine-independent vectors
is also affine independent (why?), and every superset of a set of affine-dependent vectors
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is also affine dependent. In addition, affine dependence implies linear dependence, which
means that linear independence implies affine independence. The following example
shows that the converse does not hold. The example shows that the space Rn may contain
n + 1 vectors that are affine independent. Since any n + 1 vectors in Rn are linearly
dependent, it follows that affine independence does not imply linear independence. Thus,
the concepts of linear independence and affine independence are not identical.

Example 23.4 For n > 1 denote by el = (0, . . . , 0, 1, 0, . . . , 0) the l unit vector in Rn; by this we mean the

vector all of whose coordinates are 0 except for the l-th coordinate, which is equal to 1. The set
{e1, e2, . . . , en, �0} is a set of n + 1 affine-independent vectors.

To see this, let (αl)n+1
l=1 be a solution of the following system of equations:

n∑
l=1

αlel + αn+1�0 = �0, (23.5)

n+1∑
l=1

αl = 0. (23.6)

For l = 1, 2, . . . , n, the l-th coordinate on the left-hand side of Equation (23.5) equals αl , and
therefore αl = 0 for every l = 1, 2, . . . , n. Equation (23.6) implies that αn+1 = 0, and therefore the
vectors e1, e2, . . . , en, �0 are affine independent. �

Note that a set of vectors containing the vector �0 is necessarily linearly dependent. In
contrast, as Example 23.4 shows, a set of vectors containing the vector �0 may be affine
independent.

Example 23.5 Let x0, x1, . . . , xk be affine-independent vectors. Denote their center of gravity by y :=
1

k+1

∑k
l=0 xl . Then the set {x1, . . . , xk, y} is affine independent (note that x0 is not in this set). To

see this, let (αl)k+1
l=1 be a solution of the following system of equations:

k∑
l=1

αlxl + αk+1y = �0, (23.7)

k+1∑
l=1

αl = 0. (23.8)

Define

βl :=
{

αl + αk+1

k+1 if 1 ≤ l ≤ k,
αk+1

k+1 if l = 0.
(23.9)

Then
∑k

l=0 βl = ∑k+1
l=1 αl = 0 (check that this true), and by (23.7),

k∑
l=0

βlxl = αk+1

k + 1
x0 +

k∑
l=1

(
αl + αk+1

k + 1

)
xl =

k∑
l=1

αlxl + αk+1y = �0. (23.10)

Since the vectors x0, x1, . . . , xk are affine independent, βl = 0 for all l = 0, 1, . . . , k, and
therefore αl = 0 for all l = 1, 2, . . . , k + 1. In other words, the vectors x1, . . . , xk, y are affine
independent. �



919 23.1 Fixed point theorems

In Example 23.5, we can replace each of the vectors x1, . . . , xk (not necessarily x0) with
the center of weight y and the resulting set of vectors will still remain affine independent.
In fact, we can replace each of the vectors {x0, x1, . . . , xk} with any convex combination
z := ∑k

l=0 γ lxl in which all the weights (γ l)kl=0 are positive (but not necessarily equal)
and the resulting set of vectors will still remain affine independent (Exercise 23.6).

The last two examples show that there may be n + 1 affine-independent vectors in Rn.
The next theorem shows that any n + 2 vectors in Rn are affine dependent.

Theorem 23.6 Every subset of Rn containing n + 2 or more vectors is affine dependent.

Proof: Since every superset of a set of affine-dependent vectors is also affine dependent,
it suffices to prove that every set of n + 2 vectors in Rn is affine dependent. Suppose, then,
by contradiction that there exist n + 2 affine-independent vectors x1, x2, . . . , xn+2 in Rn.
Since any subset of a set of affine-independent vectors is itself a set of affine-independent
vectors, the vectors x1, x2, . . . , xn+1 are also affine independent. Since any n + 1 vectors
in Rn are linearly dependent, there exist real numbers (βl)n+1

l=1 , not all of them 0, such that

n+1∑
l=1

βlxl = �0. (23.11)

Since the vectors x1, x2, . . . , xn+1 are affine independent, β := ∑n+1
l=1 βl �= 0. Suppose

without loss of generality that β1 �= 0. Applying the same reasoning to the n + 1 vectors
x2, x3, . . . , xn+2 leads to the conclusion that there exist real numbers (γ l)n+2

l=2 , not all of
them 0, such that

n+2∑
l=2

γ lxl = �0, γ :=
n+2∑
l=2

γ l �= 0. (23.12)

Define

αl :=
⎧⎨⎩

γβ1 if l = 1,

γβl − βγ l if 2 ≤ l ≤ n + 1,

−βγ n+2 if l = n + 2.

(23.13)

Then

n+2∑
l=1

αlxl = γ

n+1∑
l=1

βlxl − β

n+2∑
l=2

γ lxl = �0, (23.14)

n+2∑
l=1

αl = γ

n+1∑
l=1

βl − β

n+2∑
l=2

γ l = γβ − βγ = 0, (23.15)

and morever α1 = γβ1 �= 0. It follows that the vectors x1, x2, . . . , xn+2 are affine depen-
dent, contradicting the assumption we started with. The conclusion is that there do not
exist n + 2 affine-independent vectors in Rn. �

For n = 1 the space Rn is the real line, and vectors are real numbers. The theorem
states that in that space every triple of real numbers is affine dependent. Any given three
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vectors in Rn are affine dependent if and only if none of them is a convex combination of
the other two (Exercise 23.3).

The following theorem shows how to find affine-independent vectors using linearly
independent vectors. Its proof is left to the reader (Exercise 23.5).

Theorem 23.7 Let x0, x1, . . . , xk be affine-independent vectors in Rn, and let y be a
vector that is linearly independent of {x0, x1, . . . , xk}. Then the vectors x0, x1, . . . , xk, y

are affine independent.

Definition 23.8 A set S ⊆ Rn is called a k-dimensional simplex if it is the convex hull of
k + 1 affine-independent vectors.

If x0, x1, . . . , xk are affine-independent vectors whose convex hull is the k-dimensional
simplex S, then we write

S = 〈〈x0, x1, . . . , xk〉〉 := conv(x0, x1, . . . , xk). (23.16)

A simplex is a compact and convex set. A zero-dimensional simplex is a set containing
only one point. A one-dimensional simplex is a closed interval, and a two-dimensional
simplex is a triangle.

The next theorem, whose proof is left to the reader (Exercise 23.7), states that every
vector in a simplex can be uniquely represented as a convex combination of the extreme
points of the simplex.

Theorem 23.9 Let x0, x1, . . . , xk be affine-independent vectors in Rn. Let y ∈
〈〈x0, x1, . . . , xk〉〉. Then y has a unique representation as a convex combination of
x0, x1, . . . , xk . In other words, the following system of equations with unknowns (αl)kl=0
in R has a unique solution:

k∑
l=0

αlxl = y, (23.17)

k∑
l=0

αl = 1, (23.18)

αl ≥ 0 ∀l = 0, 1, . . . , k. (23.19)

If the system of Equations (23.17)–(23.18) has a solution (omitting Equation (23.19))
we say that y is an affine combination of (xl)kl=0. It follows that if y is a convex combination
of (xl)kl=0, then it is an affine combination of those vectors (but the converse is not true).

Theorem 23.9 leads to the definition of a new coordinate system for vectors in the
simplex 〈〈x0, x1, . . . , xk〉〉: the coordinates of a point y in the simplex are the weights
(αl)kl=0 satisfying Equations (23.17)–(23.19). Every point y ∈ Rn that is a linear combi-
nation of x0, x1, . . . , xk but is not in their convex hull can also be represented by weights
(αl)kl=0 satisfying Equations (23.17)–(23.18) but not Equation (23.19) (Exercise 23.9).
This coordinate system is called the barycentric coordinate system (relative to the vectors
x0, x1, . . . , xk).
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The barycentric coordinates of a point in the simplex 〈〈x0, x1, . . . , xk〉〉 can be given the
following physical interpretation: if (αl)kl=0 are the barycentric coordinates of y (relative
to the vectors x0, x1, . . . , xk), then if we place a weight αl at each point xl , the center of
gravity of the resulting system is y.

Since every subset of a set of affine-independent vectors is itself a set of affine-
independent vectors, we deduce the following theorem.

Theorem 23.10 Let 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex in Rn. Then for every set
{xl0, xl1, . . . , xlt } ⊆ {x0, x1, . . . , xk}, the convex hull of xl0, xl1, . . . , xlt is a t-dimensional
simplex in Rn.

The simplex 〈〈xl0, xl1, . . . , xlt 〉〉 is called a t-dimensional face of S. The face of a simplex
S, of any dimension, is a subsimplex of S, that is, a simplex contained in S. In particular,
the simplex S is itself a face of S.

Definition 23.11 Let S = 〈〈x0, x1, . . . , xk〉〉 be a simplex in Rn. The boundary of S is the
union of all the (k − 1)-dimensional subsimplices of S, i.e.,1

k⋃
l=0

〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk〉〉.

In other words, the boundary of S is the union of all the (k − 1) faces of S, and it
contains all the points y in S whose barycentric coordinate representation contains at least
one coordinate that is zero (Exercise 23.10).

Definition 23.12 Let S ⊆ Rn be a k-dimensional simplex in Rn. A simplicial partition of
S is a collection T = {T1, T2, . . . , TM} of simplices in Rn satisfying.2

1.
⋃M

m=1 Tm = S: the union of all the simplices in T is the simplex S.
2. For every j, m, 0 ≤ j ≤ m ≤ M , the intersection Tj ∩ Tm is either the empty set or a

face both of Tj and of Tm.
3. If T is a simplex in the collection T , then all of its faces are also elements of this

collection.
4. If T is an l-dimensional simplex in T , for l < k, then it is contained in an l + 1-

dimensional simplex in T .

Example 23.13 Let x0, x1, x2 be three affine-independent vectors in R2. Figure 23.2 depicts three partitions

of 〈〈x0, x1, x2〉〉.
In Partition A, the collection T1, T2 and all their faces is not a simplicial partition, because T1 is

not a simplex (T1 is the convex hull of 4 points in R2, and in R2 any four points are affine dependent
(see Theorem 23.6 on page 919)).

In Partition B, the collection of simplices T1, T2, T3 and all their faces is not a simplicial partition,
because the intersection T1 ∩ T2 (as well as the intersection T1 ∩ T3) is not a face of T1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1 For l = 0 and l = k, the simplices in the union are 〈〈x1, x2, . . . , xk〉〉 and 〈〈x0, x1, . . . , xk−1〉〉, respectively.
2 The fourth property follows from the other properties, and is therefore superfluous. We will not prove this fact here.
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T1

T2

Partition A

x1x 0

x2

x3x 4

T1

T2T3

Partition B

x1x 0

x2

x3

x 4 T1T2

T3

T4

Partition C

x1x0

x2

x3x 4

x5

Figure 23.2 Examples of partitions of a two-dimensional simplex

In Partition C, the collection of simplices T1, T2, T3, T4 and all their faces is a simplicial partition.
In contrast, the collection T1, T2, T3, T4, T1 ∪ T2 and all their faces is not a simplicial partition,
because the intersection of T1 and T1 ∪ T2 is T1, which is not a face of T1 ∪ T2. �

For every simplicial partition T = {T1, T2, . . . , TM}, denote by Y (T ) the set of all the
extreme points of the simplices (Tm)Mm=1. In other words, every Tm is the convex hull of
some of the points in Y (T ). For example, for Partition C in Figure 23.2,

Y (T ) = {x0, x1, x2, x3, x4, x5}. (23.20)

The following theorem follows from Properties (1) and (4) in Definition 23.12
(Exercise 23.14).

Theorem 23.14 Let S be a k-dimensional simplex in Rn, and T be a simplicial partition
of S. Then S equals the union of all the k-dimensional simplices in T .

For every simplex S = 〈〈x0, x1, . . . , xk〉〉 in Rn denote by HS the affine space spanned
by the vectors in S,

HS :=
{

k∑
l=0

αlxl :
k∑

l=0

αl = 1

}
⊆ Rn. (23.21)

The affine space HS is a k-dimensional space, just like S.

Theorem 23.15 Let S = 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex in Rn, let T be a
simplicial partition of S, and let T ∈ T be a (k − 1)-dimensional simplex. If T is in the
boundary of S, then T is contained in a unique k-dimensional simplex in T . If T is not in
the boundary of S, then T is contained in two k-dimensional simplices in T .

Consider partition C in Figure 23.2 (Example 23.13). This is the partition contain-
ing T1, T2, T3, T4 and all their faces. The one-dimensional simplex 〈〈x1, x3〉〉 is on the
boundary of S and contained in a single two-dimensional simplex, T1. In contrast, the
one-dimensional simplex 〈〈x3, x5〉〉 is not on the boundary of S and is contained in two
two-dimensional simplices, T1 and T2.
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Proof: Let T = 〈〈y0, y1, . . . , yk−1〉〉 be a (k − 1)-dimensional simplex in T . By Property
(4) in Definition 23.12, every (k − 1)-dimensional simplex in T is contained in at least
one k-dimensional simplex in T , and by Property (2) it is a face of every such simplex.

Step 1: Preparations.
Let T̂ = 〈〈y0, y1, . . . , yk−1, y〉〉 and T̂ ′ = 〈〈y0, y1, . . . , yk−1, y ′〉〉 be two k-dimensional
simplices in T such that T is a face of both of them (the possibility that T̂ = T̂ ′ is not
ruled out). In particular, y and y ′ are not in T . Since T̂ and T̂ ′ are contained in S, it
follows that HT̂ and HT̂ ′ are contained in HS . These three spaces are all k-dimensional
affine spaces, and therefore they coincide (Exercise 23.11),

HT̂ = HT̂ ′ = HS. (23.22)

It follows that the vector y ′ can be written as an affine combination of the vectors
y0, y1, . . . , yk−1, y,

y ′ =
k−1∑
l=0

αlyl + βy,

k−1∑
l=0

αl + β = 1. (23.23)

Since y ′ �∈ T it follows that β �= 0. Indeed, if β = 0, then by Equation (23.23) we
would deduce that y′ is an affine combination of (yl)kl=0, and then HT̂ ′ would be a (k − 1)-
dimensional affine space, contradicting the fact that it is a k-dimensional affine space.

Step 2: If β > 0, then T̂ = T̂ ′.
For every ε ∈ (0, 1] the vector zε := (1 − ε)

∑k−1
l=0

1
k
yl + εy′ is in T̂ ′ but not in T (since

y ′ �∈ T ). For ε > 0 sufficiently small, the vector zε is also in T̂ , since

zε = (1 − ε)
k−1∑
l=0

1

k
yl + εy′ =

k−1∑
l=0

(
(1 − ε)

1

k
+ εαl

)
yl + εβy, (23.24)

and all the coefficients in the right-hand expression are positive for ε > 0 sufficiently small.
It follows that the intersection T̂ ∩ T̂ ′ contains both T and zε for ε > 0 sufficiently small.
Therefore T̂ ∩ T̂ ′ strictly contains T . On the other hand, by Property (2) this intersection
is a face both of T̂ and of T̂ ′. But the only face of the simplex T̂ properly containing T

is T̂ itself, and therefore T̂ ∩ T̂ ′ = T̂ . Similarly, T̂ ∩ T̂ ′ = T̂ ′. We deduce from this that
T̂ = T̂ ′.

Step 3: If T is in the boundary of S, then it is contained in a unique k-dimensional simplex
in T .
We will show that if T is in the boundary of S then β > 0, and by Step 2 it then follows
that T is contained in a unique k-dimensional simplex in T . Recall that x0, x1, . . . , xk

are the extreme points of S. By assumption, the simplex T is in the boundary of S, which
is equal to

⋃k
i=0〈〈x0, . . . , xi−1, xi+1, . . . , xk〉〉. Since every simplex is a convex set, T is

in one of the (k − 1)-dimensional faces of S. Suppose, without loss of generality, that
T ⊆ 〈〈x0, x1, . . . , xk−1〉〉. It follows that each of the vectors (yl)k−1

l=0 can be represented as
a convex combination of x0, x1, . . . , xk−1,

yl =
k−1∑
j=0

αjlxj ,

k−1∑
j=0

αjl = 1, l = 0, 1, . . . , k − 1. (23.25)
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Since the vectors y and y′ are in S, they can be represented as convex combinations of the
extreme points of S,

y =
k∑

j=0

γ jxj , y ′ =
k∑

j=0

γ ′j xj ,

k∑
j=0

γ j =
k∑

j=0

γ ′j = 1, (23.26)

where γ j , γ ′j ≥ 0 for every j ∈ {0, 1, . . . , k}.
Since y and y′ are not in T , the coefficients γ k are γ ′k are in fact positive. Plugging in

these representations of the vectors into Equation (23.23), we get

k∑
j=0

γ ′j xj = y ′ =
k−1∑
l=0

αlyl + βy (23.27)

=
k−1∑
l=0

⎛⎝αl

k−1∑
j=0

αjlxj

⎞⎠+ β

k∑
j=0

γ jxj (23.28)

=
k−1∑
j=0

(
k−1∑
l=0

αlαjl + βγ j

)
xj + βγ kxk. (23.29)

Since every vector in a simplex can be represented in a unique way as a convex com-
bination of extreme points of the simplex, we deduce that the coefficient of xk in both
representations must be identical: γ ′k = βγ k . Since both γ ′k and γ k are positive, the
conclusion is that β > 0, which is what we wanted to show.

Step 4: If T is not in the boundary of S, then it is contained in at least two k-dimensional
simplices in T .
By Property (4) of simplicial partitions, T is contained in at least one k-dimensional sim-
plex T̂ in T . Suppose that such a simplex T̂ is given by T̂ = 〈〈y0, y1, . . . , yk−1, y〉〉.
We will show that there exists an additional k-dimensional simplex T̂ ′ �= T̂ that
contains T .

The simplex T̂ is the collection of all points that can be represented as a convex

combination of its extreme points. For every n ∈ N, the vector zn := ∑k−1
l=0

1− 1
n

k
yl − 1

n
y

is not in T̂ , since the coefficient of y is a negative number (Exercise 23.8). The sequence
(zn)n∈N converges to z∗ = ∑k−1

l=0
1
k
yl ∈ T , which lies in the relative interior3 of T .

Since T is not in the boundary of S, the vector z∗ is in the relative interior of S, and
therefore there is n0 ∈ N such that zn ∈ S for every n ≥ n0. Since S is the union of all
the k-dimensional simplices in T (Theorem 23.14), and since there are a finite number
of such simplices, there exists a subsequence (nj )j∈N such that (znj )j∈N are all contained
in the same k-dimensional simplex T̂ ′ ∈ T , which differs from T̂ . Since the simplex is a
closed set, z∗ ∈ T̂ ′, and therefore z∗ ∈ T̂ ∩ T̂ ′. Since the smallest simplex (with respect to
set inclusion) in T that contains z∗ is T (why?), the intersection T̂ ∩ T̂ ′, which is a face
both of T̂ and of T̂ ′, equals T . It follows that T is contained also in T̂ ′, which is what we
wanted to show.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3 A point x in a simplex T is in the relative interior of T if all its barycentric coordinates relative to T are positive.
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Step 5: If T is not in the boundary of S, then it is contained in exactly two k-dimensional
simplices in T .
Suppose by contradiction that there exists a third k-dimensional simplex T̂ ′′ =
〈〈y0, y1, . . . , yk−1, y′′〉〉 ∈ T containing T , in addition to T̂ and T̂ ′. As we saw in the
first part of the proof,

HT̂ = HT̂ ′ = HT̂ ′′ = HS. (23.30)

Therefore in particular y′′ ∈ HT̂ ′ and y ′ ∈ HT̂ . Write y ′′ = ∑k−1
l=0 α′lyl + β ′y′, where∑k−1

l=0 α′l + β ′ = 1. Recall that y ′ = ∑k−1
l=0 αlyl + βy (Equation (23.23)), and that β < 0

since T̂ ′ �= T̂ (step 2 of the proof). Similarly, since T̂ ′ �= T̂ ′′ we deduce that β ′ < 0.
Hence

y ′′ =
k−1∑
l=0

α′lyl + β ′y ′ (23.31)

=
k−1∑
l=0

α′lyl + β ′
(

k−1∑
l=0

αlyl + βy

)
(23.32)

=
k−1∑
l=0

(α′l + β ′l)yl + β ′βy. (23.33)

Since β < 0 and β ′ < 0, it follows that β ′β > 0, and therefore by the results of Step 2,
T̂ ′′ = T̂ , contradicting the assumption that T̂ ′′ �= T̂ . The contradiction proves that there
are exactly two k-dimensional simplices in T containing T . �

Let S = 〈〈x0, x1, . . . , xk〉〉 be a simplex in Rn. By Theorem 23.9 (page 920), every
vector y ∈ S has a unique representation as a convex combination of x0, x1, . . . , xk ,

k∑
l=0

αlxl = y, (23.34)

where (αl)kl=0 are nonnegative numbers whose sum is 1 (the barycentric coordinates of y).
Denote

suppS(y) = {l : 0 ≤ l ≤ k, αl > 0}. (23.35)

This set is called the support of y relative to S. This is the set of positive barycentric
coordinates of y. Recall that if T is a simplicial partition of S, then Y (T ) is the set of all
extreme points of the simplices in T .

Definition 23.16 Let S = 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex in Rn, for n ≥ k,
and let T be a simplicial partition of S. A coloring of T is a function c : Y (T ) →
{0, 1, . . . , k} associating every vertex y in Y (T ) with an index c(y) in {0, 1, . . . , k} that is
called the color of the vertex. A coloring c is called proper if for every y ∈ Y (T ) the color
of y is one of the indices in the support of y (using its barycentric representation relative
to S).
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Example 23.17 Three colorings of a simplicial partition of a two-dimensional simplex S = 〈〈x0, x1, x2〉〉 in

R2 are depicted in Figure 23.3. The color of each vertex is noted next to it. Colorings A and B
in Figure 23.3 are proper colorings. Coloring C in Figure 23.3 is not proper, because one of the
vertices in the simplicial partition, which is contained in the simplex 〈〈x0, x2〉〉 and is identified by
an arrow, is colored by the color 1.

Coloring A

x1x 0

x 2

10

2

0

0

1

2

1

1 0

Coloring B

x1x 0

x2

10

2

2

0

2

1

1

1 0

Coloring C

x 1x0

x2

10

2

1

2

1

1

2

1 0

Figure 23.3 Examples of colorings
�

Definition 23.18 Let T be a simplicial partition of a k-dimensional simplex S, and let c

be a proper coloring of T . The k-dimensional simplex T ∈ T is perfectly colored if its
vertices are colored with k + 1 different colors {0, 1, . . . , k}.

Example 23.17 (Continued ) Figure 23.4 depicts the colorings in Figure 23.3, with the two-dimensional

perfectly colored simplices shaded in grey. In colorings A and B, which are proper colorings, the
number of such simplices is indeed odd (1 in coloring A, and 5 in coloring B). When the coloring
is not proper, the number of two-dimensional perfectly colored simplices may be even, as coloring
C of the figure shows.

Coloring A

x1x 0

x2

10

2

0

0

1

2

1

1 0

Coloring B

x1x 0

x 2

10

2

2

0

2

1

1

1 0

Part C

x1x 0

x 2

10

2

1

2

1

1

2

1 0

Figure 23.4 The perfectly colored simplices in Example 23.17
�

Theorem 23.19 (Sperner’s Lemma) Let S be a k-dimensional simplex in Rn, for n ≥ k,
and let T be a simplicial partition of S. Let c be a proper coloring of T . Then the number
of perfectly colored k-dimensional simplices T ∈ T is odd.
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x 1x 0

x 2

1

1

0

0

2

0

2

1 0 1

1

1

1

0 2

Figure 23.5 Collections of simplices A, B, and C

In particular, there is at least one perfectly colored k-dimensional simplex in T .

Proof: The proof is conducted by induction on the dimension of the simplex, k.

Step 1: The case k = 0.
In this case, the simplex contains only one point, S = 〈〈x0〉〉, and the only simplicial
partition is the one containing the entire simplex, T = {S}. In this case, Y (T ) = {x0}. The
only proper coloring associates the vertex x0 with the color 0. It follows that the number
of perfectly colored zero-dimensional simplices is 1, which is an odd number.

Step 2: Defining collections of simplices when k > 0.
Let k > 0. Suppose that the statement of the theorem is true for every (k − 1)-dimensional
simplex, and let S = 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex. Let T be a simplicial
partition of S and c a proper coloring of T . We will make use of the following notation:

� A is the collection of all (k − 1)-dimensional simplices in T contained in the boundary
of S and colored by {0, 1, . . . , k − 1}.

� B is the collection of all the k-dimensional simplices in T (not necessarily in the
boundary of S) whose vertices are colored by {0, 1, . . . , k − 1}. In other words, these
are the simplices colored by {0, 1, . . . , k − 1} satisfying the property that two of their
vertices are colored by the same color.

� C is the collection of all the k-dimensional simplices in T whose vertices are colored
by {0, 1, . . . , k}.
In the example in Figure 23.5, A has three one-dimensional simplices, denoted by

thick lines. B has four two-dimensional simplices, denoted by light shading. C has five
two-dimensional simplices, denoted by darker shading.

Step 3: The number of simplices in A is odd.
First, we show that every simplex in A is contained in the face 〈〈x0, x1, . . . , xk−1〉〉 of
S. Recall that the boundary of the simplex 〈〈x0, x1, . . . , xk〉〉 is the union of the (k − 1)-
dimensional faces,

k⋃
l=0

〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk〉〉.
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x 1x 0

x 2

1

1

0

0

2

0

2

1 0 1

1

1

1

0 2

(a) (b)
x 1x 0

x 2

T1

T2

T3

T4

1

1

0

0

2

0

2

1 0 1

1

1

1

0 2

Figure 23.6 The collections A (dark lines), B (light triangles), and C (dark
triangles) in Figure 23.5 and their associated graphs

It follows that if a vertex is colored by a color l ∈ {0, 1, . . . , k − 1}, then it cannot be on the
face 〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk〉〉, because the coloring is proper, and the index l is not
in the support of any vector in this face of S. Since every simplex in A is colored by all the
colors 0, 1, . . . , k − 1, such a simplex cannot be in

⋃k−1
l=0 〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk〉〉,

and it must therefore be in the face 〈〈x0, x1, . . . , xk−1〉〉 of S.
We therefore deduce that the simplices in A are exactly the (k − 1)-dimensional

simplices contained in the simplex 〈〈x0, x1, . . . , xk−1〉〉 whose vertices are colored by
{0, 1, . . . , k − 1}. By the induction hypothesis, the number of such simplices is odd.

Step 4: Completing the proof.
Define an undirected graph as follows:

� The set of vertices is A ∪ B ∪ C; i.e., every simplex in the union A ∪ B ∪ C is a vertex
of the graph.

� Let T1 and T2 be two different simplices in A ∪ B ∪ C. Then there exists an edge
connecting T1 and T2 if and only if the intersection T1 ∩ T2 is a (k − 1)-dimensional
simplex whose vertices are colored by {0, 1, . . . , k − 1}.

The graph corresponding to the coloring in Figure 23.5 appears in Figure 23.6(a). In this
figure, the one-dimensional simplices outlined with dark lines and the two-dimensional
colored simplices are vertices of the graph. The lines connecting pairs of simplices denote
the edges. Figure 23.6(b) illustrates the rule according to which the edges of the graph
are determined. For example, the simplices T1 and T2 denoted in Figure 23.6(b) are two
vertices of the graph: T1 is in C and T2 is in B. Their intersection is a one-dimensional
simplex that is colored by the colors 0 and 1, and therefore there is an edge connecting T1

and T2. The simplices T3 and T4, depicted in Figure 23.6(b), are also vertices in the graph:
T3 is in B and T4 is in A. Their intersection is the simplex T4, which is a one-dimensional
simplex colored by the colors 0 and 1, and hence there is an edge connecting T3 and T4.
This explains all the edges in Figure 23.6(a).

Denote by R the number of edges in the graph. Using Theorem 23.15, we can count
how many edges emanate from each vertex in the graph.
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� There is only one edge emanating from each vertex in A to a vertex in B or C. Indeed,
by Theorem 23.15, every simplex T = 〈〈y0, y1, . . . , yk−1〉〉 ∈ A is contained in a single
k-dimensional simplex T̂ = 〈〈y0, y1, . . . , yk−1, yk〉〉 in T : if the color of vertex xk is
k, the simplex T̂ is contained in C. If not, T̂ is in B. In any case, T̂ ∩ T = T , and
since T is a (k − 1)-dimensional simplex colored with {0, 1, . . . , k − 1} there is an edge
connecting T and T̂ .

� Two edges emanate from every vertex in B. To see this, suppose that T =
〈〈x0, x1, . . . , xk−1, xk〉〉 ∈ B and assume without loss of generality that the vertices xk−1

and xk are colored in the same color. The only two (k − 1)-dimensional subsimplices
of T that are colored in the colors {0, 1, . . . , k − 1} are T1 := 〈〈x0, x1, . . . , xk−2, xk−1〉〉
and T2 := 〈〈x0, x1, . . . , xk−2, xk〉〉. For i = 1, 2, consider the simplex Ti . Using Theorem
23.15 we deduce that there are two possibilities.
� In this case, Ti is in A and there is an edge connecting Ti and T (because T ∩ Ti = Ti).
� Ti is not in the boundary of S. It is then contained in two k-dimensional simplices,

one of which is T ; denote the other by T̂i . If the simplex T̂i is colored in the colors
{0, 1, . . . , k}, then T̂i ∈ C. If not, T̂i ∈ B. In both cases there is an edge connecting T

and T̂i (because T̂i ∩ T = T ).

We conclude that there are two edges emanating from T .

� There is only one edge emanating from every vertex in C. To see this, suppose that
T = 〈〈x0, x1, . . . , xk−1, xk〉〉 ∈ C. Since all the vertices are colored in different colors
{0, 1, . . . , k}, we will suppose without loss of generality that the subsimplex T1 =
〈〈x0, x1, . . . , xk−1〉〉 is colored with the colors {0, 1, . . . , k − 1} (and this is the only
(k − 1)-dimensional subsimplex in T1 colored in these colors). If T1 is in the boundary
of S, then it is in A and there is an edge connecting T and T1 (because T1 ∩ T = T1).
If T1 is not in the boundary of S, by Theorem 23.15 the simplex T1 is contained in
two k-dimensional simplices. One of those simplices is T . As in the previous case, the
second k-dimensional simplex T2 containing T1 is either in B or in C, and there is an
edge connecting T2 and T (because T2 ∩ T = T1).

The sum total of edges emanating from all the vertices in the graph is twice the number
of edges R, because every edge is counted twice. It follows that

2R = |A| + 2|B| + |C|.
This implies that |A| + |C| is an even number. Since the number of elements in A is
odd (by Step 3), the number of elements in C must be odd. In other words, the number
of perfectly colored k-dimensional simplices in T is odd. This establishes the statement
for k-dimensional simplices, concluding the induction step and the proof of Sperner’s
Lemma. �

Definition 23.20 Let S = 〈〈x0, x1, . . . , xk〉〉 be a simplex in Rn. The diameter of S, denoted
by ρ(S), is defined as4

ρ(S) = max
0≤i<j≤k

‖xi − xj‖. (23.36)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

4 Recall that ‖xi − xj‖ is the Euclidean distance in Rn between the vectors xi and xj .
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x 1x 0

x 2

y

Figure 23.7 The collection T described in Theorem 23.23, for a two-dimensional
simplex

The diameter of a simplex is also equal to the greatest (Euclidean) distance between
two points in the simplex (not necessarily vertices; see Exercise 23.22).

Definition 23.21 Let T = {T1, T2, . . . , TM} be a simplicial partition of a simplex S. The
diameter of a simplicial partition T is denoted by ρ(T ) and defined by

ρ(T ) = max
m=1,..,M

ρ(Tm). (23.37)

The diameter of T is the greatest (Euclidean) distance between two points located in the
same simplex in T . One simplicial partition of a simplex S is the partition that contains
all faces of S. The next theorem enables us to deduce that every simplicial partition can
be refined to a simplicial partition with an arbitrarily small diameter.

Theorem 23.22 Let k ≥ 1 and let T be a simplicial partition of a k-dimensional simplex
S = 〈〈x0, x1, . . . , xk〉〉 in Rn. Then there exists a simplicial partition T ′ of S satisfying the
following properties:

(i) For every T ′ ∈ T ′ there exists T ∈ T such that T ′ ⊆ T .
(ii) ρ(T ′) ≤ k

k+1ρ(T ).

For proving Theorem 23.22 we make use the following two auxiliary theorems.

Theorem 23.23 Let S = 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex in Rn, and
denote y = 1

k+1

∑k
l=0 xl . Then the collection T containing the k + 1 simplices

〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk, y〉〉, l = 0, 1, . . . , k, and all of their faces, is a simpli-
cial partition of S.

For a two-dimensional simplex S = 〈〈x0, x1, x2〉〉, the collection T defined in
Theorem 23.23 is depicted in Figure 23.7, and it is indeed a simplicial partition of S.

Proof: By Theorem 23.7 on page 920, for every l = 0, 1, . . . , k, the vectors
x0, x1, . . . , xl−1, xl+1, . . . , xk, y are affine-independent vectors (see Example 23.5), and
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T is therefore a collection of simplices. We now show that

S =
k⋃

i=0

〈〈x0, x1, . . . , xl−1, xl+1, . . . , xk, y〉〉. (23.38)

Let z ∈ S. Since S is a simplex, there exist nonnegative numbers α0, α1, . . . , αk whose
sum is 1 such that z = ∑k

l=0 αlxl . Suppose that αj = minl=0,1,...,k αl . We will show that
the vector z is contained in the simplex 〈〈x0, x1, . . . , xj−1, xj+1, . . . , xk, y〉〉. Since αj is
minimal, we have αj ≤ 1

k+1 , or equivalently that (k + 1)αj ≤ 1. Therefore,

z =
k∑

l=0

αlxl = αj

k∑
l=0

xl +
∑
l �=j

(αl − αj )xl (23.39)

= (k + 1)αj 1

k + 1

k∑
l=0

xl +
∑
l �=j

(αl − αj )xl (23.40)

= (k + 1)αjy +
∑
l �=j

(αl − αj )xl. (23.41)

Since αl − αj ≥ 0 for all l �= j , and

(k + 1)αj +
∑
l �=j

(αl − αj ) =
k∑

l=0

αl = 1, (23.42)

it follows that z ∈ 〈〈x0, x1, . . . , xj−1, xj+1, . . . , xk, y〉〉, which is what we wanted to show.
We leave it to the reader to ascertain that any pair of simplices in T are either disjoint, or
their intersection is also a simplex in T (Exercise 23.23). �

Remark 23.24 For the simplicial partition described in Theorem 23.23, we compute here
an upper bound to the value of ‖xj − y‖, which we will need later. Let j ∈ {0, 1, . . . , k}.
By the triangle inequality,

‖xj − y‖ =
∥∥∥∥∥xj − 1

k + 1

k∑
l=0

xl

∥∥∥∥∥ =
∥∥∥∥∥∥ 1

k + 1

∑
l �=j

(xj − xl)

∥∥∥∥∥∥ (23.43)

≤ 1

k + 1

∑
l �=j

‖xj − xl‖ ≤ k

k + 1
max
l �=j

‖xj − xl‖ = k

k + 1
ρ(S). (23.44)

�

For every k-dimensional simplex S = 〈〈x0, x1, . . . , xk〉〉 in Rn and every vector y ∈ Rn

that is affine independent of the vectors x0, x1, . . . , xk , denote by 〈〈S, y〉〉 the (k + 1)-
dimensional simplex whose extreme points are y and the extreme points of S,

〈〈S, y〉〉 := 〈〈x0, x1, . . . , xk, y〉〉. (23.45)

Theorem 23.25 Let S = 〈〈x0, x1, . . . , xk〉〉 be a k-dimensional simplex in Rn, and let T
be a simplicial partition of S. Let y ∈ Rn be a vector that is affine independent of the
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x1x0

y

T1 T2 TL
…

Figure 23.8 The collection T̂ described in Theorem 23.25, for the one-dimensional
simplex S = 〈〈x0, x1〉〉

vectors x0, x1, . . . , xk , and let Ŝ = 〈〈S, y〉〉. Then the following collection of simplices T̂
is a simplicial partition of the simplex Ŝ,

T̂ := T
⋃

{〈〈y〉〉}
⋃

{〈〈T , y〉〉 : T ∈ T } . (23.46)

Figure 23.8 corresponds to the one-dimensional case of the theorem, i.e., when S =
〈〈x0, x1〉〉 is a one-dimensional simplex (the base of the triangle in the figure) and the
partition T of S is composed of the points and intervals at the base of the triangle in the
figure. The collection T̂ defined in Theorem 23.25 contains, in addition to the simplices
in T , the triangles appearing in the figure, their sides, and the upper vertex.

Proof: We prove that the union of the simplices in the collection T̂ equals Ŝ. Ascertaining
that the intersection of any two simplices in the collection T̂ is either the empty set,
or is a simplex in T̂ , is left to the reader (Exercise 23.24). Let z be a vector in Ŝ.
Since Ŝ is a simplex, there exist nonnegative numbers (αi)k+1

i=0 whose sum is 1 such that
z = ∑k

i=0 αixi + αk+1y. If αk+1 = 1 then z = y, and therefore z ∈ 〈〈y〉〉. Since 〈〈y〉〉 is
a simplex in T̂ , the vector z is in the union of the simplices in T̂ . If αk+1 < 1, define
ẑ := ∑k

i=0
αi

1−αk+1 x
k. Since the numbers { αi

1−αk+1 }ki=0 are nonnegative numbers whose sum
is 1, ẑ ∈ S, and therefore it is contained in one of the simplices T in the simplicial partition
T . Since z = (1 − αk+1)̂z + αk+1y, it follows that z ∈ 〈〈T , y〉〉, and therefore in this case
the vector z is in the union of the simplices in T̂ as well. �

The triangle inequality implies that the diameter of the partition T̂ constructed in
Theorem 23.25 is

ρ(T̂ ) = max{ρ(T ), ‖x0 − y‖, ‖x1 − y‖, . . . , ‖xk − y‖}; (23.47)

see Exercise 23.25.

Proof of Theorem 23.22: The proof is by induction on k.
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The simplex S
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x 3

x 4x 5

x 6

The partitions TW  of the simplices in Tk−1

Figure 23.9 The case k = 2 in the proof of Theorem 23.22: the simplex S and the
partition (TW )W∈Tk−1

Step 1: The case k = 1.
When k = 1 the simplex S is the interval S = 〈〈x0, x1〉〉 and the simplicial partition is
given by a finite number of points in this interval; i.e., there exist points z1, z2, . . . , zL

such that

T = {〈〈x0, z1〉〉, 〈〈z1, z2〉〉, . . . , 〈〈zL−1, zL〉〉, 〈〈zL, x1〉〉, 〈〈x0〉〉, 〈〈z1〉〉, . . . , 〈〈zL〉〉, 〈〈x1〉〉}.
(23.48)

Define a new simplicial partition T ′ by partitioning each one of the one-dimensional
simplices in T into two equal parts: for each l ∈ {1, . . . , L + 1} let yl = 1

2zl−1 + 1
2zl

where z0 := x0 and zL+1 := x1. The simplicial partition T ′ is therefore

T ′ = {〈〈x0, y1〉〉, 〈〈y1, z1〉〉, 〈〈z1, y2〉〉, 〈〈y2, z2〉〉, . . . , 〈〈yL, x1〉〉, 〈〈x0〉〉,
〈〈y1〉〉, 〈〈z1〉〉, . . . , 〈〈yL〉〉, 〈〈x1〉〉}. (23.49)

Then T ′ is a refinement of T , and its diameter is half the diameter of T .

Step 2: The case k > 1.
Suppose that the claim of the theorem holds for every (k − 1)-dimensional simplex. We
will prove that it then holds for every k-dimensional simplex. LetT be a simplicial partition
of a k-dimensional simplex S. Let Tk−1 be the collection of all the (k − 1)-dimensional
simplices in T and let Tk be the collection of all the k-dimensional simplices in T . The
construction of the desired simplicial partition T ′ of S is conducted in several steps:

� Using the induction hypothesis, we will prove that for every (k − 1)-dimensional simplex
W ∈ Tk−1 there exists a simplicial partition TW of W whose diameter is less than or
equal to k−1

k
ρ(T ). Figure 23.9 illustrates the simplex S in the case that k = 2 and the

simplicial partition is (TW )W∈Tk−1 .
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Partition T

Figure 23.10 The case k = 2 in the proof of Theorem 23.22: centers of weight and
the subdivision T ′

� For every k-dimensional simplex T ∈ T denote by yT its center of weight. These centers
of weight are illustrated in Figure 23.10.

� Every simplex T ∈ T can be subdivided into the simplices 〈〈R, yT 〉〉, for all the simplices
R ∈ TW , for each face W of T . This partition is illustrated in Figure 23.10.

� Since ∪T ∈Tk
T = S, we obtain a refinement of the simplicial partition T of S.

� Finally, we prove that the diameter of this simplicial partition is less than or equal to
k

k+1ρ(T ).

We next turn to the formal construction of the simplicial division that refines T . For
each (k − 1)-dimensional simplex W ∈ Tk−1, let T̂W be the trivial partition containing all
the faces of W . Since W is a simplex in the simplicial partition T one has ρ(T̂W ) ≤ ρ(T ).
By the induction hypothesis there exists a simplicial partition TW of W satisfying

ρ(TW ) ≤ k − 1

k
ρ(T̂W ) ≤ k − 1

k
ρ(T ). (23.50)

For each k-dimensional simplex T = 〈〈y0, y1, . . . , yk〉〉 ∈ Tk , let yT be its center of
weight:

yT :=
k∑

l=0

1

k + 1
yl. (23.51)

Let T ′ be the collection of all the simplices 〈〈R, yT 〉〉 and their faces, where T ∈ Tk ,
W ∈ Tk−1 is a face of T and R ∈ TW . To conclude the proof, we need to show that
the collection T ′ is a simplicial partition and that ρ(T ′) ≤ k

k+1ρ(T ). By construction,
Properties (3) and (4) in the definition of simplicial partitions hold for the collection T ′.
By Theorems 23.14 and 23.23 it follows that the union of the simplices in T ′ is S. We
next show that the intersection of two simplices in T ′ is either empty or a face of both of
them. Let R and R̂ be two simplices in T ′ whose intersection is nonempty.
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Figure 23.11 The standard simplices X(1), X(2), and X(3)

� If R and R̂ are contained in the same k-dimensional simplex T in T , Theorems 23.23
and 23.25 imply that R and R̂ are elements of a simplicial partition of T , and therefore
in particular R ∩ R̂ is a face of both R and R̂.

� Assume that R and R̂ are contained in two different k-dimensional simplices in T , which
we denote as T and T̂ respectively. Since T is a simplicial partition, the intersection
T ∩ T̂ is a face both of T and of T̂ , and it is a simplex of a dimension smaller than k. Let
W be a (k − 1)-dimensional simplex in T containing T ∩ T̂ . Since TW is a simplicial
partition, it follows by construction that R ∩ R̂ is an element in TW , and that this element
is a face of both R and R̂.

By construction, and with the use of Equations (23.43)–(23.44), we deduce that the
diameter of T ′ is given by

ρ(T ′) = max{max{ρ(TW ), W ∈ Tk−1}, max{‖xl − y‖, 0 ≤ l ≤ k}} (23.52)

≤ max

{
k − 1

k
ρ(T ),

k

k + 1
ρ(T )

}
= k

k + 1
ρ(T ), (23.53)

which is what we needed to show. This completes the proof of Theorem 23.22. �

By repeated use of Theorem 23.22 we obtain the following corollary.

Corollary 23.26 For every simplex S, and every ε > 0, there exists a simplicial partition
Tε of S satisfying ρ(Tε) ≤ ε.

23.1.2 Brouwer’s Fixed Point Theorem
For every i = 1, 2, . . . , n, the (n − 1)-dimensional standard simplex is the simplex in Rn

whose vertices are the unit vectors e1, e2, . . . , en. This is the set X(n) ⊆ Rn defined as

X(n) :=
{

x ∈ Rn :
n∑

i=1

xi = 1, xi ≥ 0 ∀i

}
. (23.54)

The standard simplices X(1), X(2), and X(3) are depicted in Figure 23.11.
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When vectors in a simplex S = 〈〈x0, x1, . . . , xk〉〉 are presented in barycentric coor-
dinates, the simplex X(k + 1) is obtained. To see this, note that for each l, 0 ≤ l ≤ k,
the barycentric coordinates of xl are the unit vector el and every point in the simplex
S can be uniquely presented as a convex combination of extreme points in the simplex
(Theorem 23.9).

Brouwer’s Fixed Point Theorem states that every continuous function from a convex
and compact set X in Rn to itself has a fixed point. We first prove the theorem for the
case in which the convex and compact set is X(n). The statement of the theorem refers
to a function defined on a standard simplex, but since every k-dimensional simplex S is
equivalent to the standard simplex X(k + 1) when its points are represented in barycentric
coordinates, the theorem holds for functions defined on any simplex.

Theorem 23.27 (Special case of Brouwer’s Fixed Point Theorem) Let f : X(n) →
X(n) be a continuous function. Then there exists x∗ ∈ X(n) such that f (x∗) = x∗.

In the proof of the theorem we will use the sup-norm in Rn: for each vector x ∈ Rn

denote

‖x‖∞ := max
i=1,...,n

|xi |. (23.55)

Proof: Since y = ∑n
i=1 yie

i for every y ∈ X(n) where (ei)ni=1 are the unit vectors (see
Example 23.4 on page 918), the support of y relative to the vertices of the simplex X(n)
is the collection of the indices i for which yi > 0.

Step 1: For every y ∈ X(n) there exists an index i ∈ supp(y) satisfying fi(y) ≤ yi .
Let y ∈ X(n), and suppose by contradiction that the claim does not hold. Then:

� fi(y) > yi for every index i ∈ supp(y).
� fi(y) ≥ 0 = yi for every index i �∈ supp(y).

Sum together these equations for i = 1, 2, . . . , n. Since supp(y) contains at least one
index, it follows that

1 =
n∑

i=1

fi(y) >

n∑
i=1

yi = 1. (23.56)

This contradiction shows that the initial assumption was wrong, and therefore there exists
an index i ∈ supp(y) satisfying fi(y) ≤ yi .

Step 2: Defining a coloring.
Recall that every continuous function defined on a compact space is uniformly continuous.5

Let ε > 0. Since f is uniformly continuous, there exists δ = δ(ε) > 0 such that if
‖x − y‖∞ ≤ δ, then ‖f (x) − f (y)‖∞ ≤ ε. Note that δ may be chosen to be sufficiently
small so as to be smaller than ε.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

5 Let X be a subset of Rn. A function f : X → Rn is uniformly continuous if for every ε > 0 there exists δ > 0 such
that ‖f (x) − f (y)‖∞ ≤ ε for every x, y ∈ X satisfying ‖x − y‖∞ ≤ δ.
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Color the simplicial partition Tε with the colors {1, 2, . . . , n} corresponding to the
vertices of X(n), which are e1, e2, . . . , en, as follows. For every y ∈ Y (Tε), let the color
c(y) be an index i satisfying i ∈ supp(y) and fi(y) ≤ yi (recall that in Step 1 we showed
that there exists at least one such index).

Since the color of every y ∈ Y (Tε) is an index in supp(y), this coloring satisfies the
condition of Sperner’s Lemma.

Step 3: Existence of a fixed point.
By Sperner’s Lemma (Theorem 23.19 on page 926) there exists a simplex Tε =
〈〈x1, x2, . . . , xn〉〉 ∈ Tε, all of whose vertices are colored by {1, 2, . . . , n}. Suppose without
loss of generality that c(xi) = i for each i = 1, 2, . . . , n, i.e., fi(xi) ≤ xi

i (xi
i is the i-th

coordinate of xi). Let xε be a vector in Tε. Since the diameter of Tε is at most δ, it follows
that ‖xε − xi‖∞ ≤ δ for each i, and since f is uniformly continuous, it follows that

fi(x
ε) ≤ fi(x

i) + ε ≤ xi
i + ε ≤ xε

i + ε + δ ≤ xε
i + 2ε, ∀i = 1, 2, . . . , n. (23.57)

The last inequality holds because δ ≤ ε. This is true for every ε > 0, and therefore for
every ε > 0 there exists a point xε ∈ X(n) satisfying Equation (23.57), that is,

fi(x
ε) ≤ xε

i + 2ε, ∀i = 1, 2, . . . , n. (23.58)

Since X(n) is a compact set, there exists a sequence (εk)k∈N converging to 0 such that
the sequence (xεk )∞k=1 converges to a limit in X(n), denoted by x∗. Since f is continuous,
by taking the limit in Equation (23.58) one has

fi(x
∗) ≤ x∗

i , ∀i = 1, 2, . . . , n, (23.59)

and therefore

1 =
n∑

i=1

fi(x
∗) ≤

n∑
i=1

x∗
i = 1. (23.60)

If there existed i, 1 ≤ i ≤ n, for which the inequality in Equation (23.59) were a strict
inequality, the inequality in Equation (23.60) would also be a strict inequality, which
is impossible, and therefore fi(x∗) = x∗

i for all i = 1, 2, . . . , n; i.e., x∗ is a fixed point
of f . �

Brouwer’s Fixed Point Theorem (Theorem 23.27 on page 936) will now be generalized
to a convex and compact set X ⊂ Rn. We first show that for every point x that is not in a
closed and convex set X there exists a unique point in X that is closest to it.

Recall that the distance of a point in y ∈ Rn from a set X ⊆ Rn is defined by

d(y, X) := inf
x∈X

d(y, x), (23.61)

where d(x, y) =
√∑n

i=1(xi − yi)2 is the Euclidean distance between x and y.

Theorem 23.28 Let X ⊂ Rn be a closed and convex set, and let x �∈ X. Then there exists
a unique point y ∈ X such that d(x, X) = d(x, y).

Proof: Since the set X is closed and convex, there is at least one point y ∈ X satisfying
d(x, X) = d(x, y). Suppose by contradiction that there are two such points y and ŷ. Since
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X is a convex set, the point y+ŷ
2 is contained in X. We will now show that d(x, y+ŷ

2 ) <

d(x, y) = d(x, ŷ), in contradiction to the assumption that y and ŷ are points in X whose
distance from x is minimal.

Define a function D : R → R by

D(α) = d(x, αy + (1 − α)̂y) (23.62)

=
n∑

i=1

(xi − αyi − (1 − α)̂yi)
2 =

n∑
i=1

(xi − ŷi − α(yi − ŷi))
2 . (23.63)

This is a nonnegative and nonconstant quadratic function of α. Since d(x, y) = d(x, ŷ),
one has D(0) = D(1). The coefficient of α2 in this function is positive, and therefore it
has a unique minimum attained at the point α = 1

2 . In other words, d(x, y+ŷ
2 ) < d(x, y),

as we wanted to show. �
Let X ⊂ Rn be a closed and convex set. The following theorem, which is proved using

the triangle inequality, states that the function associating each point in Rn with the point
in X that is closest to it is a Lipschitz6 function, and therefore, in particular, it is continuous
(Exercise 23.27).

Theorem 23.29 Let X ⊂ Rn be a closed and convex set. Define a function g : Rn → X

as follows: g(x) is the closest point in X to x. Then d(g(x), g(̂x)) ≤ d(x, x̂) for every
x, x̂ ∈ Rn.

This last result is used to prove the following theorem.

Theorem 23.30 (Brouwer’s Fixed Point Theorem) Let X ⊆ Rn be a convex, compact,
and nonempty set. Then every continuous function f : X → X has a fixed point.

Proof: Since X is compact, there exists a simplex S sufficiently large to contain X. Define
a function h : S → S by

h(x) := f (g(x)), (23.64)

where g is the function associating every point x with the point in X that is closest to it.
Note that the function g is well defined by Theorem 23.28 and that it satisfies g(x) = x for
every x ∈ X. By Theorem 23.29, the function g is continuous; hence h, as the composition
of two continuous functions, is also continuous. By Theorem 23.27 the function h has
a fixed point x∗; that is, x∗ = h(x∗). The range of h is the set X, and therefore x∗ ∈ X.
Since g(x) = x for each x ∈ X, we have x∗ = h(x∗) = f (g(x∗)) = f (x∗), i.e., x∗ is also
a fixed point of f . �

23.1.3 Kakutani’s Fixed Point Theorem
Brouwer’s Fixed Point Theorem is generalized by Kakutani’s Fixed Point Theorem, proved
by Kakutani [1941], which we present in this section. This theorem does not deal with a
function f , but rather with a correspondence, i.e., a set-valued function.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

6 Let X ⊆ Rn. A function f : X → R is a Lipschitz function if there exists a nonnegative real number K satisfying
|f (x) − f (y)| ≤ Kd(x, y) for every x, y ∈ X.
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Definition 23.31 Let X ⊂ Rn. A correspondence (or a set-valued function) from X to
X is a function F associating every x ∈ X with a subset F (x) of X. The graph of a
correspondence F is the set {(x, y) ∈ X × X : y ∈ F (x)}, which is a subset of X × X. A
correspondence F whose graph is closed is called an upper semi-continuous correspon-
dence.

Equivalently, a correspondence F is a function F : X → 2X, where 2X is the power set
of X, i.e., the set of all subsets of X. Note that if the graph of F is a closed set in X × X,
then in particular for each x ∈ X the set F (x) is a closed subset of X.

Theorem 23.32 (Kakutani [1941]) Let X ⊂ Rn be a compact and convex set, and let
F be an upper semi-continuous correspondence from X to X satisfying that for every
x ∈ X the set F (x) is nonempty and convex. Then there exists a point x∗ ∈ X satisfying
x∗ ∈ F (x∗).

A point x∗ satisfying x∗ ∈ F (x∗) is called a fixed point of the correspondence F .

Remark 23.33 The Brouwer Fixed Point Theorem (Theorem 23.27) is a special case
of Kakutani’s Fixed Point Theorem: if f : X → X is a continuous function, then the
correspondence F from X to X defined by F (x) = {f (x)} for every x ∈ X is an upper
semi-continuous correspondence with nonempty and convex values. By Kakutani’s Fixed
Point Theorem it follows that this correspondence has a fixed point x∗. Every such fixed
point is a fixed point of f (Exercise 23.28). �

For every subset A of Rn, and every ε > 0, denote the ε-neighborhood of A by B(A, ε),

B(A, ε) := {y ∈ Rn : d(y, A) ≤ ε}. (23.65)

If A is a convex set, then B(A, ε) is also a convex set (Exercise 23.26). The following
lemma states that for an upper semi-continuous correspondence F , if x is “close” to x0

then F (x) is also “close” to F (X0).

Lemma 23.34 Let F : X → X be an upper semi-continuous correspondence. For each
x0 ∈ X and each ε > 0 there exists δ > 0 such that F (x) ⊆ B(F (x0), ε) for every x ∈ X

satisfying d(x, x0) ≤ δ.

Proof: Suppose by contradiction that the claim does not hold. Then there exists x0 ∈
X, and ε > 0 such that for every δ > 0 there is xδ ∈ X satisfying d(xδ, x0) ≤ δ, and
there is yδ ∈ F (xδ) such that d(yδ, F (x0)) > ε. Since X is a compact set, by taking
subsequences of (xδ) and (yδ), there exist sequences (xk)k∈N and (yk)k∈N satisfying (a)
limk→∞ xk = x0; (b) yk ∈ F (xk) for every k ∈ N, and the limit ŷ := limk→∞ yk exists;
and (c) d(yk, F (x0)) > ε for every k ∈ N. By (a) and (b), and using the fact that the graph
of F is a closed set, we deduce that ŷ ∈ F (x0). But by (c), it follows that d (̂y, F (x0)) ≥ ε.
These two conclusions contradict each other, with the contradiction showing that the
original supposition does not hold; hence the statement of the theorem holds. �
Proof of Kakutani’s Fixed Point Theorem (Theorem 23.32): The idea behind the proof
is to use the correspondence F to construct a sequence of continuous functions (f m)m∈N

from X to X. By Brouwer’s Fixed Point Theorem, for each m ∈ N the function f m

so defined has a fixed point xm. The functions (f m)m∈N will be defined in such a
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way that each accumulation point x∗ of the sequence (xm)m∈N is a fixed point of the
correspondence F .

Step 1: Defining sequences of continuous functions.
We first define, for every m ∈ N, a continuous function f m : X → X. Let m ∈ N. Since
X is a compact set, it can be covered by a finite number of open balls Km, each of
which is of radius 1

m
. Denote the centers of these balls by (xm

k )K
m

k=1. Then for every x ∈ X

there exists k ∈ {1, 2, . . . , Km} such that d(x, xm
k ) < 1

m
. For every k ∈ {1, 2, . . . , Km}

choose ym
k ∈ F (xm

k ). Denote the set of points whose distance from xm
k is at least 1

m

by Cm
k ,

Cm
k :=

{
x ∈ X : d(x, xm

k ) ≥ 1

m

}
. (23.66)

It follows that d(x, xm
k ) < 1

m
if and only if x �∈ Cm

k , and since Cm
k is closed, this can happen

if and only if d(x, Cm
k ) > 0. Define, for every x ∈ X and for every k ∈ {1, 2, . . . , Km},

λm
k (x) := d

(
x, Cm

k

)∑Km

l=1 d
(
x, Cm

l

) . (23.67)

The denominator in the definition of λm
k (x) is a sum of nonnegative numbers, and hence

is nonnegative. Since for every x there exists k ∈ {1, 2, . . . , Km} such that d(x, xm
k ) < 1

m
,

the denominator is positive. Since the distance function x #→ d(x, Cm
k ) is continuous, and

the sum of a finite number of continuous functions is a continuous function, both the
numerator and the denominator in the definition of λm

k are continuous functions. Since
the ratio of two continuous functions where the denominator is positive is a continuous
function, one deduces that λm

k is a continuous function. Note that

Km∑
k=1

λm
k (x) = 1, ∀x ∈ X. (23.68)

Define a function f m : X → X as

f m(x) :=
Km∑
k=1

λm
k (x)ym

k . (23.69)

In other words, f m(x) is a convex combination of the points (ym
k )K

m

k=1, with weights
(λm

k (x))K
m

k=1. Since the set X is convex, and since the points (ym
k )K

m

k=1 are in X, the range of
f m is contained in X.

Step 2: Using Brouwer’s Fixed Point Theorem.
For every m ∈ N, f m is a continuous function, because it is a sum of a finite number of
continuous functions. By Brouwer’s Fixed Point Theorem (Theorem 23.30), this function
has a fixed point: there exists x∗,m ∈ X satisfying x∗,m = f (x∗,m).

The sequence of fixed points (x∗,m)m∈N is contained in the compact set X, and it
therefore contains a convergent subsequence. Denote the subsequence by (x∗,ml )l∈N, and
denote its limit by x∗.
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Step 3: x∗ is a fixed point of F .
The idea behind this is as follows. Since x∗,ml is a fixed point of f ml , it follows that

x∗,ml = f ml (x∗,ml ) =
Kml∑
k=1

λ
ml

k (x∗,ml )yml

k . (23.70)

The coefficient λ
ml

k (x∗,ml ) is greater than 0 only if x
ml

k is close to x∗,ml , which is close to
x∗. Lemma 23.34 then implies that for every k such that λ

ml

k (x∗,ml ) > 0, the point y
ml

k is
close to F (x∗). Since F (x∗) is convex, we also deduce that x∗,ml , as a convex combination
of points close to F (x∗), is also close to F (x∗). By letting l go to infinity we conclude that
x∗ ∈ F (x∗), since the graph of F is a closed set.

The formal proof is as follows. Let ε > 0, and let δ > 0 be the number obtained by
applying Lemma 23.34 for x0 = x∗. Let L be sufficiently large such that for all l ≥ L,
(a) 1

ml
< δ

2 , and (b) d(x∗, x∗,ml ) < δ
2 . Let l ≥ L. For every k such that λ

ml

k (x∗,ml ) > 0, one

has d(xml

k , x∗,ml ) < 1
ml

< δ
2 . Therefore, by the triangle inequality, for each such k,

d
(
x∗, xml

k

) ≤ d(x∗, x∗,ml ) + d
(
x∗,ml , x

ml

k

)
<

δ

2
+ δ

2
= δ. (23.71)

By Lemma 23.34, y
ml

k ∈ F (xml

k ) ∈ B(F (x∗), ε) for every such k; i.e., for every k =
1, 2, . . . , Kml , either λ

ml

k (x∗,ml ) = 0, or y
ml

k ∈ B(F (x∗), ε). By Equation (23.70), we then
deduce that x∗,ml is a convex combination of points located in the convex set B(F (x∗), ε),
and therefore x∗,ml ∈ B(F (x∗), ε). This holds for all ε > 0, and because F (x∗) is a closed
set, x∗, as the limit of the sequence (x∗,ml )l∈N, is also in F (x∗). �

Remark 23.35 The properties of the set X that we used in the proof are: (a) convex-
ity, (b) compactness, and (c) every continuous function f : X → X has a fixed point.
Since Brouwer’s Fixed Point Theorem holds also for compact and convex sets in infinite-
dimensional spaces (see Schauder [1930] or Dunford and Schwartz [1988, Section V.10]),
Kakutani’s Fixed Point Theorem also holds in such spaces. Proofs of Kakutani’s Fixed
Point Theorem in infinite-dimensional spaces are given in Bohnenblust and Karlin [1950]
and Glicksberg [1952]. �

23.1.4 The KKM Theorem
The next theorem we present here, known as the KKM Theorem, after the three researchers
who first proved it, Knaster, Kuratowski, and Mazurkiewicz, is a central theorem in
topology. It is equivalent to Brouwer’s Fixed Point Theorem. A guided proof of the KKM
Theorem, using Brouwer’s Fixed Point Theorem, is given in Exercise 23.31, and a guided
proof of Brouwer’s Fixed Point Theorem, using the KKM Theorem, is given in Exercise
23.32. We present here a direct proof of the KKM Theorem, using Sperner’s Lemma.

Theorem 23.36 (KKM) Let X1, X2, . . . , Xn be compact subsets of X(n) satisfying

Xi ⊇ {x ∈ X(n) : xi = 0}, i = 1, . . . , n, (23.72)



942 Appendices

whose union is X(n),

n⋃
i=1

Xi = X(n). (23.73)

Then their intersection is nonempty:

n⋂
i=1

Xi �= ∅. (23.74)

Proof: We first prove the theorem in the special case where the sets (Xi)ni=1 are relatively
open sets7 in X(n). Suppose by contradiction that

⋂n
i=1 Xi = ∅. In particular, for every

x ∈ X(n) there exists an index i satisfying x �∈ Xi .
For every k ∈ N, let Tk be a simplicial partition of X(n) with diameter less than 1

k
.

Define a coloring c of Tk as follows: for every vertex y ∈ Y (Tk), the color of y is one of
the indices i such that y �∈ Xi . Note that if yi = 0, then y ∈ Xi by Equation (23.72), and in
particular the color of y is not i. It follows that if the color of y is i, then necessarily yi > 0,
i.e., the color of y is one of the indices in the support of y. In particular, the coloring c is
proper. By Sperner’s Lemma (Theorem 23.19), there exists a perfectly colored (n − 1)-
dimensional simplex Tk ∈ Tk . It follows that for every i = 1, 2, . . . , n there exists a vertex
xk,i of Tk whose color is i, and it is therefore not in Xi .

Let i ∈ {1, 2, . . . , n}, and consider the sequence (xk,i)k∈N. Since the set X(n) is compact,
the sequence has a subsequence converging to x∗,i . We next show that the following two
claims regarding the limits x∗,1, x∗,2, . . . , x∗,n hold:

1. x∗,i = x∗,j for all i, j ∈ {1, 2, . . . , n}.
2. x∗,i �∈ Xi for all i ∈ {1, 2, . . . , n}.
Claim (1) implies that there exists x∗∗ ∈ X(n) satisfying x∗,i = x∗∗ for all i ∈
{1, 2, . . . , n}, and Claim (2) implies that x∗∗ �∈ ∪n

i=1X
i . This will contradict the assump-

tion that ∪n
i=1X

i = X(n) and lead to the conclusion that ∩n
i=1X

i �= ∅, thus completing the
proof in the case there the sets (Xi)ni=1 are relatively open.

We start by proving Claim (1). Since xk,i is in Tk for every i = 1, 2, . . . , n, and since
the diameter of Tk is smaller than 1

k
, the distance between xk,i and xk,j is less than 1

k
for

every i, j . Taking the limit k → ∞ yields x∗,i = x∗,j for every i, j .
We next prove Claim (2). Since xk,i �∈ Xi for every k ∈ N, it follows that xk,i ∈ X(n) \

Xi . Since the set Xi is relatively open in X(n), its complement X(n) \ Xi is relatively
closed in X(n), and therefore the limit x∗,i is contained in it, i.e., x∗,i �∈ Xi , which is what
we needed to show.

Finally, we show that the statement of the theorem holds when the sets (Xi)ni=1 are
closed sets. For every δ > 0 let Xi,δ

0 be the open δ-neighborhood of Xi ,

X
i,δ
0 := {y ∈ X(n) : d(Xi, y) < δ}. (23.75)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

7 A set A ⊆ Rn is called relatively open in a set C ⊆ Rn if it is the intersection of an open set U in Rn with C. A set
A ⊆ Rn is called relatively closed in a set C ⊆ Rn if its complement in C, the set C \ A, is relatively open in C. If
A is a relatively closed set in C, then for every sequence of points in A converging to y in C one has y ∈ A.
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For every i ∈ {1, 2, . . . , n}, the set Xi,δ is relatively open in X(n), and contains Xi . In par-
ticular,∪n

i=1X
i,δ ⊇ ∪n

i=1X
i = X(n). By the first part of the proof, the intersection∩n

i=1X
i,δ

is nonempty: there exists a point xδ satisfying xδ ∈ Xi,δ for every i = {1, 2, . . . , n}. In par-
ticular, d(Xi, xδ) < δ. Since X(n) is a compact set, there is a subsequence of the sequence
(xδ)δ>0 converging to a limit denoted x̂. By passing to the limit, one has d(Xi, x̂) = 0,
i.e., x̂ ∈ Xi , for every i ∈ N . Therefore, ∩n

i=1X
i �= ∅, which is what we wanted to

prove. �

23.2 The Separating Hyperplane Theorem
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Recall that the inner product of two vectors in Rn is defined by

〈x, y〉 :=
n∑

i=1

xiyi . (23.76)

The relationship between the inner product of vectors and the distance between them
is given by

d(x, y) =
√
〈x − y, x − y〉. (23.77)

Definition 23.37 A hyperplane H (α, β) in Rn is defined by

H (α, β) := {x ∈ Rn : 〈α, x〉 = β}, (23.78)

where α ∈ Rn and β ∈ R.

Denote

H+(α, β) = {x ∈ Rn : 〈α, x〉 ≥ β} (23.79)

and

H−(α, β) = {x ∈ Rn : 〈α, x〉 ≤ β}. (23.80)

H+(α, β) and H−(α, β) are called the half-spaces defined by the hyperplane H (α, β) (see
Figure 23.12).

The definition implies (see Exercise 23.33) that

H+(α, β) = H−(−α,−β) and H+(α, β) ∩ H−(α, β) = H (α, β). (23.81)

A hyperplane separates a set from a point if the set is contained in one of the half-spaces
defined by the hyperplane, and the point is contained in the other half-space.

Definition 23.38 Let S ⊆ Rn be a set, and x ∈ Rn be a vector. The hyperplane H (α, β)
separates the vector x from the set S if:

(i) x ∈ H+(α, β) and S ⊆ H−(α, β), or
(ii) x ∈ H−(α, β) and S ⊆ H+(α, β).

If the set S and the point x do not touch the separating hyperplane H (α, β), i.e., if:
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(0,2)

(1,0)

H ((2 , 1), 2)

H + ((2 , 1), 2)

H − ((2 , 1), 2)

Figure 23.12 The hyperplane H ((2, 1), 2) in R2, which is the line 2x1 + x2 = 2

� x ∈ H+(α, β) \ H (α, β) and S ⊆ H−(α, β) \ H (α, β), or
� x ∈ H−(α, β) \ H (α, β) and S ⊆ H+(α, β) \ H (α, β),

then we say that the separation of x and S is a strict separation.
Recall that if S is a closed set, then for every point x �∈ S there is at least one point

y ∈ S that is closest to x from among the points in S. If S is convex, the closest point is
unique (Theorem 23.28 on page 937).

The following geometric claim, called the Separating Hyperplane Theorem, states that
for every closed and convex set, and every point that is not in that set, there exists a
hyperplane separating the point from the set. The theorem also shows how to construct
such a separating hyperplane.

Theorem 23.39 (The Separating Hyperplane Theorem) Let S be a closed and convex
set, and let x �∈ S. Let y be the closest point in S to x. Then the hyperplane H (x − y, 〈x −
y, y〉) separates x from S,

S ⊆ H−(x − y, 〈x − y, y〉), (23.82)

x ∈ H+(x − y, 〈x − y, y〉). (23.83)

In addition, if the condition of the theorem is met, then there exists a hyperplane that
strictly separates x from S (Exercise 23.43) (as in Figure 23.13).

Proof: Step 1: x ∈ H+(x − y, 〈x − y, y〉).
This statement is equivalent to the condition

〈x − y, x〉 ≥ 〈x − y, y〉. (23.84)

Since the inner product is bilinear, this condition is equivalent to the condition

〈x − y, x − y〉 ≥ 0. (23.85)

The left-hand side of this equation is equal to
∑n

i=1(xi − yi)2, a nonnegative number,
and therefore Equation (23.85) indeed holds. Note that since x �∈ S, it follows that
x �= y and therefore 〈x − y, x − y〉 > 0, that is, x ∈ H+(x − y, 〈x − y, y〉) \ H (x − y,

〈x − y, y〉).
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z1

z2

y (= 1, 1)

x (= 2, 2)

x1 + x2 = 1

S

Figure 23.13 The line x1 + x2 = 2 is a hyperplane separating x from S

Step 2: S ⊆ H−(x − y, 〈x − y, y〉).
We will show that z ∈ H−(x − y, 〈x − y, y〉) for every z ∈ S. This statement is equivalent
to the condition

〈x − y, z〉 ≤ 〈x − y, y〉, ∀z ∈ S. (23.86)

Since S is convex, (1 − λ)y + λz ∈ S for every λ ∈ [0, 1]. Since y is the closest point
in S to x, it follows that

d(x, y) ≤ d(x, (1 − λ)y + λz), ∀λ ∈ [0, 1]. (23.87)

Since d(x, y) = √〈x − y, x − y〉 for every pair of vectors x, y ∈ Rn, it follows from
Equation (23.87) that

〈x − y, x − y〉 ≤ 〈x − (1 − λ)y − λz, x − (1 − λ)y − λz〉 (23.88)

= 〈(x − y) − λ(z − y), (x − y) − λ(z − y)〉 (23.89)

= 〈x − y, x − y〉 − 2λ〈x − y, z − y〉 + λ2〈z − y, z − y〉. (23.90)

Subtracting the term 〈x − y, x − y〉 yields, for all λ ∈ [0, 1], the following

0 ≤ −2λ〈x − y, z − y〉 + λ2〈z − y, z − y〉. (23.91)

This inequality holds for all λ ∈ [0, 1], and in particular for λ ∈ (0, 1], in which case we
can divide by λ to obtain

0 ≤ −2〈x − y, z − y〉 + λ〈z − y, z − y〉. (23.92)

Letting λ go to 0 yields the conclusion that 〈x − y, z − y〉 ≤ 0, which further implies that

〈x − y, z〉 ≤ 〈x − y, y〉, ∀z ∈ S, (23.93)

which is what we wanted to show. �

23.3 Linear programming
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

All the vectors appearing in this section are to be interpreted as row vectors. y� is then the
column vector corresponding to the row vector y. For c, y ∈ Rm, the inner product 〈c, y〉
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can be written as

〈c, y〉 =
m∑

i=1

ciyi = cy� . (23.94)

The notation y ≥ c indicates inequality in every coordinate,

yi ≥ ci, i = 1, 2, . . . , m, (23.95)

and y = c indicates equality in every coordinate, yi = ci for all i = 1, 2, . . . , m. Recall
that for all m ∈ N we denote the zero vector in Rm by �0.

Definition 23.40 Let c, y ∈ Rm, b ∈ Rn, and let A be an n × m matrix. The (standard)
linear program in the unknowns y = (yi)mi=1 defined by A, b, c is the following linear
maximization program under linear constraints.

Compute: ZP := max cy�,

subject to: Ay� ≤ b�,

y ≥ �0.

The linear function cy� is called the objective function of the program. The conditions
Ay� ≤ b� and y ≥ �0 are called constraints. Every vector y satisfying the constraints is
called a feasible vector. The set of feasible vectors is called the feasible region of the
linear program,

RP := {y ∈ Rn : Ay� ≤ b�, y ≥ �0}. (23.96)

A feasible vector maximizing cy� among all feasible vectors is called an optimal
solution. This maximum, ZP , is called the value of the linear program; it is the maximum
of the objective function over the feasible region. When the feasible region is empty,
define ZP := −∞. If the objective function cy� is not bounded over RP (which happens
only if RP is unbounded) define ZP := +∞. Since the objective function is linear, and
the constraints are weak inequalities, if ZP < +∞ then the maximum is attained at one
of the extreme points of RP , whether RP is bounded or not.

Definition 23.41 Given the following linear program with unknowns y = (yi)mi=1

Compute: ZP := max cy�,

subject to: Ay� ≤ b�,

y ≥ �0;
(23.97)

its dual program is the following program with unknowns x = (xj )nj=1.

Compute: ZD := min xb�,

subject to: xA ≥ c,

x ≥ �0.

(23.98)

The original program is called the primal program. The number ZD is called the value of
the dual program.
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The conditions xA ≥ c and x ≥ �0 are called the constraints of the dual program. Note
that the primal program has m unknowns y = (yi)mi=1, one for each column of A, i.e.,
one unknown for each constraint xA ≥ c of the dual program. The dual program has n

unknowns (xj )nj=1, one for each row of A, i.e., an unknown for each of the constraints
Ay� ≤ b� of the primal program. If the feasible region of the dual program is empty,
define ZD := +∞, and if the objective function xb� is unbounded from below in RD (this
can only happen if RD is unbounded) define ZD := −∞.

Example 23.42 Consider the primal program given by

Compute: ZP := max{6y1 + 4y2 + 6y3},
subject to: 6y1 + y2 + y3 ≤ 3,

y1 + y2 + 3y3 ≤ 4,

y1, y2, y3 ≥ 0.

(23.99)

In this linear program

c = (6, 4, 6), b = (3, 4), A =
(

6 1 1
1 1 3

)
. (23.100)

The dual program is

Compute: ZD := min{3x1 + 4x2},
subject to: 6x1 + x2 ≥ 6,

x1 + x2 ≥ 4,

x1 + 3x2 ≥ 6,

x1, x2 ≥ 0.

(23.101)

�

The constraints in a linear program may be given by equalities (and not necessarily only
by inequalities). Every equality can be represented by two inequalities: a vector equality
Ay� = b� can be represented by the inequalities Ay� ≤ b� and −Ay� ≤ −b� . It follows
that a linear program with equalities can be rewritten as a system involving inequalities
only.

Example 23.43 Consider the following linear program:

Compute: ZP := max cy� ,

subject to: Ay� = b� ,

y ≥ �0.

(23.102)

This program can be rewritten as a system involving inequalities only:

Compute: ZP := max cy� ,

subject to: Ay� ≤ b� ,

−Ay� ≤ −b� ,

y ≥ �0.

(23.103)

In this representation, the primal program has 2n constraints. The dual program must therefore
have 2n unknowns, denoted (w, z), where w = (wj )nj=1 and z = (zj )nj=1. The dual program
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corresponding to this primal program is

Compute: ZD := min(w − z)b� ,

subject to: (w − z)A ≥ c,

w ≥ �0,

z ≥ �0.

(23.104)

Set x = w − z. Since w and z are nonnegative, x is not constrained, and can take on any value,
positive or negative. The dual program is then

Compute: ZD := min xb� ,

subject to: xA ≥ c.
(23.105)

In other words, for every feasible solution x of Problem (23.105) there exists a feasible solution
(w, z) of Problem (23.104) satisfying x = w − z (Exercise 23.48). �

As a corollary we deduce the following theorem.

Theorem 23.44 The dual program to the following primal program,

Compute: ZP := max cy�,

subject to: Ay� = b�,

y ≥ 0,

(23.106)

is

Compute: ZD := min xb�,

subject to: xA ≥ c.
(23.107)

The effect of equalities in the constraints of the primal problem can thus be summarized
as follows: each variable in the dual problem that corresponds to a constraint with equality
in the primal problem is unconstrained.

Example 23.42 (Continued) We solve both the primal and the dual program, starting with the primal pro-

gram. Since the numbers in the matrix A are nonnegative, and since the numbers in the vector c

are positive, the maximum in the definition of ZP is attained when the following equalities are
satisfied:

6y1 + y2 + y3 = 3, (23.108)

y1 + y2 + 3y3 = 4. (23.109)

The solution to this system of equations is

y1 = 1
5 (2y3 − 1), (23.110)

y2 = 1
5 (21 − 17y3). (23.111)
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The condition that y1, y2, y3 ≥ 0 implies that 1
2 ≤ y3 ≤ 21

17 . The primal program is thus equivalent
to

ZP = max
{

6
5 (2y3 − 1) + 4

5 (21 − 17y3) + 6y3 : 1
2 ≤ y3 ≤ 21

17

}
(23.112)

= max
{

78
5 − 26

5 y3 : 1
2 ≤ y3 ≤ 21

17

} = 78
5 − 13

5 = 13. (23.113)

The computation of the last maximum uses the fact that a linear function in y3 with a negative
slope attains its maximal value at the minimal value of y3, which in this case is y3 = 1

2 .
Next, we solve the dual program. The feasible region of the dual program is the shaded area in

Figure 23.14. This is the intersection of the half-spaces corresponding to the inequalities defining
the constraints of the dual program. As Figure 23.14 illustrates, the minimum of the function
3x1 + 4x2 in the feasible region is attained at the point (3, 1), and therefore ZD = 13.

x1

x 2

6431

1

2

4

6

( 2
5 , 3 3

5 )

( 12
17 , 30

17 )

x1 + x2 = 4

x1 + 3x2 = 6

6x1 + x2 = 6

3x1 + 4x2 13=

Figure 23.14 The feasible region and the solution of the dual program in Example 23.42 �

In Example 23.42 we computed ZP = ZD. This is not a coincidence, as the next two
theorems show.

Theorem 23.45 (The Weak Duality Theorem) Let ZP and ZD be, respectively, the
values of the primal and the dual problems given in Definition 23.40. Then ZP ≤ ZD .

Proof: If RP is empty, ZP = −∞, and if RD is empty, ZD = +∞. In both cases,
ZP ≤ ZD is satisfied. Suppose therefore that RP and RD are nonempty. Since every
feasible vector x of the primal program and every feasible vector y of the dual program is
nonnegative, one has

cy� ≤ (xA)y� = x(Ay�) ≤ xb� . (23.114)

By taking the maximum on the left-hand side, and the minimum on the right-hand side,
we conclude that ZP ≤ ZD , which is what we wanted to show. �
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The following theorem, for which we will not provide a proof, states that the inequality
ZP ≤ ZD is actually an equality when ZP is finite. A proof of the theorem can be found
in many books on operations research, such as Vanderbei [2001].

Theorem 23.46 (The Strong Duality Theorem) If ZP is finite, then ZD = ZP .

23.4 Remarks
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

The authors thank Nimrod Megiddo, David Schmeidler, and Rakesh Vohra for answering
questions that arose during the composition of this chapter. The proof of Sperner’s Lemma
is from Kuhn [1968]. The proof of Brouwer’s Fixed Point Theorem using Sperner’s Lemma
is a classical proof. The proof presented here is from Kuhn [1960].

23.5 Exercises
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

23.1 Prove that for every set {x0, x1, . . . , xk} of vectors in Rn

conv(x0, x1, . . . , xk)

= {x ∈ Rn : x is a convex combination of x0, x1, . . . , xk}. (23.115)

The convex hull conv(x0, x1, . . . , xk) is defined in Definition 23.1 (page 917).

23.2 Let x0, x1, . . . , xk be vectors in Rn, such that none of them is a convex combination
of the other vectors. Prove that the extreme points of conv(x0, x1, . . . , xk) are the
vectors x0, x1, . . . , xk.

23.3 Let x0, x1, x2 be three vectors in Rn. Prove that these vectors are affine independent
if and only if none of them is a convex combination of the other two.

23.4 For each of the following sets of vectors in R4, determine whether or not the vectors
in the set are affine independent. Justify your answers.

(a) x0 = (1, 1, 0, 0), x1 = (0, 1, 1, 0), x2 = (0, 0, 1, 1), x3 = (1, 0, 0,−1),
x4 = (1, 1, 1, 0).

(b) x0 = (1, 1, 0, 0), x1 = (0, 1, 1, 0), x2 = (0, 0, 1, 1), x3 = (1, 0, 0,−1),
x4 = (1, 2, 1, 0).

(c) x0 = (1, 1, 0, 0), x1 = (0, 1, 1, 0), x2 = (0, 0, 1, 1), x3 = (1, 0, 0,−1),
x4 = (1, 0, 0, 0).

23.5 Let x0, x1, . . . , xk be affine-independent vectors in Rn, and let y be a vector that
is linearly independent of {x0, x1, . . . , xk}. Prove that x0, x1, . . . , xk, y are affine-
independent vectors.

23.6 Let x0, x1, . . . , xk be affine-independent vectors in Rn and let (βl)kl=0 be positive
numbers summing to 1. Denote y = ∑k

l=0 βlxl . Prove that x1, . . . , xk, y are affine-
independent vectors.



951 23.5 Exercises

23.7 Prove that vectors x0, x1, . . . , xk are affine independent in Rn if and only if every
vector y ∈ conv{x0, x1, . . . , xk} can be represented in a unique way as a convex
combination of x0, x1, . . . , xk .

23.8 Let S = 〈〈x0, x1, . . . , xk〉〉 be a simplex in Rn and let y ∈ Rn. Prove that y ∈ S if
and only if all the solutions of the following system of equations in the variables
(αl)kl=0 satisfy αl ≥ 0 for all l ∈ {1, 2, . . . , k}:

k∑
l=0

αlxl = y, (23.116)

k∑
l=0

αl = 1. (23.117)

23.9 Let x0, x1, . . . , xn be affine-independent vectors in Rn. Prove that for every vector
y ∈ Rn there exists a unique solution to the following system of equations in
unknowns (αl)nl=0:

n∑
l=0

αlxl = y, (23.118)

n∑
l=0

αl = 1. (23.119)

23.10 Prove that the boundary of a simplex S is the set of all the points y in S whose
barycentric coordinate representation has at least one zero coordinate.

23.11 Prove that if H 1 and H 2 are two affine spaces of the same dimension k in Rn (that
is, each one of them is spanned by a k-dimensional simplex; see page 922), and if
H 1 ⊆ H 2, then H 1 = H 2.

23.12 For each of the following vectors y1 = (1, 1
2 ), y2 = (3, 0), y3 = (2, 2), and y4 =

(3
2 , 1

4 ), compute its barycentric coordinates relative to the three affine-independent
vectors x0 = (0, 2), x1 = (1, 0), and x2 = (2, 0).

23.13 For each of the following partitions of a two-dimensional simplex, determine
whether or not it is a simplicial partition. Justify your answer. In each case, the
partition elements are the two-dimensional polytopes in it, their faces, and their
vertices.

Partition A
x 0 x 1

x 2

x 3

x 4

x 5

x 6

Partition B
x 0 x 1

x 2

x 3

x 4
x 5

x 6

Partition C
x 0 x 1

x 2

x 3

x 4

x 5

x 6
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23.14 Prove Theorem 23.14 (page 922): let S be a k-dimensional simplex in Rn, and let
T be a simplicial partition of it. Then S equals the union of all the k-dimensional
simplices in T .

23.15 Let S be a simplex, and let T be the collection of all the faces of S. Prove that T
is a simplicial partition of S.

23.16 Let T1, T2, . . . , TL be simplices whose union is a simplex S. Is
the collection containing all the faces of T1, T2, . . . , TL a simpli-
cial partition of S? Either prove this claim, or find a counter-
example.

23.17 Let T be a simplicial partition of a k-dimensional simplex S = 〈〈x0, x1, . . . , xk〉〉.
Define Ŝ := 〈〈x0, x1, . . . , xk−1〉〉 and T̂ := {T ∈ T : T ⊆ Ŝ}. Prove that T̂ is a
simplicial partition of Ŝ.

23.18 How many proper colorings are there of the simplicial partition in Example 23.17
on page 926? Justify your answer. (For the definition of a proper coloring, see
Definition 23.16 on page 925.)

23.19 Find a simplex, a simplicial partition of this simplex, and a nonproper coloring of
the simplicial partition, for which the number of perfectly colored n-dimensional
simplices is odd. In other words, show that in Sperner’s Lemma (Theorem 23.19 on
page 926) the properness of the coloring is a sufficient but not necessary condition
for this number to be odd.

23.20 Let T be a simplicial partition of a k-dimensional simplex S = 〈〈x0, x1, . . . , xk〉〉,
and let c : Y (T ) → {0, 1, . . . , k} be a proper coloring (see Definition 23.16 on
page 925). Denote Ŝ := 〈〈x0, x1, . . . , xk−1〉〉 and T̂ := {T ∈ T : T ⊆ Ŝ}. Prove
that c restricted to Y (T̂ ) is a proper coloring of T̂ .

23.21 Let T be the simplicial partition constructed in the proof of Theorem 23.22
(page 930). What is Y (T )?

23.22 Prove that the diameter ρ(S) of a simplex S (see Definition 23.20 on page 929)
equals the greatest (Euclidean) distance between two vectors in the simplex.

23.23 Complete the proof of Theorem 23.23 (page 930): show that the intersection of
any two simplices in the simplicial partition T that is defined in the proof of the
theorem is either empty or is contained in T .

23.24 Complete the proof of Theorem 23.25 (page 931): show that the intersection of
any two simplices in the simplicial partition T̂ that is defined in the proof of the
theorem is either empty or is contained in T̂ .

23.25 Prove that the diameter of the partition T̂ constructed in the proof of
Theorem 23.25 (page 931) is

ρ(T̂ ) = max{ρ(T ), ‖x0 − y‖, ‖x1 − y‖, . . . , ‖xk − y‖}. (23.120)

23.26 Prove that if A ⊆ Rn is a convex set, then the set B(A, ε) (the ε-neighborhood of
A; see Equation (23.65) on page 939) is also a convex set.
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23.27 Prove Theorem 23.29 (page 938): let X ⊂ Rn be a closed and convex set. Define
a function g : Rn → X as follows: g(x) is the closest point to x in X. Then
d(g(x), g(̂x)) ≤ d(x, x̂) for all x, x̂ ∈ Rn.

23.28 (a) Let X ⊆ Rn. Prove that if f : X → X is a continuous function, then the cor-
respondence F : X → X defined by F (x) = {f (x)} for every x ∈ X is upper
semi-continuous.

(b) Use the result of the previous item to prove Brouwer’s Fixed Point Theorem
(Theorem 23.30, page 938) using Kakutani’s Fixed Point Theorem (Theorem
23.32, page 939).

23.29 In this exercise, we prove a generalization of Brouwer’s Fixed Point Theorem to
compact sets that are not necessarily convex, but are homeomorphic to a convex
set.

Two compact sets X and Y in Rn are called homeomorphic if there exists a
continuous bijection g : X → Y satisfying the property that g−1 is also continu-
ous.8 Prove that if X ⊆ Rn is a compact set that is homeomorphic to a convex and
compact set Y and if f : X → X is a continuous function, then f has a fixed point.

23.30 In this exercise, we prove a generalization of Nash’s Theorem (Theorem 5.10 on
page 151) using Kakutani’s Fixed Point Theorem (Theorem 23.32 on page 939).

Let N be a nonempty, finite set of players. For each player i ∈ N , let Xi be
a convex and compact subset of Rdi , where di is a natural number. Denote by
X = ×i∈N Xi the Cartesian product of the sets (Xi)i∈N . For every player i ∈ N ,
let ui : X → R be a function that is continuous and quasi-concave in xi ; that is,
for every real number c and all x−i ∈ X−i , the set {xi : ui(xi, x−i) ≥ c} is convex.

Define a correspondence br from X to X as follows. For every x ∈ X and for
each i ∈ N ,

bri(x) :=
{
yi ∈ Xi : ui(yi, x−i) = max

zi∈Xi

ui(zi, x−i)

}
, ∀i ∈ N, (23.121)

and

br(x) := ×
i∈N

bri(x). (23.122)

(a) Prove that br is an upper semi-continuous correspondence with nonempty
convex values. Using Kakutani’s Fixed Point Theorem deduce that br has a
fixed point.

(b) Prove that every fixed point of the correspondence br is a Nash equilibrium
in the game G = (N, (Xi)i∈N, (ui)i∈N ). How is this a generalization of Nash’s
Theorem?

23.31 In this exercise, we prove the KKM Theorem (Theorem 23.36 on page 941)
using Brouwer’s Fixed Point Theorem (Theorem 23.30 on page 938). Suppose by
contradiction that the conditions of the KKM Theorem hold yet its conclusion does
not hold, i.e.,

⋂n
i=1 Xi = ∅.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

8 The function g is called a homeomorphism between X and Y .
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(a) For each ε > 0 define

Y i,ε = {x ∈ X(n) : d(x, Xi) ≤ ε}. (23.123)

Prove that
⋃n

i=1 Y i,ε = X(n) for all ε > 0 and that there exists ε0 > 0 such that⋂n
i=1 Y i,ε0 = ∅.

For ε < ε0:

(b) Denote Zi,ε = X(n) \ Y i,ε for every i = 1, 2, . . . , n. Prove that∑n
i=1 d(x, Zi,ε) ≥ ε for every x ∈ X(n).

(c) Prove that
∑n

i=1 xid(x, Y i,ε) = ∑
{i : x �∈Y i,ε} xid(x, Y i,ε).

(d) Define a function f ε : X(n) → X(n) as follows:

f ε
i (x) =

{
xi − xid(x, Y i,ε) if x �∈ Y i,ε,

xi +
(∑n

j=1 xjd(x, Y j,ε)
)

d(x,Zi,ε)∑n
j=1 d(x,Zj,ε) if x ∈ Y i,ε.

(23.124)

Prove that the function f ε is continuous and that its range is contained in X(n).
Deduce that f ε has a fixed xε.

(e) Prove that xε ∈ ⋂n
i=1 Y i,ε.

(f) Let (εk)k∈N be a sequence converging to 0 such that x∗ := limk→∞ xεk exists.
Prove that x∗ ∈ ⋂n

i=1 Xi , contradicting the assumption that
⋂n

i=1 Xi = ∅.

23.32 Prove Brouwer’s Fixed Point Theorem (Theorem 23.30 on page 938) using the
KKM Theorem (Theorem 23.36 on page 941).
Hint: Define Xi = {x ∈ X(n) : fi(x) ≥ xi}.

23.33 Prove that for every α ∈ Rn and every β ∈ R,

H+(α, β) = H−(−α,−β). (23.125)

23.34 Prove that x ∈ H+(x − y, 〈x − y, y〉) for every pair of vectors x, y ∈ Rn.

23.35 Let x, y ∈ Rm be two different vectors. Prove the following claims:

(a) y ∈ H (y − x, 〈y − x, y〉).
(b) The hyperplane H (y − x, 〈y − x, y〉) is perpendicular to y − x, i.e.,

〈y − x, y − z〉 = 0 for all z ∈ H (y − x, 〈y − x, y〉).
(c) y is the point in H (y − x, 〈y − x, y〉) that is closest to x, i.e., 〈z − x, z − x〉 >

〈y − x, y − x〉 for all z ∈ H (y − x, 〈y − x, y〉), z �= y.

23.36 Let H be a hyperplane, let x �∈ H and let y ∈ H be the point in H that is closest
to x. Prove that H = H (y − x, 〈y − x, y〉).

23.37 Let H (α, β) be a hyperplane and let x �∈ H (α, β). Define

y := x + β − 〈α, x〉
〈α, α〉 α. (23.126)

Prove the following claims:

(a) y ∈ H (α, β).
(b) H (α, β) = H (y − x, 〈y − x, y〉).
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23.38 In each of the following items, find a closed and convex set S ⊆ R2, and a vector
x �∈ S, satisfying the following properties:

(a) There exists a unique hyperplane separating S from x.
(b) There exist at least two hyperplanes separating S from x, and α = α̂ for every

pair of such hyperplanes H (α, β) and H (̂α, β̂).

23.39 Let H (α, β) be a hyperplane separating a closed and convex set S from a vector
x �∈ S, and let H (̂α, β̂) be a hyperplane separating a closed and convex set Ŝ from
a vector x̂ �∈ Ŝ. Does the hyperplane H (α + α̂, β + β̂) separate the set S + Ŝ :=
{y + ŷ : y ∈ S, ŷ ∈ Ŝ} and the vector x + x̂? Either prove that this is true, or find
a counterexample.

23.40 Let S be a closed set (not necessarily convex) and let x �∈ S. Must there exist a
hyperplane separating x from S? Either prove that this is true, or find a counter-
example.

23.41 Each of the following items presents a closed and convex set S and a vector x.
For each such pair, determine whether or not there is a hyperplane separating x

from S, and if your answer is affirmative, find such a hyperplane. If your answer
is negative, justify your answer.9

(a) S = {z ∈ R2 : (z1)2 + (z2)2 ≤ 1}, x = (0, 0).
(b) S = {z ∈ R2 : (z1)2 + (z2)2 ≤ 1}, x = (1, 1).
(c) S = {z ∈ R2 : (z1)2 + (z2)2 ≤ 1}, x = (0, 1).
(d) S = [(0, 0), (1, 1)] ∪ [(0, 0), (−1, 1)], x = (0, 1

2 ).
(e) S = [(0, 0), (1, 1)] ∪ [(0, 0), (−1, 1)], x = ( 1

2 , 1).
(f) S = [(0, 0), (1, 1)] ∪ [(0, 0), (−1, 1)], x = ( 1

4 , 2).
(g) S = {z ∈ R3 : (z1)2 + (z2)2 + (z3)2 = 1, x = (0, 0, 0).
(h) S = {z ∈ R3 : (z1)2 + (z2)2 + (z3)2 = 1, x = (0, 1, 1).

23.42 Each of the following items presents a closed and convex set S and a vector x.
For each such pair, find the hyperplane separating x from S, as described in
Theorem 23.39 (page 944).

(a) S = {z ∈ R3 : max{|z1|, |z2|, |z3|} ≤ 1}, x = (2, 2, 2).
(b) S = {z ∈ R3 : max{|z1|, |z2|, |z3|} ≤ 1}, x = (2, 3, 4).
(c) S = {z ∈ R3 : (z1)2 + (z2)2 + (z3)2 = 1}, x = (2, 2, 2).
(d) S = {z ∈ R2 : z1 ≥ 0, z1 + z2 ≤ 1, z2 ≤ z1}, x = (1, 2).
(e) S = {z ∈ R2 : z1 ≥ 0, z1 + z2 ≤ 1, z2 ≤ z1}, x = (2, 3).

23.43 Let S ⊆ Rn be a closed and convex set, and let x �∈ S. Find a hyperplane H (α, β)
strictly separating x from S; i.e., x is in the interior of H+(α, β), and S is in the
interior H−(α, β).

23.44 In this exercise, we provide a guided proof of Farkas’ Lemma: let v ∈ Rn be a
vector, and let T be an n × m matrix. Then the following two claims are equivalent.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

9 For every x, y ∈ R2 denote the line segment connecting x and y by [x, y], i.e., [x, y] = {z ∈ R2 : x = λx + (1 −
λ)y, 0 ≤ λ ≤ 1}.
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(a) 〈u, v〉 = uv� ≥ 0 for every vector u ∈ Rn satisfying uT ≥ �0.
(b) There exists a vector w ∈ Rm, w ≥ �0, satisfying T w� = v.

Guidance: To prove that the first claim implies the second claim, define the set
A := {T w� : w ∈ Rm, w ≥ �0} ⊆ Rn, and suppose by contradiction that v �∈ A.
Show that by the Separating Hyperplane Theorem there exists a hyperplane H (α, β)
separating A from v, and that it is possible to assume without loss of generality
that β = 0. Prove that αT ≥ �0, and derive a contradiction.

23.45 Prove the following theorem, which is a generalization of Theorem 23.39
(page 944).

Theorem 23.47 Let X and Y be two closed and convex subsets of Rn. If X and Y

are disjoint sets, then there exists a hyperplane H (α, β) strictly separating X from
Y , i.e.,

〈α, x〉 > β > 〈α, y〉, ∀x ∈ X, y ∈ Y. (23.127)

Guidance: Denote by d(X, Y ) the distance between X and Y ,

d(X, Y ) := min
{x∈X,y∈Y }

d(x, y). (23.128)

The minimum in the definition of d(X, Y ) is attained because X and Y are closed
sets. Let x ∈ X and y ∈ Y be points that minimize the distance between the points
in X and the points in Y ,

d(X, Y ) = d(x, y) > 0. (23.129)

Write down the equation for the hyperplane separating the vector x from Y , as
constructed in the proof of Theorem 23.39, and the equation for the hyperplane
separating y from X, as constructed in the proof of Theorem 23.39. Using these
two hyperplanes, construct a hyperplane strictly separating X from Y .

23.46 In this exercise we generalize Exercise 23.45, and show that any two disjoint
convex sets can be separated.

(a) Let X be a convex set. For every ε > 0 denote by Xε the set of all points whose
distance from Xc, the complement of X, is at least ε:

Xε := {x ∈ X : d(x, Xc) ≥ ε}. (23.130)

Prove that Xε is a closed and convex set for every ε > 0.
Let X and Y be two disjoint convex sets.

(b) Prove that the sets Xε and Yε are disjoint for every ε > 0.
(c) Deduce from Exercise 23.45 that for every ε > 0 there exists a hyperplane

H (αε, βε) satisfying

〈αε, x〉 > βε > 〈αε, y〉, ∀x ∈ Xε, y ∈ Yε. (23.131)

(d) Prove that if the hyperplane H (αε, βε) is the hyperplane constructed in the proof
of Theorem 23.39 (page 944), then the sequence (αε, βε) has an accumulation
point (α∗, β∗) when ε converges to 0.
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(e) Prove that the hyperplane H (α∗, β∗) separates X from Y , i.e., X ⊆ H+(α∗, β∗)
and Y ⊆ H−(α∗, β∗).

23.47 Find the dual program to each of the following linear programs:

(a) Compute: ZP := max{2y1 − 3y2},
subject to: y1 + 2y2 ≤ 1,

−y1 − 4y2 ≤ 4,

−6y1 + 5y2 ≤ 7,

y1, y2 ≥ 0.

(23.132)

(b) Compute: ZP := max{6y1 + 2y2 − 3y3},
subject to: −2y1 + 4y2 ≤ −3,

5y1 − 1y3 ≤ −6,

7y1 + 2y2 − 4y3 ≤ 17,

y1, y2 ≥ 0.

(23.133)

23.48 Prove that for every feasible solution x of Problem (23.105) on page 948 there
exists a feasible solution (w, z) of Problem (23.104) satisfying x = w − z.

23.49 Express the dual program in Equation (23.98) (page 948) in the form of a primal
program, as in Equation (23.97), and show that the dual program to this program
is the primal program that appears in Equation (23.97).

23.50 Consider the following maximization problem:

Compute: ZP := max cy�,

subject to: Ay� = b� .
(23.134)

(a) Represent this problem as a standard linear program using Definition 23.40.
Note that in this problem there is no constraint of the form y ≥ 0.

(b) Show that the dual program is

Compute: ZD := min xb�,

subject to: xA = c.
(23.135)

23.51 Consider the following maximization problem:

Compute: ZP := max cy�,

subject to: Ay� ≤ b� .
(23.136)

(a) Represent this problem as a standard linear program using Definition 23.40.
Note that in this problem there is no constraint of the form y ≥ 0.

(b) Show that the dual program is

Compute: ZD := min xb�,

subject to: xA = c,

x ≥ �0.

(23.137)
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